
Selection of Optimal Computing Platforms through
the Suitability Measurea

Shean T. McMahon
Physical Optics Corporation

20600 Gramercy Pl., Building 100
Torrance, CA 90501-1821

smcmahon@poc.com

Isaac D. Scherson
University of California, Irvine,

 Irvine, CA, 90740, USA
isaac@ics.uci.edu

Abstract

Selection of spaceborne computing platforms

requires balance among several competing factors.
Traditional performance analysis techniques are ill-
suited for this purpose due to their overriding concern
with runtime. The suitability measure is a new
approach that quantifies the match between a
computing platform and a program. It analyzes a
program at the opcode and control flow levels, and
compares this to a machine's capability to support the
unique characteristics of the program. In this paper we
develop the suitability measure and a series of
program analysis methods. Experimental results
confirm that machines that provide a better match to
the program yield a higher suitability score. We prove
that loops provide the only contribution to the
suitability value, and also that the number of loop
iterations is irrelevant, leading to the conclusion that a
single pass through a loop is sufficient to derive a
suitability value.

Keywords: Efficiency, opcode, control flow graph,
DAG, cycles, irregularity

1. Origin of the suitability measure

One of the most difficult tasks for designers of

interstellar and interplanetary probes is selection of the
most suitable computing platform. Several factors
must be considered, including physical size, weight,
power constraints, radiation hardness, cooling issues
and computing capability. Providing high performance
while satisfying the other constraints often results in
tradeoffs such as reductions in performance to meet
cooling and power supply restrictions. Because no
quantifiable standards currently exist, the choices often
rely upon educated guesses. The suitability measure

will provide a method to quantify the match between a
program and a machine.

Contemporary performance analysis techniques
are concerned primarily with runtime. Instead, the
suitability measure quantifies how efficiently a
computer executes a program. A machine that runs a
program more slowly, but uses its resources more
effectively, has a higher suitability than a faster
machine that provides poor resource utilization. This
makes the measure particularly well suited to
spaceborne computing, embedded systems, and other
cases where a balance must be struck among a
collection of conflicting constraints.

The suitability measure combines opcode-level
performance metrics with instruction mix and control
flow characteristics collected from static scans of
compiled programs. It reveals a machine’s efficiency at
executing the mean instruction mix seen, over the set
of all possible execution paths a program may follow.
By approaching the problem from an efficiency
perspective, time is factored out of the equations,
yielding a time-independent measure.

2.1. Instruction level suitability

Suitability is a composite quantity combining

instructional execution efficiency, resource utilization
efficiency, and a relative load metric. Each of the terms
is unitless. Instructional execution efficiency quantifies
a computer’s efficiency at executing a single type of
instruction. The definition can be relaxed to allow the
inclusion of instruction classes or high-level operations
such as macros. Its accuracy is inversely proportional
to the granularity of the instruction type. It is defined
as

 i
i

ti
 . (1)

a. This work was supported in part by NASA-JPL under Grant 1216595 and by NASA-GSFC under Grant NAG5-9695.

3. Code structures where i is the ideal execution time given by the
manufacturer’s specified latency for the instruction,
and ti is the context-free, actual execution time found
using the performance vector [1],[2].

A crucial step in computing suitability is

transformation of the CF graph into a DAG. Code
structures form the foundation of this essential step, by
providing a vehicle for the extraction of the underlying
CF structure and instruction mix of a program. These
represent deterministic sequences of opcodes. As
such, only a single exit path can exist, and the structure
must be traversed in its entirety if encountered. Once
the CF structure has been recovered, it is converted
into a DAG using a collection of program
transformations. From here, a suitability value can be
computed. Code structures are similar to the basic
blocks created during the compilation process, but
differ in their origin, being recovered from compiled,
linked, and optimized code.

Resource utilization efficiency is the ratio of
utilized to available resources in the machine for the
instruction in question. Any level of granularity from
entire subsystems to individual gates can be
considered. Comparisons between machines must use
the same resource granularity to be valid. It is defined
as

 Ui

Rused i
Ravailable i

 . (2)

The relative load measure quantifies the
percentage of the program comprising a particular
instruction type or class. Collecting this value requires
that all possible execution paths in the program be
traced. The total number of instructions in the
program is given by LT, while Li quantifies the
frequency of instruction type i. It is defined as

Code structures fall into two classes: basis forms,
specifically the null segment and the unitary sequential
segment, and composite forms. Composite forms are
constructed by combining the basis forms, and include
the maximal sequential segment and the branch and
loop structures. The unitary sequential segment is
depicted in Figure 1.

 Loadrelative i
Li

LT
, LT ∑

i
Li . (3)

In real-world programs, variations in execution
parameters or data will alter the program instruction
mix and control flow characteristics. This
nondeterministic, irregular behavior complicates
collection of the required load metrics. This is
overcome by transforming the program control flow
(CF) graph into a directed acyclic graph (DAG).
Section 3 introduces a series of code structures and
program transformations developed for this purpose.
Further information on program irregularity can be
found in Ref. [3].

Figure 1. The unitary sequential segment

3.1. Program transformations

In its native state, a program CF graph is both

directed and cyclic. Program transformations exploit
the behavior of cyclic portions of the program and the
suitability definitions, allowing cyclic segments of a
program to be transformed into acyclic segments.
Several transformations exist, and all are based on the
loop proof presented here. Only the loop form is given
here, due to space considerations.

Suitability is first defined at the instruction level,
and then extended to programs using various
combinatory techniques. At the instruction level, it
quantifies the efficiency with which a computer can
execute a single type or class of instruction. Given an
instruction of type i, suitability is defined as

3.1.1. The loop proof. Consider a program with

four segments as shown in Figure 2. As the number of
iterations of the loop segment increases, we expect
segments b and c to dominate the program.

 Si
iUi Li

LT
 . (4)

Partitions form an intermediate step. They
combine instructions that share an execution path, and
can be viewed as collections of instructions. For
partition j, consisting of n instructions of type i, the
suitability is defined as

 Sj ∑
i 1

n
Si ∑

i 1

n
iUiLi

LT
 . (5) Figure 2. Sequence containing a loop

Let U for convenience. The suitability for
the sequence in Figure 2 is then given by

S Sa nSb nSc Sd

aL a n (bLb cLc) dLd

La n (Lb Lc) Ld

 . (6)

As the iterations n of the loop increase, the
suitability S of the sequence converges to the limit of S
as n.

S lim S
n

lim
n

aLa n(bLb c Lc) dLd

La n(Lb Lc) Ld

n(bLb c Lc)
n(Lb Lc)

bLb cLc

Lb Lc
.

 (7)

 Q.E.D.

In the limit, the loop segments dominate, allowing
the sequential segments to be ignored. This leads to
the loop theorem and its corollary.

Loop Theorem: The suitability for a sequence
containing a single loop is the instruction count
weighted mean U for the loop segment only.

Corollary to the Loop Theorem: If a sequence
contains at least one loop, all non-loop portions of
the sequence make no contribution to the suitability
value of the sequence.

Parallel proofs for nested and sequential loops, as
well as recursive structures can be developed using a
parallel argument. The results of each proof are listed
in Table 1. Recall that gamma represents the product
of the instructional execution efficiency and the
resource utilization efficiency.

Table 1. Loop types and suitability

Type Suitability
Single loop Gamma of loop segments
Sequential
loops

Instruction count weighted mean
gamma of loop segments

Nested loops Gamma of innermost loop segments
Single recursion Gamma of recursive segments
Sequential
recursions

Instruction count weighted mean
gamma of recursive segments

Nested
recursions

Gamma of innermost recursive
segments

3.2 Partitions

Code structures provided a formalism for

disassembling a computer program. This formalism is

necessary for developing the loop proof and its
associated machinery, although it is far too restrictive
for practical application. Partitions provide a bridge by
relaxing the formal requirements of code structures,
streamlining the program disassembly process. From
here the CF graph can be converted into a DAG, and a
suitability value computed. Figure 3 illustrates the
structure of a typical partition.

Figure 3. Typical partition structure

Inspection of Figure 3 reveals that partitions allow

multiple entry and exit paths in the form of returning
and nonreturning exits. Procedure calls are an example
of nonreturning exits, while interrupts illustrate
returning exits. The determinism constraint of code
structures expressly forbids this type of structure. The
partitioning procedure is provided in the following
pseudocode.

Partition_Program
{
 process single line partitions; //interrupts, …
 build primary partitions; // procedures
 while(cases remain)
 {

build loop partitions; // loops, recursions,
process references; // procedure calls

build minimal partitions;
remove deadcode;
return partitioned program;

}
 }

Partitioning is an iterative process. It begins with

single line opcodes such as interrupts or the IA-32
string-repeat operations [5,6,7]. A partition pointer is
substituted for the opcode, and the code itself is placed
into a partition. The process continues by extracting
code segments until no partitionable code remains.
Figure 4 illustrates the partitioning process on a code
segment.

Extraction of suitability values requires that the
cycles be nullified. The effect is to extract a DAG
from the program CF graph. For simple cycles, the
reference from the tail to the head is nullified, making
the cycle acyclic. For complex cycles, no clear path is
available, so a mean path must be found. The head of
the cycle is located, and each path through the cycle is
traced. When no head of the cycle can be located, the
principle node must be found. A path trace is then
initiated from this node.

3.2.3. Graph reduction and principal node

location in complex cycles. The principal node of a
complex cycle is the most frequently visited node on
the cycle under all possible traversals. Finding the
principal node begins by deleting all nodes that do not
contribute to the cyclic behavior. Nodes with an
indegree or outdegree of zero or one are candidates for
deletion under this constraint. All duplicate edges
remaining on the graph are then deleted, leading to a
reduced graph. Figure 6 illustrates the reduction
process.

Figure 4. Partitioning of a code segment

A side effect of partitioning is that it reveals dead
code, allowing its extraction. Dead code is never
accessed during program execution; typically it is
inserted during the linking phase of compilation [8,9].
C++ templates have also been shown to be a major
culprit in the generation of dead code [10].

3.2.1. Nullification of loop partitions. During

partitioning, a series of loop partitions was extracted.
Each of these loops contributes to the cyclic nature of
the control flow graph, and must be transformed into
an acyclic state. The loop theorem and its corollary
provide the means to achieve this. The loop theorem
reveals that the suitability of a program is entirely
derived from the loops, and that only a single pass
through each loop is required to extract a suitability
value. As such, it is sufficient to simply nullify the
loop’s internal reference to its entry point to recover
the suitability value.

Figure 6. Principal node location reductions

Finally, all possible cycles that exist on the

reduced graph are generated. The most frequent is the
principal cycle. The head of the principal cycle is the
principal node for the entire complex cycle. Next, all
possible cycles originating from the principal node are
generated. The mean cycle is returned for computation
of the suitability value. Figure 7 contains the reduced
control flow graph for one of the test programs used in
the experiments.

3.2.2. Understanding cyclic paths. The control

flow graph of any real program will contain cyclic
paths. Both simple and complex cycles occur. A
single execution path characterizes simple cycles. In
contrast, complex cycles contain multiple paths.
Figure 5 illustrates these cases.

Figure 7. Reduced flow graph
for unzipsfx.exe

The original complex cycle contained 36 nodes

and 48 different paths. The reduction process results
in a subgraph with 7 nodes and 11 paths. Inspection

Figure 5. Simple and complex cycles

will reveal that the principal cycle is 72 1483 1482
72. Node 72 is the principal node.

5. Experimental results

 Six test programs were collected from a PC
running Microsoft Windows XP Professional, as listed
in Table 3.

4. Recombination rules

Program transformations convert the CF graph

into a DAG. Computing the suitability value requires
that the gamma and load metrics be known for all
possible paths on the DAG. A series of recombination
rules are employed to recombine partitions and extract
an overall suitability measure for the program/machine
system.

Table 3. Test programs

Program Purpose
Agrsmdel.exe A modem driver
Java.exe Java application launcher
Javaw.exe Nonconsole Java application launcher
Mqsvc.exe Microsoft’s message queuing service
Rmi.exe A remote method invocation

application
Unzipsfx.exe Unzip utility for self-extracting archives

When partitions are recombined, the expected
gamma and load metrics on each partition are
percolated through the DAG to partitions higher in the
graph. This process continues until the root partition
for the program is reached. The recombination rules
summarized in Table 2 govern this process. The
results in Table 2 can be proven using construction.

The suitability codes were programmed in Java.

Each program was disassembled using Microsoft’s
Dumpbin binary disassembler. The programs were
then partitioned. Operation classes corresponding to
those of the MinneSPEC program were chosen [4] for
the suitability computation. Table 4 lists them.

Table 2. Recombination rules

Recombination Cost Justification
Seq: S1, S2 Sum of S1, S2 Path composition
Seq: S, L Loop cost Loop proof
Branch: S/S Mean of paths Path

decomposition
Branch: S/L Min path Path

decomposition
Branch: L/L Mean of paths Path

decomposition
Loop: single Loop cost Loop proof
Loop: Nested Inner loop cost Nested loop proof
Loop: Multiple Mean of loops Distinct loop proof

Table 4. MinneSPEC operation classes

Instruction Class Example Opcodes
Integer Computation add, sub, mul, div, and, …
Floating Point Comp. fp_add, fp_sub, fp_sqrt, …
Load load
Store store
Conditional Branch bne, beq, …
Unconditional Branch jmp

The goal of this work was to develop the

suitability measure and its associated machinery.
Performance vectors would typically be used to gather
opcode metrics, but were not a focus of this work. In
lieu of generating performance vectors, several
representative gamma values for each operation class
were chosen. This allowed the partitioning,
recombination, and suitability measure procedures to
be evaluated.

Branch S/L: A branch that traverses a sequential

or a loop segment
Branch S/S: A branch that traverses one of two

sequential segments
Branch L/L: A branch that traverses one of two

loop segments

It was known that the gamma value is in the
range of (0, 1]. Thus, choosing a set of values in this
range allows for experimental evaluation of a
collection of arbitrary machines. It should be noted
that it is possible, but uncommon, for the gamma value
to exceed unity. If it were to exceed unity, it would
merely serve to indicate that the machine was
exceptionally well suited to a particular class of
operations. In particular, most of the time, it would be
operating in a superscalar manner during the execution
of this operation.

4.1 Computing program suitability

The recombination process replaces each partition

reference with the expected gamma and L
i
 values.

These are combined and percolated up through the
DAG to the root partition, where the program
suitability value can be computed. The suitability is
given by the unexpected result

 Sprog
root Lroot

Lroot
root . (8)

It was expected that as the efficiency of a machine
for common operations increased, its suitability would
follow suit. This was found to be the case. Figures 8

and 9 contain plots confirming the expected results for
test programs agrsmdel.exe and unzipsfx.exe. The
other test programs yielded similar results.

Figure 8. Suitability of agrsmdel.exe

Figure 9. Suitability of mqsvc.exe

6. Future directions and applications

The suitability measure provides a means to

evaluate a program and a computer as a system. It
combines machine runtime characteristics with
program control flow and instruction mix properties,
and extracts the efficiency with which the machine can
execute the program. Application areas include
embedded systems, specialized computing systems,
and even general-purpose computers. The unique
process required to evaluate suitability admits a
method of identifying code bloat, and provides insight
into reducing program irregularity. The advantages of
this are widespread. One application is providing
insight into improved scheduling techniques.

Future directions include investigation of alternate
means of opcode metric gathering methods.
Performance vectors work, but require significant time
for collection. The measure is designed to operate on
static scans of programs. Currently, runtime effects
are not taken into account. This was not a concern for
the initial development effort due to the highly
specialized nature of the systems targeted for
evaluation. Inclusion of these effects should prove to
be straightforward, but is beyond the scope of the
current problem.

7. References

[1] U. Krishnaswamy and I.D. Scherson, “A Framework for
Computer Perfomance Evaluation Using Benchmark Sets,”
IEEE Transactiosn on Computers, Los Alamitos, CA: IEEE
Press, December 2000.
[2] U. Krishnaswamy, “Computer Performance Evaluation
Using Performance Vectors,” doctoral thesis, University of
California, Irvine, 2000.
[3] V. Ramakrishnan, “The Convergence of Massively
Parallel Processors and Multiprocessors,” doctoral thesis,
University of California, Irvine, 2000.
[4] A.J. KleinOsowski and D.J. Lilja, “MinneSPEC: A New
SPEC Benchmark Workload for Simulation-Based Computer
Architecture Research,” Computer Architecture Letters, vol.
1, June 2002.
[5] “IA-32 Intel Architecture Software Developer’s Manual,”
vol. 1, Intel Corporation, 2003.
[6] “IA-32 Intel Architecture Software Developer’s Manual,”
vol. 2, Intel Corporation, 2003.
[7] “IA-32 Intel Architecture Software Developer’s Manual,”
vol. 3, Intel Corporation, 2003.
[8] R. Morgan, “Building an Optimizing Compiler,” Boston:
Digital Press, 1998.
[9] J.W. Davidson and C.W. Fraser, “Eliminating Redundant
Object Code,” Proceedings of the 9th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, Albuquerque, New Mexico, 1982.
[10] “Green Hills Software White Paper, Traveling Salesman
Demonstration,” Green Hills Software, Santa Barbara, CA,
http://www.ghs.com/wp/citiesdemo.html.

	1. Origin of the suitability measure
	2.1. Instruction level suitability

	3. Code structures
	3.1. Program transformations
	3.2 Partitions

	4. Recombination rules
	4.1 Computing program suitability

	5. Experimental results
	6. Future directions and applications
	7. References

