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Abstract 
 
Selection of spaceborne computing platforms 

requires balance among several competing factors.  
Traditional performance analysis techniques are ill-
suited for this purpose due to their overriding concern 
with runtime. The suitability measure is a new 
approach that quantifies the match between a 
computing platform and a program.  It analyzes a 
program at the opcode and control flow levels, and 
compares this to a machine's capability to support the 
unique characteristics of the program. In this paper we 
develop the suitability measure and a series of 
program analysis methods.  Experimental results 
confirm that machines that provide a better match to 
the program yield a higher suitability score. We prove 
that loops provide the only contribution to the 
suitability value, and also that the number of loop 
iterations is irrelevant, leading to the conclusion that a 
single pass through a loop is sufficient to derive a 
suitability value. 
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1.  Origin of the suitability measure 

 
One of the most difficult tasks for designers of 

interstellar and interplanetary probes is selection of the 
most suitable computing platform.  Several factors 
must be considered, including physical size, weight, 
power constraints, radiation hardness, cooling issues 
and computing capability. Providing high performance 
while satisfying the other constraints often results in 
tradeoffs such as reductions in performance to meet 
cooling and power supply restrictions. Because no 
quantifiable standards currently exist, the choices often 
rely upon educated guesses. The suitability measure 

will provide a method to quantify the match between a 
program and a machine. 

Contemporary performance analysis techniques 
are concerned primarily with runtime.  Instead, the 
suitability measure quantifies how efficiently a 
computer executes a program. A machine that runs a 
program more slowly, but uses its resources more 
effectively, has a higher suitability than a faster 
machine that provides poor resource utilization.  This 
makes the measure particularly well suited to 
spaceborne computing, embedded systems, and other 
cases where a balance must be struck among a 
collection of conflicting constraints. 

The suitability measure combines opcode-level 
performance metrics with instruction mix and control 
flow characteristics collected from static scans of 
compiled programs. It reveals a machine’s efficiency at 
executing the mean instruction mix seen, over the set 
of all possible execution paths a program may follow.  
By approaching the problem from an efficiency 
perspective, time is factored out of the equations, 
yielding a time-independent measure. 

 
2.1.  Instruction level suitability 

 
Suitability is a composite quantity combining 

instructional execution efficiency, resource utilization 
efficiency, and a relative load metric. Each of the terms 
is unitless. Instructional execution efficiency quantifies 
a computer’s efficiency at executing a single type of 
instruction. The definition can be relaxed to allow the 
inclusion of instruction classes or high-level operations 
such as macros. Its accuracy is inversely proportional 
to the granularity of the instruction type. It is defined 
as 
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3.  Code structures where i is the ideal execution time given by the 
manufacturer’s specified latency for the instruction, 
and ti is the context-free, actual execution time found 
using the performance vector [1],[2]. 

 
A crucial step in computing suitability is 

transformation of the CF graph into a DAG.  Code 
structures form the foundation of this essential step, by 
providing a vehicle for the extraction of the underlying 
CF structure and instruction mix of a program.  These 
represent deterministic sequences of opcodes.  As 
such, only a single exit path can exist, and the structure 
must be traversed in its entirety if encountered.  Once 
the CF structure has been recovered, it is converted 
into a DAG using a collection of program 
transformations.  From here, a suitability value can be 
computed.  Code structures are similar to the basic 
blocks created during the compilation process, but 
differ in their origin, being recovered from compiled, 
linked, and optimized code. 

Resource utilization efficiency is the ratio of 
utilized to available resources in the machine for the 
instruction in question. Any level of granularity from 
entire subsystems to individual gates can be 
considered. Comparisons between machines must use 
the same resource granularity to be valid. It is defined 
as 
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The relative load measure quantifies the 
percentage of the program comprising a particular 
instruction type or class.  Collecting this value requires 
that all possible execution paths in the program be 
traced.  The total number of instructions in the 
program is given by LT, while Li quantifies the 
frequency of instruction type i.  It is defined as 

Code structures fall into two classes:  basis forms, 
specifically the null segment and the unitary sequential 
segment, and composite forms.  Composite forms are 
constructed by combining the basis forms, and include 
the maximal sequential segment and the branch and 
loop structures.  The unitary sequential segment is 
depicted in Figure 1. 
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In real-world programs, variations in execution 
parameters or data will alter the program instruction 
mix and control flow characteristics. This 
nondeterministic, irregular behavior complicates 
collection of the required load metrics.  This is 
overcome by transforming the program control flow 
(CF) graph into a directed acyclic graph (DAG).  
Section 3 introduces a series of code structures and 
program transformations developed for this purpose.  
Further information on program irregularity can be 
found in Ref. [3]. 

Figure 1.  The unitary sequential segment 
 

3.1.  Program transformations 
 
In its native state, a program CF graph is both 

directed and cyclic.  Program transformations exploit 
the behavior of cyclic portions of the program and the 
suitability definitions, allowing cyclic segments of a 
program to be transformed into acyclic segments.  
Several transformations exist, and all are based on the 
loop proof presented here.  Only the loop form is given 
here, due to space considerations. 

Suitability is first defined at the instruction level, 
and then extended to programs using various 
combinatory techniques.  At the instruction level, it 
quantifies the efficiency with which a computer can 
execute a single type or class of instruction.  Given an 
instruction of type i, suitability is defined as 

 
3.1.1.  The loop proof.  Consider a program with 

four segments as shown in Figure 2.  As the number of 
iterations of the loop segment increases, we expect 
segments b and c to dominate the program. 
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Partitions form an intermediate step.  They 
combine instructions that share an execution path, and 
can be viewed as collections of instructions.  For 
partition j, consisting of n instructions of type i, the 
suitability is defined as 
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Let U  for convenience.  The suitability for 
the sequence in Figure 2 is then given by   
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As the iterations n of the loop increase, the 
suitability S of the sequence converges to the limit of S 
as n.  

 

S lim S
n

lim
n

aLa n( bLb c Lc ) dLd

La n(Lb Lc ) Ld

n( bLb c Lc )
n(Lb Lc)

bLb cLc

Lb Lc
.

 (7) 

  Q.E.D. 
 

In the limit, the loop segments dominate, allowing 
the sequential segments to be ignored.  This leads to 
the loop theorem and its corollary.  

Loop Theorem: The suitability for a sequence 
containing a single loop is the instruction count 
weighted mean U for the loop segment only.  

Corollary to the Loop Theorem: If a sequence 
contains at least one loop, all non-loop portions of 
the sequence make no contribution to the suitability 
value of the sequence.  

Parallel proofs for nested and sequential loops, as 
well as recursive structures can be developed using a 
parallel argument.  The results of each proof are listed 
in Table 1.  Recall that gamma represents the product 
of the instructional execution efficiency and the 
resource utilization efficiency.  

 
Table 1.  Loop types and suitability 

 

Type  Suitability  
Single loop  Gamma of loop segments  
Sequential 
loops  

Instruction count weighted mean 
gamma of loop segments  

Nested loops  Gamma of innermost loop segments 
Single recursion  Gamma of recursive segments  
Sequential 
recursions  

Instruction count weighted mean 
gamma of recursive segments 

Nested 
recursions  

Gamma of innermost recursive 
segments  

 
3.2  Partitions 

 
Code structures provided a formalism for 

disassembling a computer program. This formalism is 

necessary for developing the loop proof and its 
associated machinery, although it is far too restrictive 
for practical application. Partitions provide a bridge by 
relaxing the formal requirements of code structures, 
streamlining the program disassembly process. From 
here the CF graph can be converted into a DAG, and a 
suitability value computed. Figure 3 illustrates the 
structure of a typical partition.  

 

 
Figure 3.  Typical partition structure 

 
Inspection of Figure 3 reveals that partitions allow 

multiple entry and exit paths in the form of returning 
and nonreturning exits. Procedure calls are an example 
of nonreturning exits, while interrupts illustrate 
returning exits.  The determinism constraint of code 
structures expressly forbids this type of structure. The 
partitioning procedure is provided in the following 
pseudocode.  

 
Partition_Program  
{  
 process single line partitions; //interrupts, … 
 build primary partitions;  // procedures 
 while(cases remain) 
 { 

build loop partitions;  // loops, recursions, 
process references;  // procedure calls 

build minimal partitions; 
remove deadcode; 
return partitioned program; 

} 
 } 

 
Partitioning is an iterative process.  It begins with 

single line opcodes such as interrupts or the IA-32 
string-repeat operations [5,6,7]. A partition pointer is 
substituted for the opcode, and the code itself is placed 
into a partition.  The process continues by extracting 
code segments until no partitionable code remains.  
Figure 4 illustrates the partitioning process on a code 
segment.  

 



 

Extraction of suitability values requires that the 
cycles be nullified.  The effect is to extract a DAG 
from the program CF graph.  For simple cycles, the 
reference from the tail to the head is nullified, making 
the cycle acyclic.  For complex cycles, no clear path is 
available, so a mean path must be found.  The head of 
the cycle is located, and each path through the cycle is 
traced.  When no head of the cycle can be located, the 
principle node must be found.  A path trace is then 
initiated from this node.  

 

 
3.2.3.  Graph reduction and principal node 

location in complex cycles. The principal node of a 
complex cycle is the most frequently visited node on 
the cycle under all possible traversals.  Finding the 
principal node begins by deleting all nodes that do not 
contribute to the cyclic behavior.  Nodes with an 
indegree or outdegree of zero or one are candidates for 
deletion under this constraint.  All duplicate edges 
remaining on the graph are then deleted, leading to a 
reduced graph.  Figure 6 illustrates the reduction 
process.  

Figure 4.  Partitioning of a code segment 
 

A side effect of partitioning is that it reveals dead 
code, allowing its extraction.  Dead code is never 
accessed during program execution; typically it is 
inserted during the linking phase of compilation [8,9].  
C++ templates have also been shown to be a major 
culprit in the generation of dead code [10].  

 
3.2.1.  Nullification of loop partitions. During 

partitioning, a series of loop partitions was extracted.  
Each of these loops contributes to the cyclic nature of 
the control flow graph, and must be transformed into 
an acyclic state.  The loop theorem and its corollary 
provide the means to achieve this.  The loop theorem 
reveals that the suitability of a program is entirely 
derived from the loops, and that only a single pass 
through each loop is required to extract a suitability 
value.  As such, it is sufficient to simply nullify the 
loop’s internal reference to its entry point to recover 
the suitability value. 

 

 
Figure 6.  Principal node location reductions 

 
Finally, all possible cycles that exist on the 

reduced graph are generated.  The most frequent is the 
principal cycle.  The head of the principal cycle is the 
principal node for the entire complex cycle.  Next, all 
possible cycles originating from the principal node are 
generated.  The mean cycle is returned for computation 
of the suitability value.  Figure 7 contains the reduced 
control flow graph for one of the test programs used in 
the experiments.  

 
3.2.2.  Understanding cyclic paths. The control 

flow graph of any real program will contain cyclic 
paths.  Both simple and complex cycles occur.  A 
single execution path characterizes simple cycles.  In 
contrast, complex cycles contain multiple paths.  
Figure 5 illustrates these cases.  

 

 

 

Figure 7.  Reduced flow graph  
for unzipsfx.exe 

 
The original complex cycle contained 36 nodes 

and 48 different paths.  The reduction process results 
in a subgraph with 7 nodes and 11 paths.  Inspection 

Figure 5.  Simple and complex cycles 



will reveal that the principal cycle is 72  1483  1482  
72.  Node 72 is the principal node.  

5.  Experimental results  
 

 Six test programs were collected from a PC 
running Microsoft Windows XP Professional, as listed 
in Table 3.  

4.  Recombination rules  
 
Program transformations convert the CF graph 

into a DAG.  Computing the suitability value requires 
that the gamma and load metrics be known for all 
possible paths on the DAG.  A series of recombination 
rules are employed to recombine partitions and extract 
an overall suitability measure for the program/machine 
system.  

 
Table 3.  Test programs 

 

Program  Purpose  
Agrsmdel.exe A modem driver  
Java.exe  Java application launcher  
Javaw.exe  Nonconsole Java application launcher 
Mqsvc.exe  Microsoft’s message queuing service 
Rmi.exe  A remote method invocation 

application  
Unzipsfx.exe  Unzip utility for self-extracting archives 

When partitions are recombined, the expected 
gamma and load metrics on each partition are 
percolated through the DAG to partitions higher in the 
graph.  This process continues until the root partition 
for the program is reached.  The recombination rules 
summarized in Table 2 govern this process.  The 
results in Table 2 can be proven using construction.  

 
The suitability codes were programmed in Java.  

Each program was disassembled using Microsoft’s 
Dumpbin binary disassembler.  The programs were 
then partitioned.  Operation classes corresponding to 
those of the MinneSPEC program were chosen [4] for 
the suitability computation.  Table 4 lists them.  

 
Table 2.  Recombination rules 

 

Recombination Cost Justification 
Seq: S1, S2  Sum of S1, S2  Path composition  
Seq: S, L  Loop cost  Loop proof  
Branch: S/S  Mean of paths  Path 

decomposition  
Branch: S/L  Min path  Path 

decomposition  
Branch: L/L  Mean of paths  Path 

decomposition  
Loop: single  Loop cost  Loop proof  
Loop: Nested  Inner loop cost  Nested loop proof 
Loop: Multiple  Mean of loops  Distinct loop proof 

 
Table 4.  MinneSPEC operation classes 

 

Instruction Class  Example Opcodes  
Integer Computation add, sub, mul, div, and, …  
Floating Point Comp. fp_add, fp_sub, fp_sqrt, …  
Load  load  
Store  store  
Conditional Branch  bne, beq, …  
Unconditional Branch jmp  

 
The goal of this work was to develop the 

suitability measure and its associated machinery.  
Performance vectors would typically be used to gather 
opcode metrics, but were not a focus of this work.  In 
lieu of generating performance vectors, several 
representative gamma values for each operation class 
were chosen.  This allowed the partitioning, 
recombination, and suitability measure procedures to 
be evaluated.  

 
Branch S/L:  A branch that traverses a sequential 

or a loop segment  
Branch S/S:  A branch that traverses one of two 

sequential segments  
Branch L/L:  A branch that traverses one of two 

loop segments  
 

It was known that the gamma value is in the 
range of (0, 1].  Thus, choosing a set of values in this 
range allows for experimental evaluation of a 
collection of arbitrary machines.  It should be noted 
that it is possible, but uncommon, for the gamma value 
to exceed unity.  If it were to exceed unity, it would 
merely serve to indicate that the machine was 
exceptionally well suited to a particular class of 
operations.  In particular, most of the time, it would be 
operating in a superscalar manner during the execution 
of this operation.  

4.1  Computing program suitability 
 
The recombination process replaces each partition 

reference with the expected gamma and L
i
 values.  

These are combined and percolated up through the 
DAG to the root partition, where the program 
suitability value can be computed.  The suitability is 
given by the unexpected result   
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It was expected that as the efficiency of a machine 
for common operations increased, its suitability would 
follow suit.  This was found to be the case.  Figures 8 

 



and 9 contain plots confirming the expected results for 
test programs agrsmdel.exe and unzipsfx.exe.  The 
other test programs yielded similar results.  

 

 
Figure 8.  Suitability of agrsmdel.exe 

 

 
Figure 9.  Suitability of mqsvc.exe 

 
6.  Future directions and applications 

 
The suitability measure provides a means to 

evaluate a program and a computer as a system.  It 
combines machine runtime characteristics with 
program control flow and instruction mix properties, 
and extracts the efficiency with which the machine can 
execute the program.  Application areas include 
embedded systems, specialized computing systems, 
and even general-purpose computers.  The unique 
process required to evaluate suitability admits a 
method of identifying code bloat, and provides insight 
into reducing program irregularity.  The advantages of 
this are widespread.  One application is providing 
insight into improved scheduling techniques.  

Future directions include investigation of alternate 
means of opcode metric gathering methods.  
Performance vectors work, but require significant time 
for collection.  The measure is designed to operate on 
static scans of programs.  Currently, runtime effects 
are not taken into account.  This was not a concern for 
the initial development effort due to the highly 
specialized nature of the systems targeted for 
evaluation.  Inclusion of these effects should prove to 
be straightforward, but is beyond the scope of the 
current problem.  
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