
Search-Based Energy Testing of Android
Reyhaneh Jabbarvand, Jun-Wei Lin, and Sam Malek

School of Information and Computer Sciences
University of California, Irvine, USA
{jabbarvr,junwel1,malek}@uci.edu

Abstract—The utility of a smartphone is limited by its battery
capacity and the ability of its hardware and software to efficiently
use the device’s battery. To properly characterize the energy
consumption of an app and identify energy defects, it is critical
that apps are properly tested, i.e., analyzed dynamically to assess
the app’s energy properties. However, currently there is a lack
of testing tools for evaluating the energy properties of apps.
We present COBWEB, a search-based energy testing technique
for Android. By leveraging a set of novel models, representing
both the functional behavior of an app as well as the contextual
conditions affecting the app’s energy behavior, COBWEB gen-
erates a test suite that can effectively find energy defects. Our
experimental results using real-world apps demonstrate not only
its ability to effectively and efficiently test energy behavior of
apps, but also its superiority over prior techniques by finding a
wider and more diverse set of energy defects.

I. INTRODUCTION

Improper usage of energy consuming hardware elements,
such as GPS, WiFi, radio, Bluetooth, and display, can drasti-
cally discharge the battery of a mobile device. Recent studies
have shown energy to be a major concern for both users [1]
and developers [2]. In spite of that, many mobile apps are
abound with energy defects. This can be attributed to the
lack of tools and methodologies for energy testing [2]. Recent
advancements in mobile app testing have mostly focused on
testing functional correctness of programs, which may not be
suitable for revealing energy defects [3]. There is, thus, an
increasing demand for solutions to assist developers in testing
energy behavior of apps prior to their release.

The first step toward energy testing is to understand the
properties of tests that are effective in revealing energy de-
fects in order to automatically generate such tests. Recently,
Jabbarvand et al. [3] proposed a technique based on mutation
testing to identify the properties of proper tests for energy
testing. They showed that to kill the energy mutants, tests
need to be executed under a variety of contextual settings.
Based on the results of their study, we have identified three
contextual factors that are correlated to energy defects and
should be considered in energy-driven testing: (1) Lifecycle
Context: A subset of energy defects, e.g., wakelocks and
resource leaks, manifest themselves under specific sequences
of lifecycle callbacks; (2) Hardware State Context: Some
energy defects happen under peculiar hardware states, e.g.,
poor network signal, no network connection, or low battery;
and (3) Interacting Environment Context: Certain energy
defects manifest themselves under specific interactions with
the environment—consisting of user, backend server, other
apps, and connected devices such as smartwatches.

None of the prior automated Android testing techniques
properly consider these contextual factors in test genera-

tion [4], [3], thereby are not able to effectively test the
energy behavior of apps. That is, majority of the state-of-
the-art Android testing tools [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15] are aimed for GUI testing, which only
considers the inputs directly generated by user, e.g., clicking
on a button. Even among the techniques that go beyond GUI
testing [16], [17], there is no systematic approach for altering
the lifecycle of components and state of hardware elements to
properly evaluate the energy behavior of apps.

In this paper, we present COBWEB, an energy testing
technique for Android apps. COBWEB uses an evolutionary
search strategy with an energy-aware genetic makeup for test
generation. By leveraging a set of novel models, representing
lifecycle of components and states of hardware elements on
the phone, COBWEB is able to generate tests that execute the
energy-greedy parts of the code under a variety of contextual
conditions. Extensive evaluation of COBWEB using real-world
Android apps with confirmed energy defects demonstrates
not only its ability to effectively and efficiently test energy
behavior of apps, but also its superiority over prior techniques
by finding a wider and more diverse set of energy defects.

The remainder of this paper is organized as follows. Sec-
tion II introduces an illustrative example that is used to
describe our research. Section III provides an overview of our
approach, while Sections IV-V describe the details. Section VI
presents the evaluation results. The paper concludes with a
discussion of the related research and avenues of future work.

II. ILLUSTRATIVE EXAMPLE

As an illustrative example, we use an Android app called
MyTracker [18]. In this section, we describe two main func-
tionalities of MyTracker, two tests to exercise these functional-
ities, and two energy defects in this app that cannot be caught
by tests that do not take execution context into account.
App: As shown in Figure 1, MyTracker allows users to search
for the map of different locations using either the internet
or GPS, download them, and navigate through each specific
downloaded map. This app consists of seven components, i.e.,
four Activities and three Services. MyTracker provides two
functionalities: tracking/navigation and search/download map.

When a user clicks on the Download Maps button, the app
navigates to MapSearchActivity, where the user can search
for maps using the Internet or GPS. If the user decides to
search using the Internet, she needs to provide the name of the
city, e.g., Ottawa, and then click on the Find by Internet
button. Otherwise, she can just click on the Find by GPS
button. Depending on the selected search option, the app starts
InternetService or GPSService in the background, which
searches for the map on a specific server. Upon finding a

Welcome to MyTracker
Download Maps

Download Maps
Toronto
Vancouver
Montreal

From:
To:

Start

Enter Location:

Find by Internet

Find by GPS

MainActivity

MapSearchActivity

LocationActivity TrackingActivity

Stop

Internet
Service

GPS
Service

Montreal Montreal

Download
Service

Fig. 1: MyTracker Android Application

match with the name provided by user or location coordinates,
DownloadService downloads the map, resulting in the list
of maps displayed on MainActivity to be updated.

For tracking, once the user clicks on one of the downloaded
maps in MainActivity, e.g. the map of Montreal shown in
Figure 1, the app navigates to LocationActivity. In this
activity, the user can see the map of Montreal and provide a
source and destination address to start the navigation. By click-
ing on the Start button, the app starts TrackingActivity
and registers a location listener, which updates the GUI of
TrackingActivity upon movement.
Tests: Android tests can be represented as a sequence of
events, where each event is an input to the app and can be
triggered by the user or system. We formally define each test
t in test suite T , as 〈c1〈e1, . . . , ep1

〉, . . . , cm〈e1, . . . , epm
〉〉,

where ci indicates the ith component covered during the
execution of t. The execution of each component ci, which
could be Activity, Service, or Broadcast Receiver, by test t is
represented as an event sequence, where each event is denoted
as e. We consider two types of events: (1) input events that
take inputs using specific APIs, e.g., filling a text box, and (2)
callback events that are invocation of Android callbacks, e.g.,
click on a button or transition to a lifecycle state. Figure 2
shows representation of two tests according to this formalism
that target the two functionalities of MyTracker app. We use
these tests throughout the paper for illustrating our approach.
Energy Defects: MyTracker suffers from two energy defects:
1) Fail to check connectivity energy defect [3] occurs when
an app fails to check for connectivity before performing a
network operation. MyTracker unnecessarily searches for a
network signal when there is no network connection available,
which is a power draining operation. To find this energy
defect, MyTracker should be tested both when there is a
network connection available and not. The test corresponding
to Sequence 1 in Figure 2 does not enable or disable network
connectivity, therefore, cannot detect this defect.

Sequence 2: <MainActivity<onCreate, onItemClick(“Montreal”)>,
LocationActivity<onCreate, enterText(“airport”), enterText(“conference”), onClick(“Start”)>,
TrackingActivity<onCreate, onLocationChanged(“location1”), onClick(“Stop”)>>

Sequence 1: <MainActivity<onCreate, onClick(“Download Maps”)>,
MapSearchActivity<onCreate, enterText(“Ottawa”), onClick(“Find by Internet”)>,
InternetService<onStartCommand, searchOnServer, startService(“DownloadService”)>,
DownloadService<onStartCommand, startDownload, onDownloadComplete>>

Fig. 2: Event sequences for testing the tracking/navigation and
search/download functionalities of MyTracker

M
od

el
 E

xt
ra

ct
or

Te
st

 G
en

er
at

or

Fitness
Evaluation

Test
Execution

PopulationOffsprings
Test Suite

Minimization

Test Suite

App

CTG HSM LSMCG

Fig. 3: COBWEB Framework

2) MyTracker starts listening to location updates in
TrackingActivity by registering a location listener for
GPS. As long as TrackingActivity is visible to the user
and GUI is rendered based on location updates, MyTracker
can keep the GPS active. However, when user puts the app
in the Paused state, i.e., MyTracker is sent to background, it
does not unregister the location listener, thereby, unnecessarily
updates a GUI that is not visible to the user [19], [20]. To find
this energy defect, a test needs to put TrackingActivity
into paused state for some time to assess utilization of GPS
hardware in this state. Clearly, the test corresponding to
Sequence 2 in Figure 2 does not have this property.

III. APPROACH OVERVIEW AND CHALLENGES

Since the domain of events and inputs for android apps is
quite large, COBWEB follows a search-based testing technique
for input generation. Every search-based testing technique has
three facets: (1) search space, which is a set of possible
solutions, (2) meta-heuristics to guide the search through the
search space, and (3) evaluation metrics to measure the quality
of potential solutions.

COBWEB identifies the search space as a set of event
sequences, i.e., system tests. To guide the search through the
search space, our approach utilizes an evolutionary algorithm
to globally search for an optimal solution. Similar to other
search-based techniques, COBWEB relies on the abstract rep-
resentation of the program, i.e., models, to generate event
sequences and compute the fitness function as an evaluation
metric. However, a key novelty of COBWEB is that unlike
prior search-based testing techniques, it also utilizes several
other contextual models, representing the state of hardware
and environment, in the search process.

Figure 3 provides an overview of COBWEB, consisting of
two major components: (1) Model Extractor component that
derives the required models for test generation; and (2) Test
Generator component that utilizes an evolutionary search-
based technique to create system tests. COBWEB’s fitness
function rewards the tests based on two criteria: (1) how close
they are to covering energy-greedy APIs in the application
logic, and (2) how well they contribute to exercising differ-
ent contextual factors. There are three main challenges that
COBWEB should overcome:

Invalid or useless tests: The order of events is important for
exercising specific behaviors in apps. For example, a common
approach to test whether an app like MyTracker is properly
utilizing GPS is to mock location/movement. However, mock-
ing can only produce a callback on the app if the app under test
has already registered a location listener. Otherwise, mocking
the location is useless, as it cannot test the usage of GPS by the

app. In addition, prior research has shown genetic operations,
such as cross over, may produce many invalid event sequences
that fail to execute [10]. To reduce the generation of invalid
or useless tests, COBWEB relies on two models representing
the app’s functional behavior, namely Component Transition
Graph (CTG) and Call Graph (CG).

Contexual factors: In addition to the models that represent
the app’s functional behavior, further models are required to
take the execution context into account during test generation.
COBWEB uses two additional models, namely Lifecycle State
Machine (LSM) and Hardware State Machine (HSM) to ac-
count for contextual factors.

Scalability: Search-based techniques are susceptible to gen-
eration of large number of tests [21], [22], which can pose a
scalability barrier due to the time consuming fitness evaluation.
Although fitness evaluation can be performed in parallel [23],
[24], it entails usage of distributed devices or special multi-
core PCs. The majority of mobile apps are developed at a
nominal cost by entrepreneurs that do not have such resources.
To tackle the scalability issue during test generation, COB-
WEB generates intermediate tests in the form of Robolectirc
tests [25], which can be executed atop JVM very fast. The
final test suite is transformed to Espresso [26] tests that can
be executed on emulator or mobile devices.

IV. MODEL EXTRACTOR

COBWEB uses four types of models: Component Transition
Graph (CTG), Call Graph (CG), Lifecycle State Machine
(LSM), and Hardware State Machine (HSM). Figure 4 shows
a subset of these models for MyTracker app. At the highest-
level is the CTG model, which represents the components
comprising the app as nodes and the Intents as transitions
among the nodes. Intents are Android events (messages) that
result in the execution flow to move from one component to a
different component. Each node of the CTG in turn contains
one CG—representing the internal behavior of the correspond-
ing software component, one LSM—representing the possible
lifecycle states of the corresponding software component, and
zero or more HSM—each of which represents the states of an
energy-greedy hardware element utilized during the execution
of the corresponding software component. LSM and HSM
models are generic and app/device independent, constructed
manually by the authors, while CTG and CG models are app-
specific and automatically extracted through static analysis of
an app’s bytecode. We describe each model and how it is
obtained in the remainder of this section.

A. Component Transition Graph (CTG)

COBWEB utilizes CTG to ensure generation of valid and
useful event sequences. Events can be categorized into (1)
input events that take inputs to the app using specific APIs,
e.g., EditText.getText() that reads a string provided by
user for a text box, and (2) callback events that invoke Android
callbacks, e.g., onLocationChanged(), which is invoked
when the physical location of the device changes.

COBWEB uses CTG model of the app under test to gen-
erate the proper order of event calls. Finding the proper
order of event call invocations is particularly a challenge
in Android due to usage of callbacks, each considered

a possible entry point for an application. For example,
onLocationChanged() callback is an entry point for My-
Tracker app. The call graph obtained from running the
state-of-the-art static analysis tools, such as Soot [27],
does not model any particular order for the execution of
entry points. That is, using such call graphs to gener-
ate event sequences, onLocationChanged() can appear
before the onCreate() of TrackingActivity or even
onCreate() of MainActivity. However, proper invoca-
tion of onLocationChanged() is after the execution of
onCreate() of TrackingActivity, as shown in Sequence
2 of Figure 2.

Furthermore, to properly test the energy behavior of My-
Tracker with respect to its tracking functionality, COBWEB
needs to mock the location, such that Android platform
invokes onLocationChanged() callback. The tricky part of
generating such tests is that onLocationChanged() callback
should only be invoked if the app has already registered
a location listener to receive location updates, which hap-
pens in the onCreate() method of TrackingActivity
component. In other words, mocking the location should
be performed after TrackingActivity starts. Otherwise,
mocking has no effect and will not result in the invocation
of onLocationChanged() callback. Generating valid and
useful events entails not only an inter-procedural analysis—
to find the proper component for callback invocation—but
also requires considering the specific types of dependencies
among events. To overcome these challenges, CTG considers
five types of transitions:
1- Call transition: These intra-component transitions are
inferred from the basic call graph generated for the app under
test using Soot [27].
2- Intent transition: These transitions are inter-component,
which result in transferring the control from one component
to another component. A method or callback inside one
component that starts another component is connected to the
lifecycle entry point of that component using this kind of
transition. COBWEB uses IC3 [28] to infer Intent transitions.
3- GUI transition: These intra-component transitions indicate
the order of execution between GUI widgets. For example, the
Start button in the LocationActivity of MyTracker should
be clicked after user provides source and destination addresses
in the From and To text boxes. COBWEB builds on top of
TrimDroid [11] to infer such transitions.
4- Registration transition: This type of transition consists
of two sub-categories: broadcast receiver registration and
event listener registration. A broadcast receiver receives an
intent for which it has registered for via the onReceive()
callback method. While static broadcast receivers—those iden-
tified in the manifest file—are registered when the app
launches, dynamic broadcast receivers are registered using
registerReceiver() API. Broadcast registration transition,
which could be inter- or intra-component, connects a CG
node that registers a broadcast receiver to its corresponding
onReceive() callback, which is also a CG node.

An event listener is an interface that contains one or
more callbacks. Listener callbacks are called by the Android
framework when the event that the listener has been registered
for is triggered either by user or environment. For example,

onLocationChanged() is called upon any change in the
location of the device, if the app has previously registered a
location listener. Listener registration transition, which could
also be inter- or intra-component, connects a CG node that
registers a listener to its corresponding callbacks, which is
also a CG node. The listener callbacks have no order among
themselves.

COBWEB’s approach for identifying registration transition
works as follows. For a given registered callback, COBWEB
performs an inter-procedural, flow-sensitive static program
analysis to find the registrar—the entity that registers the
broadcast receiver or listener of that callback. It then assigns
a transition from the registrar to the registered callback node
in CG. For broadcast registration, the registered callback is
onReceive()—either defined inside an inner-class broadcast
receiver or a broadcast receiver component, and registrar is
callback or method that invokes the registerReceiver()
API. For listener transition, COBWEB takes a list of listener
callbacks available in Android API1 to identify registered
callbacks. The listener registrar is a callback or method that
registers a listener with the given callback implemented. Flow-
sensitivity is required for this analysis, as a broadcast re-
ceiver may subscribe to receive multiple Intents, and multiple
listeners of the same kind might be registered for an app.
For example, an app may register two location listeners, one
listening to GPS location updates, and another one tracking
location updates via network.
5- Lifecycle transition: These intra-component transitions are
between starting lifecycle callback nodes of a component,
e.g., onCreate() for Activities or onStartCommand() for
Services, and every non-lifecycle node with no incoming edge
inside the component. That is, every callback or method inside
a component with no incoming edge can be called after the
component is started. COBWEB resolves lifecycle transitions
after all other transitions are identified. It ignores all other
lifecycle callbacks that do not instantiate/start a component,
e.g., onPause() or onDestroy(), since these other lifecycle
callbacks are considered using the LSM model, discussed next.

B. Lifecycle State Machine (LSM)

Wakelocks and other resources, such as GPS, are commonly
acquired and released in lifecycle event handlers [29]. Thereby,
proper implementation of lifecycle callbacks is important, as
developers need to ensure apps are not unnecessarily con-
suming power due to changes in the lifecycle state. To that
end, we represent possible transitions among lifecycle states
of an Android component type as a finite state machine, called
Lifecycle State Machine (LSM).

Since the lifecycle callbacks are handled by the Android
framework itself, we can define an LSM for each Android
component type, regardless of which callbacks are actually
implemented by instances of that component. Such a represen-
tation also ensures thorough testing of an app, as developers
may have failed to implement important lifecycle callbacks,
where resources should be managed properly.

We derived three types of LSM models, one for each of the
Android components types (Activities, Services, and Broadcast

1Derivation of this list is discussed in Section IV-C

Map
Search
Activity

Main
Activity

*Internet
Service

*GPS
Service

Location
Activity

*Tracking
Activity

*Download
Service

Connected
Not Utilized

(Poor Signal)

Disconnected

Connected
Not Utilized
(Full Signal)

Scanning Locked

Utilized
(Poor Signal)

Utilized
(Full Signal)

HSM

Intent
transition

Registration
transition

Call
transition

Lifecycle
transition Stopped

Running

Paused

onDestroy()

onCreate()
onStart()

onResume()

onStart()

onRestart()
onResume()

onStop()

onPause() onResume()

OnStart
Command()

*start
Download()

on
Download
Complete()

CG LSM

LSM

*on
Provider

Enabled()

*on
Location

Changed()

*on
Status

Changed()

*on
Provider

Disabled()

on
Click()

on
Create()

CGHSM

CTG
Legend

Stopped

Idle

Running

onCreate()

onUnbind()

onBind()
onStartCommand()

onDestroy()
stopSelf()

Destroyed

Enabled Utilized Speed
Changed

Location
Changed

Availability
Changed

Accuracy
Changed

Disabled

Fig. 4: CTG model for MyTracker. Gray boxes show the detailed
CG, LSM, and HSM of DownloadService and TrackingActivity
components. Components marked with an asterisk contain energy-
greedy API invocations

Receivers), based on the lifecycle callbacks identified for them
in the Android documentation. Figure 4 shows LSMs of the
Activity and Service components for TrackingActivity and
InternetService, respectively. For example, the Activity
LSM demonstrates four different lifecycle states for an Activ-
ity component. The Activity LSM indicates how the execution
of lifecycle callbacks results in transitions to different states.
C. Hardware State Machine (HSM)

Developers should adjust the functionality of apps according
to the states of hardware elements. For instance, per Android
developer guidelines [19], a location listener should be unreg-
istered when user is stationary, or the frequency of location
update should be lowered when user is walking rather than
driving. To take such factors into account, we need to look
for changes in the hardware states from the inputs generated
by the environment (e.g., change in the strength of network
signal), or the user, directly or indirectly (e.g., user can turn
on/off location directly from setting, or she can trigger changes
in the state of GPS by changing her location).

Identifying different states of hardware elements for energy
testing is crucial, since apps consume different amounts of
energy in different states [30]. We followed a systematic
approach to derive generic and reusable models for each
hardware element on a mobile device, called Hardware State
Machine (HSM).

Android provides libraries to access and utilize hardware
elements. These libraries provide APIs and constant values,
i.e., fields, which can be used to inquire about possible states of
hardware elements. Developers can use the APIs implemented

by such libraries to monitor the state of hardware elements
(e.g., using LocationManager to track user location changes
and ConnectivityManager to query about the state of
network connections) or manipulate the states (e.g., hold a
lock on the CPU using PowerManager.Wakelock APIs to
prevent the phone from going to sleep). Documentation of
these APIs is a rich source for identifying different hardware
states.

Similarly, constant values introduced in such libraries
can be used to identify hardware states, as they usu-
ally are either representative of different states of hard-
ware elements, or the action field of broadcast Intents
that show a change in the state of hardware. For ex-
ample, WIFI_MODE_FULL, WIFI_MODE_FULL_HIGH_PERF,
and WIFI_MODE_SCAN_ONLY are constants associated with
WiFiManager library, indicating that WiFi hardware can
operate in different modes, each consuming battery of the
device differently.

To find a thorough list of such libraries, we started by
automatically crawling Android API reference [31] using
Crawler4J [32] to search for classes, where description of
their public methods or fields contained at least two of the
following keywords: location, lock, gps, network, connect,
radio, cellular, bluetooth, display, sensor, cpu, battery, power,
consume, drain, charge, discharge, monitor, hardware, state,
and telephone. We crawled 6, 279 pages in total and collected
1, 971 libraries after keyword filtering. We further processed
the documentation of those libraries to find all the possible
states of hardware elements as follows:
1. APIs: To automatically collect a set of APIs that monitor
state of the hardware elements, we searched for event listeners
and callbacks in the public methods of the 1, 971 collected
libraries, as they monitor the changes in the state of hardware
elements. From a total of 38, 626 APIs in these classes,
we searched for APIs that have the keyword listener in
their signature—for event listener APIs—and APIs that start
with on—for callbacks. This yielded 441 listeners and 2, 968
callbacks. To collect APIs that manipulate state of hardware,
we searched for methods that have derivation of the following
keywords in their description: scan, access, acquire, release,
state, register, disable, enable, connect, and disconnect. In the
end, we collected a total of 104 APIs correlated to different
states of various hardware elements.
2. Fields: We automatically searched for the constant values
identified for the collected libraries, whose description con-
tained one of the keywords we used for initial filtering. This
search left us with 225 constant values.

Once the states of each hardware element were identified
using the aforementioned approach, we constructed seven
HSMs for major hardware elements on mobile phones. These
HSMs correspond to battery, Bluetooth, CPU, display, GPS,
radio, and sensors, e.g., accelerometer and gyroscope.

HSM is a finite state machine that represents different
states of a hardware element. Figure 4 shows HSM models
derived for Network and Location hardware elements (in
the details of InternetService and TrackingActivity
components). For Network HSM for example, from 46 APIs
and 12 fields of two libraries—ConnectivityManager and
WiFiManager—along with their nested classes, we identified

Chromosome 1 Chromosome 2 Chromosome n...Population
(Test Suite)

Chromosome
(Test)

Gene
(Component)

Component 1 Component 2 Component i Component m... ...

Event pi...Event 2Event 1

Fig. 5: Genetic representation of tests
Algorithm 1: Evolutionary Energy Test Generation

Input: App app, Set of LSMs, Set of HSMs, List of
energy-greedy APIs HW, threshold, breedSize

Output: Test suite TE

1 CTG,CG← staticAnalysis(app)
2 model← mergeModels(CTG,CG,HSM,LSM)
3 P ← randomPopulation(app)
4 while improvement in fitness(TR,model) ≤ threshold do
5 Poffspring ← select(P, breedSize)
6 Poffspring ← converge(model, Poffspring)
7 Poffspring ← diverge(model,HW,Poffspring)
8 TRtmp ← generate(Poffspring)
9 fitness(TRtmp ,model)

10 P ← merge(P, Poffspring)
11 TR ← TR ∪ TRtmp

12 TE ← minimize(TR)

9 states for Network, namely Disconnected, Connected (with
poor or full signal strength), Utilized (under poor or full
signal strength), Scanning, and Locked (full, multi-cast, and
high performance).2 Edges between different states of the
hardware can be traversed by calling one of the Android APIs
inside the app or triggering events outside of it.3 Hence, it
is crucial to have a generic HSM for each hardware without
considering just the source code of the app. For example,
an application can start scanning for available WiFi networks
using startScan() API, or the state of hardware can be
changed to scanning by manipulating the platform. We have
made the HSM models of other hardware elements publicly
available [33].

V. TEST GENERATOR

Our objective is to generate tests that (1) cover energy-
greedy APIs, and (2) execute them under different contex-
tual conditions. In this section, we describe the evolutionary
search-based test generation algorithm utilized in COBWEB
that aims to satisfy this objective.

A. Genetic Algorithm

COBWEB identifies the search space for energy testing
problem as a set of system tests. Figure 5 illustrates the genetic
representation of a test suite generated by COBWEB. Overall,
COBWEB generates a set of system tests that corresponds to a
population of chromosomes in the evolutionary algorithm. At
a finer granularity, each chromosome consists of genes, which
are the main Android components of an app, and each gene
contains multiple sub-genes, which are either input events or
callback events (recall Section II).

Algorithm 1 presents the evolutionary approach of COBWEB
for test generation. It takes the app along with LSM and

2For a better illustration, different locked states are merged in the HSM
3Labels of edges are not shown here for sake of simplicity

Fig. 6: Intuition behind convergence and divergence operators

HSM models as inputs and generates a set of Espresso [26]
tests—TE . The algorithm starts by constructing the CTG and
CG models through static analysis of the app (Line 1) and
integrating those with LSM and HSM models to arrive at the
final model of the app under test (Line 2). Next, it randomly
generates the initial population P , which is later evolved
using evolutionary search operators through multiple iterations
(Lines 5-7). Once the new generation is available, COBWEB
generates Robolectric tests for each chromosome (Line 8),
executes them on JVM, and calculates their corresponding
fitness (Line 9). At the end of iteration, COBWEB adds newly
generated tests to the test suite and starts a new iteration. This
process continues until the termination condition is met: if the
improvement in the average fitness of generated tests in two
consecutive iterations is less than a configurable threshold,
the algorithm terminates (Line 4). Afterwards, Algorithm 1
minimizes the generated Robolectric test suite and transforms
them to Espresso tests for execution on a mobile device (Line
12), such that energy measurements can be collected.

For input fields, COBWEB follows an approach similar to
Sapienz [12] and extracts statically-defined values from the
source code and layout files. Additionally, developers can
provide a list of inputs, e.g., list of cities for MyTracker.
Alternatively, the input values can be provided to COBWEB
through symbolic execution of the app, using one of the many
tools available for this purpose (e.g., [34], [35], [36], [37]).

B. Genetic Operators
We now provide a more detailed explanation of the three

genetic operators in Algorithm 1.
1) Selection Operator: COBWEB implements a fitness pro-

portionate selection strategy, a.k.a., roulette wheel selection,
for breeding the next generation. That is, the likelihood of
selecting a chromosome is proportional to its fitness value.
The intuition behind this selection strategy is that tests that are
closer to covering energy-greedy APIs or exercise them under
previously unexplored contexts—thus having a higher fitness
value—should have a higher chance of selection. COBWEB
sorts chromosomes based on their fitness value and selects a
subset of them, denoted as Poffspring , for inclusion in the next
generation. The size of selected chromosomes is determined
by breedSize variable that is an input to the algorithm. If
F (i) is the fitness value for a chromosome i in the current
population with size n, the probability of this chromosome to
be selected for breeding is computed as follows:

p(i) =
F (i)

n∑
j=1

F (j)
(1)

2) Convergence Operator: The goal of convergence opera-
tor is to pull the population towards local optima, i.e., generate
new chromosomes that largely inherit the genetic makeup

of their parents. The convergence operator only changes the
execution context of tests. That is, from the parents identified
by the selection operator, Poffspring , it chooses those that
have reached energy-greedy APIs, then uses LSM and HSM
models or mocking to create a new context for those tests. The
intuition behind this operator is shown in Figure 6. LSM and
HSM models have finite states, thereby their search space—
identified by dashed circle in Figure 6—is relatively small
compared to the typical search space associated with the
functional behavior of a program, represented by CTG and CG
models. Convergence operator, denoted by the orange arrow in
Figure 6, promotes exploration of the search space within close
proximity of parent chromosomes, thereby aids the algorithm
to converge to local optima.

For each chromosome in Poffspring , COBWEB randomly
selects a gene to modify its context by inserting proper events
in the chromosome event sequence. To avoid bloated popula-
tions, COBWEB applies convergence operator if the gene has
events associated with lifecycle callbacks or hardware-related
APIs. COBWEB uses two types of convergence operator:
lifecycle context operator and hardware context operator.

Lifecycle context operator: To show the necessity of life-
cycle context and usage of LSM for test generation, consider
the second energy defect for MyTracker app described in
Section II. Recall that to effectively detect this bug, a test needs
to put the TrackingActivity into the paused state to assess
utilization of GPS hardware in this state. To generate such test,
lifecycle context operator determines current lifecycle state of
the chromosome that utilizes GPS in one of its genes, and
inserts the proper lifecycle callback event based on the next
possible state determined from LSM.

Consider Sequence 2 of Figure 2 to see how lifecycle
context operator works. The onLocationChanged event in
TrackingActivity gene indicates access to GPS hardware.
COBWEB realizes the lifecycle state of TrackingActivity
is Running based on the last lifecycle callback in the event
sequence. The next eligible state for TrackingActivity is
Paused based on LSM, which can be reached by execut-
ing onPause() lifecycle callback. Additionally, since proper
execution of a test requires the component to be in the
Running state, COBWEB needs to include a callback to restore
the component to the running state to avoid generation of
invalid tests. Thereby, COBWEB generates a new chromosome
corresponding to Sequence 2 of Figure 7. The input argument
of onPause indicates that during the execution of this test,
TrackingActivity remains in the paused state for 10 sec-
onds.

Hardware context operator: Many energy defects manifest
themselves under specific hardware settings [3], making it
important to test an app under different hardware states. Recall
“fail to check for connectivity” energy defect in MyTracker
described in Section II. To find this energy defect, MyTracker
should be tested both when there is a network connection avail-
able and not. For each chromosome in Poffspring , hardware
context operator finds a gene that utilizes hardware, if any,
determines the next hardware state based on the last explored
state in HSM, and inserts a specific hardware state sub-gene
right before the sub-gene that is a callback or contains APIs
that utilize a hardware element.

Sequence 2: <MainActivity<onCreate, onItemClick(“Montreal”)>,
LocationActivity<onCreate, enterText(“airport”), enterText(“conference”), onClick(“Start”)>,
TrackingActivity<onCreate, onLocationChanged(“location1”), onPause(“10”), onResume(), onClick(“Stop”)>>

Sequence 1: <MainActivity<onCreate, onClick(“Download Maps”)>,
MapSearchActivity<onCreate, enterText(“Ottawa”), onClick(“Find by Internet”)>,
InternetService<onStartCommand, searchOnServer, startService(“DownloadService”)>,
DownloadService<onStartCommand, Utilized_Full, startDownload, onDownloadComplete>>

Sequence 3: <MainActivity<onCreate, onClick(“Download Maps”)>,
MapSearchActivity<onCreate, onClick(“Find by GPS”)>,
GPSService<onStartCommand, getLastKnownLocation, startService(“DownloadService”)>,
DownloadService<onStartCommand, startDownload, onDownloadComplete>>

Fig. 7: Evolved event sequences from illustrative example

For example, consider a chromosome represented by Se-
quence 1 in Figure 2. The startDownload sub-gene inside
the DownloadService gene makes an app connect to a
server and download the map of Ottawa. If no prior hardware
context operator is applied on DownloadService, the state of
network would be Disconnected based on the Network HSM
presented in Figure 4. Hence, COBWEB randomly chooses
to transfer the state to either Scanning, Utilized Poor, or
Utilized Full. Supposing the next state is chosen to be Utilized
Full, COBWEB changes this event sequence to Sequence 1 in
Figure 7. Unlike lifecycle context operator, there is no need
to restore the state of hardware. That is, if a test crashes by
changing the hardware state, developer has failed to properly
handle that situation.

3) Divergence Operator: In contrast to convergence opera-
tor, the goal of divergence operator is to bring the population
out of local optima to discover potentially better solutions,
i.e., find solutions that cover new energy-greedy APIs not
previously covered by tests in the current population. The
intuition behind this operator is shown in Figure 6. Unlike
convergence operators that perform a neighborhood search,
divergence operator, denoted by the dashed green arrow, causes
exploration of the whole new areas of the search space.

The goal of this operator is to explore new paths, specifically
paths that cover energy-greedy APIs. To that end, it combines
two operations, namely breakup and reconcile to breed a new
chromosome. For each chromosome in Poffspring , breakup
operation breaks it into two set of genes, passes the first set to
reconcile operation, and discards the seconds set. Note that the
breakup point is selected randomly and could also be the end
of the chromosome, i.e., the first set is the entire chromosome
and the second set is empty. At the next step, reconcile
operation creates a new individual from the broken chromo-
some. Starting from the last gene of the broken chromosome,
reconcile operation uses the CTG and CG models to generate
a sequence of events that cover a path toward their leaf nodes.
The operator selects a path based on a priority value. Given
the following path, 〈Ci〈e1, . . . , epi

〉, . . . , Cm〈e1, . . . , epm
〉〉,

its priority value is calculated as follows:

PRi,m =

m∑
j=i

APIj APIj =

l∑
k=0

wk (2)

where APIj is a weighted sum of the number of energy-
greedy APIs, l, that might be invoked during the execution
of event sequences in component Cj . COBWEB takes a list
of 38, 626 energy-greedy APIs from our empirical study
described in Section IV-C, and counts the number of their
invocations for each component using a conventional use-
def static analysis. Since energy-greediness of APIs vary,
COBWEB employs a weighted sum. To obtain the weight of

each energy-greedy API, COBWEB relies on a prior study [38]
that has ranked energy-greedy APIs based on their energy-
greediness to compute wk in Equation 2.

Reconcile operation may need to change the sub-genes
of the last gene in the broken chromosome to reduce
the likelihood of generating invalid tests. For example,
consider Sequence 1 in Figure 2, where breakup operation
divides it into 〈MainActivity, MapSearchActivity〉
and 〈InternetService, DownloadService〉
sequences of components. Referring to the CTG of
MyTracker shown in Figure 4, reconcile chooses
〈GPSService, DownloadService〉 to create a new
chromosome 〈MainActivity, MapSearchActivity,
GPSService, DownloadService〉. Without changing
the event sequences of MapSearchActivity, the test
corresponding to this new chromosome would fail, as
clicking on the “Find by Internet” button does not instantiate
GPSService. Thereby, COBWEB changes the genetic makeup
of MapSearchActivity and generates a new chromosome
corresponding to Sequence 3 shown in Figure 7.

C. Fitness Evaluation

The fitness function rewards tests based on two criteria: (C1)
how close they are to covering energy-greedy APIs; and (C2)
how well they contribute to exercising different contextual
factors. The first criterion is measured using CTG and CG,
while the second criterion is measured using LSM and HSM.

COBWEB calculates the fitness value in two steps. First, it
computes the fitness of ti with respect to each energy-greedy
API j. Then, it averages those values to compute a single
fitness value for test. For each test ti, COBWEB computes the
fitness value as follows:

F (i) =
1

n
×

n∑
j=1

fi(j) (3)

where n is the number of energy-greedy APIs on the path of
ti to a leaf in CTG and fi(j) is the fitness value of ti with
respect to energy-greedy API j, calculated as follows:

fi(j) =

 1
3 × [c1i(j) + c2i(j)]

API j is on the path to a leaf

0 otherwise

(4)

Here, c1i(j) determines the fitness of ti with respect to
fitness criteria C1. It computes how close test ti is to cover
energy-greedy API j. It is calculated as x

y , where x is the
number of edges in CG to the node that contains API j,
starting from the last node covered by ti, and y is the total
number of edges from root to the node that contains API j.
The intuition behind this formulation is that, a test may not
cover energy-greedy APIs in the early iterations. However, if
it comes close to covering energy-greedy APIs, it is likely to
be able to eventually cover those APIs in future iterations.
Thereby, tests that exercise paths that contain more energy-
greedy APIs or get close to covering such APIs should have a
higher priority to evolve. If a test covers API j, c1i(j) attains
a value of 1.
c2i(j) corresponds to fitness criterion C2 and determines

how well ti exercises lifecycle and hardware state contexts:
c2i(j) = bc1i(j)c × [li(j) + hi(j)] (5)

Here, li(j) and hi(j) are indicators of how well ti exercises
the lifecycles of a software component and different states
of a hardware element that implements API j, respectively.
COBWEB computes li(j) and hi(j) values as follows:{

1 if the test achieve prime path coverage
z
q otherwise

(6)

where z is the length of path covered in LSM/HSM, and
q is the length of the longest prime path for LSM/HSM.
This formulation enables tests that exercise more states in
LSM/HSM models to have a higher fitness value. Since
execution context matters only if an API is covered by a test,
Equation 5 has a coefficient bc1i(j)c, such that it is 0, when ti
has not reached API j, and 1, otherwise. Unless c1i(j) equals
to 1, the value of bc1i(j)c, hence c2i(j), is 0 and the execution
context does not matter in calculation of fitness. Finally, note
that coefficient 1/3 in Formula 4 is to ensure that the fitness
value is between 0 and 1.

D. Test-Suite Minimization
To minimize the size of test suite, COBWEB removes

tests that are subset of others, as they are unlikely to find
new defects. COBWEB uses Lowest Common Ancestor (LCA)
algorithm to find tests corresponding to overlapping paths in
the graph and removes the shortest tests from TR. For two
tests t1 = 〈C1, · · · , Cm〉 and t2 = 〈C1, · · · , Cn〉, if the LCA
between Cm and Cn is either of these nodes, these tests are
likely to be overlapping. The algorithm then checks the events
inside overlapping components and if they are the same, it
removes the shorter test and keeps the longer one. In addition,
COBWEB removes tests that fail to cover any energy-greedy
APIs, as such tests are unlikely to have a significant impact
on energy. Finally, the reduced test suite is transformed to
Espresso tests, which can be executed on a mobile device.

VI. EVALUATION

We investigate the following five research questions in the
evaluation of COBWEB:
RQ1. API and execution context coverage: How well do the

generated tests cover energy-greedy APIs and exercise
different lifecycle and hardware state contexts?

RQ2. Effectiveness: How effective are the generated tests in
revealing energy defects in real-world Android apps?

RQ3. Necessity of the models: To what extent does using the
LSM and HMS models and considering the execution
context aid COBWEB to find energy defects?

RQ4. Energy defects coverage: What types of energy defects
can be detected by COBWEB and not other energy
analysis tools?

RQ5. Performance: How long does it take to generate tests
using COBWEB?

A. Experimental Setup
Alternative Approaches: For a thorough evaluation of

COBWEB, we compare it with other testing tools as well
as a variety of other energy analysis approaches targeting
Android. We compare COBWEB against Monkey [39], since
(1) it is arguably the most widely used automated testing tool
for Android, and (2) in practice, it has shown to outperform

other academic test generation tools [4]. We also compare
against the most recent publicly available Android testing tool,
Stoat [13], shown to be superior to prior testing tools. Stoat
uses a combination of model-based stochastic exploration of
a GUI model of an app and randomly injected system-level
events to maximize code coverage.

Subject Apps: To evaluate effectiveness of COBWEB, we
needed Android apps with real energy defects. To eliminate
any bias toward selection of subject apps in favor of COBWEB,
we looked at the dataset of 8 related approaches presented
in Table II and used two criteria in selecting apps. First, the
energy defects identified by the approach should be confirmed
by the developers of studied subject apps through a commit
in the repository. Second, information about the faulty version
of an app or pointers to a commit fixing the issue should be
publicly available. These criteria are required to ensure the
defects reported by those tools are in fact reproducible in our
experimental setup and do not impose a threat to the validity
of our results. From the total of 2, 035 apps studied in related
approaches, only 25 matched our inclusion criteria. From those
apps, we were able to reproduce the faults in 18 of them,
mostly because a subset of faults in those apps related to older
versions of Android and could not be reproduced in Android
6.0 that we used in our evaluation. Out of these 18 apps,
we removed 3, since Soot was not able to generate complete
call graphs for them. Table I shows information about our 15
subjects with real energy defects.

Fault Reproduction: To ensure the energy issues are re-
producible, we executed each defective subject app under the
documented use-case known to exhibit the defect. We profiled
the state of hardware elements during and after execution of
the app using Trepn [40]. Trepn is a profiling tool developed
by Qualcomm that collects the exact power consumption data
from sensors embedded in the chipset. If the profiled data
indicated over-utilization of a hardware element during the
execution of use-case, we marked the energy defect to be
reproducible. For example, if the energy defect to reproduce
is categorized as a location defect, we monitored the state of
GPS to see if the GPS hardware is released after the execution.

B. RQ1: API and Execution Context Coverage

The objective of COBWEB is to maximize the coverage
of energy-greedy APIs under various execution contexts. To
evaluate the extent to which COBWEB achieves this goal,
we measured API, LSM, and HSM coverage of test suites
produced for our subjects. Similarly, we calculated these met-
rics for Monkey and Stoat as an alternative testing approach.
We collected coverage information of the subjects using
EMMA [41] during test execution. We ran Stoat for 3 hours,
similar to the configuration used by its authors [13]. Monkey
is shown to converge very close to its highest coverage at
around 10 minutes [4]. However, we ran it for 1 hour to
ensure sufficient testing budget. During 1 hour, it generates
over 100, 000 events per subject, which is significantly higher
than the 7, 630 events generated on average by COBWEB in
our experiments. Table I illustrates the result of this experiment
under Coverage column. We observe that:

COBWEB achieves a higher API coverage compared to
alternative approaches. COBWEB achieves 79% API cover-

TABLE I: Subject apps and coverage information for COBWEB and alternative approaches.

Apps Version
Coverage

Tests Energy-Greedy APIs LSM HSM Detection
O (events) ∼L ∼H O M S O M S O M S O ∼L ∼H M S

a2dp.Vol
8624c4f 2234 (15796) 35049 22435 86% 36% 23% 96% 22% 36% 86% 0% 0% Y Y Y N N
b9a5768 1681 (18383) 27111 17398 87% 33% 23% 96% 22% 36% 76% 0% 0% N N N N N
8231d4d 1612 (22824) 27036 17674 90% 35% 26% 96% 22% 36% 78% 0% 0% Y Y Y N Y*
4767d64 1836 (20849) 29195 18775 88% 36% 23% 96% 22% 36% 76% 0% 0% Y Y N N N*

GTalk
dce8b85 586 (2507) 47669 62759 94% 49% 49% 53% 14% 25% 56% 0% 0% Y Y N N N
c0f8fa2 531 (4836) 45406 59611 94% 51% 49% 53% 14% 25% 51% 0% 0% Y Y Y N Y*
5ce2d94 466 (3558) 44748 59323 94% 49% 49% 53% 14% 25% 53% 0% 0% Y N N N N

Openbmap
56c3a67 751 (2328) 4933 2786 90% 46% 62% 80% 28% 38% 77% 0% 0% Y Y N N N
14d166f 746 (2984) 5343 3060 89% 45% 62% 80% 28% 38% 83% 0% 0% Y N Y N* N*
f72421f 754 (2980) 5410 3153 96% 46% 62% 80% 28% 38% 78% 0% 0% Y Y N N N

OpenCamera 1.0 606 (3916) 72241 54296 33% 49% 54% 100% 26% 66% 66% 0% 0% Y Y Y Y* Y*

Senorium
e153fdf 96 (288) 354 1127 63% 37% 56% 100% 30% 51% 86% 0% 0% Y N Y N N
94c9a8d 99 (336) 394 1145 63% 36% 56% 100% 30% 51% 96% 0% 0% Y N Y N N
94c9a8d 105 (337) 428 1360 63% 37% 57% 100% 30% 51% 85% 0% 0% Y N Y N* N

Ushahidi 4f20612 3519 (12523) 4865 5032 79% 46% 39% 86% 59% 41% 59% 0% 0% Y Y Y Y* Y*

O: Original COBWEB, ∼L: COBWEB without LSM, ∼H: COBWEB without HSM, M: Monkey, S: Stoat

age on average, ranging from 33% to 96% with the median
of 89%. In contrast, Monkey and Stoat are able to cover on
average 42% and 46% of energy-greedy APIs.

COBWEB is more effective in exercising different ex-
ecution contexts compared to Monkey. While COBWEB
achieves an average of 85% in covering prime paths of LSMs,
ranging from 53% to 100% with the median of 96%, Monkey
and Stoat are able to cover only 27% and 40% LSM prime
paths on average. Alternative approaches perform worse in
terms of HSM coverage, failing to cover even a single HSM
prime path. This is due to the fact that neither Monkey nor
Stoat are capable of effectively manipulating hardware and
systematically create system events during testing.

C. RQ2: Effectiveness

We investigated the ability of COBWEB, Monkey, and Stoat
for finding the energy defects in the subject apps. To that
end, we executed the generated tests on a Google Nexus 6
device, running Android version 6.0. During the execution
of each test, Trepn was running in the background to profile
the states of hardware elements during and after execution
of each test. We used the results of fault reproduction (recall
Section VI-A) as our oracle. Similar to prior work [3], if the
energy traces obtained during the fault reproduction and test
execution matched, we determined that the test suite was able
to detect the corresponding fault. Column Detection in Table I
demonstrates the result of this study. These results show that:

Random GUI exploration and random system event
injection proves to be highly ineffective. Monkey and Stoat
were able to detect only 2 and 4 energy defects, respectively.
The root cause of this weakness comes from their inability to
cover energy-greedy APIs under different execution contexts.
In fact, Monkey and Stoat were able to cover the code related
to 4 and 5 energy defects, respectively—those marked with
asterisk under Detection column. Even when covered by these
tools, manifestation of those defects requires the apps to
be executed under specific component lifecycle or hardware
states.

COBWEB is effective for detecting energy defects. From
the total of 15 verified energy defects, COBWEB was able to
detect 14, where 10 of them could be detected by exercising
different component lifecycle states and 4 of them could be
revealed under specific hardware states. COBWEB was not

able to find 1 energy defect in a2dp.Vol. Further investiga-
tion showed that manifestation of this energy defect requires
complex interactions with the app. In fact, a2dp.Vol requires
a user to connect a Bluetooth device to her phone, change her
location, save her location in a database, and disconnect the
Bluetooth device from her phone. COBWEB generated a test
for each of these use-cases, but not a single test to reproduce
the whole scenario, as they cover different branches of CTG.
D. RQ3: Necessity of the Models

To evaluate necessity and usefulness of LSM and HSM
models, we first compared the size of test suites originally
generated by COBWEB that considers these models with that
generated by a modified version of Algorithm 1 that exhaus-
tively injects lifecycle or hardware related events into event
sequences, i.e., changed the convergence operator. In addition,
we compared the ability of test suites originally generated
by COBWEB in finding energy defects with that generated
without using the models, i.e., we removed the consideration
of execution context from the test generation process. From
the results presented in Table I, we can observe that:

Contextual models make energy testing scalable. Without
a model, each component of app should be exhaustively
tested under all possible lifecycle/hardware states. Columns
∼L and ∼H under #Tests show the size of test suites generate
by exhaustively injecting lifecycle/hardware related events to
explore all possible states. We can see that by using LSM and
HSM models, COBWEB is able to generate test suites that are
27 and 28 times smaller, respectively.

Execution context is crucial for detecting energy defects.
Columns ∼L and ∼H under Detection illustrate the number
of faults that can be detected by test suites not using either
LSM or HSM models. Test suites generated without using
LSM and HSM models can only detect 9 energy defects,
thereby are inferior to those generated by COBWEB in terms
of their ability to find energy defects. These results confirm
our intuition about the importance of considering contextual
conditions for energy testing.
E. RQ4: Energy Defects Coverage

We evaluated COBWEB’s ability to find different types of
energy defect by comparing it with the state-of-the-art energy
analysis approaches. To that end, we used a recently published
energy defect model for Android [3], consisting of 28 energy

TABLE II: Comparing ability of energy analysis tools to find different types of energy defects.

Defect Model COBWEB [42] [43] [29] [44] [45] [20] [46] [47]
Analysis Type - Hybrid Static Hybrid Static Static Static Dynamic Dynamic Static
Lifecycle Context - Y N N Y N Y Y N N
Hardware Context - Y N N N N N N N N
Bluetooth 3 3 0 0 0 0 0 0 2 0
Display 4 3 0 0 0 0 1 0 1 1
Location 4 2 0 1 0 1 0 1 1 0
Network 6 5 0 1 0 1 0 0 1 0
Recurring Callback 5 3 1 0 0 0 0 0 2 0
Sensor 2 2 0 1 0 1 0 1 2 0
Wakelock 4 4 0 2 2 2 0 2 3 0
Total 28 22 1 5 2 5 1 4 12 1

Fig. 8: Performance characteristics of COBWEB

defect types, categorized into seven groups, namely bluetooth,
display, location, network, recurring callback, sensor, and
wakelock. For approaches that are either not publicly available
or do not work on newer versions of Android, we rely on
the corresponding paper, i.e., description of the approach and
limitations stated in the paper, to determine if it is able
to detect each type of defect. Table II shows how these
approaches differ in terms of their ability to find various types
of energy defect.

We can see that COBWEB is able to detect a wider
range of energy defects compared to prior techniques.
Furthermore, it appears that dynamic analysis solutions, such
as COBWEB and [46], are able to detect a wider variety of
energy defects compared to static analysis solutions.

F. RQ5: Performance

To answer this research question, we evaluated the time
required for COBWEB to extract models as well as the time
required for test generation and test minimization. To evaluate
test generation time, we measured time from when the algo-
rithm starts generating initial population to when it terminates
the loop in Algorithm 1 at Line 4. We ran the experiments
on a laptop with 2.2 GHz Intel Core i7 processor and 16 GB
DDR3 RAM. Figure 8 shows the performance characteristics
of COBWEB for each subject app (results are averaged over
various faulty versions of apps presented in Table I). From this
data, we can see that COBWEB takes 23 seconds on average
to extract models, 8 minutes for test generation and execution
(including calculation of fitness value), and 57 seconds for
test-suite minimization. These results corroborate scalability of
COBWEB for test generation, making it a reasonably efficient
testing tool for detecting energy issues.

VII. RELATED WORK

We provide an overview of the related research on mobile
testing and green software engineering.
Mobile Testing: Test input generation techniques for Android
apps mainly focus on either fuzzing to generate Intents or
exercising an Android app through its GUI [4]. Several

approaches generate Intents with null payloads or by ran-
domly generating payloads for Intents [48], [49], [50], [51].
Dynodroid [16] and Monkey [39] generate test inputs using
random input values. Several techniques [52], [53], [54], [55],
[56], [13], [14], [15] rely on a model of the GUI, usually
constructed dynamically and non-systematically, leading to
unexplored program states. POLARIZ [57] uses information
from crowd-based testing to enhance mobile test generation.
Another set of techniques employ systematic exploration of
an app in the construction of test cases: EvoDroid [10] and
Sapienz [12] employ an evolutionary algorithm; ACTEve [34],
JPF-Android [35], Collider [36], and SIG-Droid [37] utilize
symbolic execution. Another group of techniques focus on
testing for specific defects [58], [59], [17].

None of the aforementioned solutions can be used to prop-
erly test the energy behavior of Android apps, as they lack the
ability to generate tests meant to exercise contextual factors.

Green Software Engineering: In recent years, several auto-
mated approaches for analysis [60], [47], [20], [38], [61], [62],
[63], [64], [42], testing [46], [65], [3], [66], re-factoring [67],
[68], and repair [69], [45] of mobile apps have been proposed
to help developers produce more energy efficient apps.

The closest approaches to COBWEB are that of Banerjee et
al. [46], GreenDroid [20], and EnergyPatch [43]. Banerjee et
al. [46] present a search-based profiling strategy with the goal
of identifying energy defects in an app. They construct a graph
representing an app’s GUI events, extract the event traces using
the (incomplete) generated graph, and explore event traces that
may possibly reach energy hotspots, while profiling energy
consumption of the device. The profiling process always starts
from the root activity of an app, making it infeasible to
test particular sequences of the app’s lifecycle. Finally, the
usage of a power measurement hardware makes their approach
device dependent and impractical. EnergyPatch [43] fixes the
scalability issue of the prior work [46] by using abstract
interpretation-based program analysis to detect resource leaks
instead of power trace oracle. Similar to the prior work, they
rely on a dynamically constructed model for GUI events to
guide the search for finding paths leading to a resource leak.
GreenDroid uses only bounded symbolic execution for finding
event sequences that lead to resource leaks.

None of these techniques consider system inputs that are
independent of GUI, nor do they incorporate lifecycle and
hardware contextual factors in the generation of tests. They
also do not generate reproducible tests. More importantly, they
generate tests specifically targeted for resource leaks, failing
to detect wide range of other energy defects shown in Table II.

VIII. CONCLUSION AND FUTURE WORK

Energy efficiency is an important quality attribute for mobile
apps. Naturally, prior to releasing apps, developers need to test
them for energy defects. Yet, there is a lack of practical tools
and techniques for energy testing. In this paper, we presented
COBWEB, a search-based energy testing framework for An-
droid. The approach employs a set of novel models to take
execution context into account, i.e., lifecycle and hardware
state context, in the generation of tests that can effectively
find energy defects. Additionally, COBWEB implements novel
genetic operators tailored to the generation of energy tests. Our
experience with COBWEB on Android apps with real energy
defects corroborate its ability to effectively generate useful
tests to find energy defects in a scalable fashion.

Currently, we are considering several directions for future
work. First, test generation is not complete without accounting
for the test oracle. We are planning to explore automated
methods of generating energy test oracles in future. We also
plan to extend the approach for multi-objective test genera-
tion, making COBWEB a more general Android testing tool.
COBWEB and research artifacts are available publicly [33].

REFERENCES

[1] C. Wilke, S. Richly, S. Gotz, C. Piechnick, and U. Aßmann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in The Internation Conf. on Green Computing and Communi-
cations.

[2] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ per-
spectives on green software engineering,” in Proceedings of the 38th
International Conference on Software Engineering. ACM, 2016, pp.
237–248.

[3] R. Jabbarvand and S. Malek, “µdroid: an energy-aware mutation testing
framework for android,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, 2017, pp. 208–219.

[4] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet?(e),” in Automated Software
Engineering (ASE), 2015 30th IEEE/ACM International Conference on.
IEEE, 2015, pp. 429–440.

[5] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering. ACM, 2012, pp. 258–
261.

[6] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” in Acm Sigplan Notices, vol. 48,
no. 10. ACM, 2013, pp. 641–660.

[7] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in Acm Sigplan Notices,
vol. 48, no. 10. ACM, 2013, pp. 623–640.

[8] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated
gui-model generation of mobile applications,” in International Confer-
ence on Fundamental Approaches to Software Engineering. Springer,
2013, pp. 250–265.

[9] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th annual international conference on
Mobile systems, applications, and services. ACM, 2014, pp. 204–217.

[10] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented evo-
lutionary testing of android apps,” in Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering. ACM, 2014, pp. 599–609.

[11] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in gui testing of android applications,” in Software En-
gineering (ICSE), 2016 IEEE/ACM 38th International Conference on.
IEEE, 2016, pp. 559–570.

[12] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis. ACM, 2016, pp. 94–105.

[13] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su, “Guided, stochastic model-based gui testing of android apps,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, 2017, pp. 245–256.

[14] C. Zhang, H. Cheng, E. Tang, X. Chen, L. Bu, and X. Li, “Sketch-
guided gui test generation for mobile applications,” in Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering. IEEE Press, 2017, pp. 38–43.

[15] W. Song, X. Qian, and J. Huang, “Ehbdroid: beyond gui testing for
android applications,” in Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering. IEEE Press,
2017, pp. 27–37.

[16] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for android apps,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering. ACM, 2013, pp. 224–234.

[17] L. L. Zhang, C.-J. M. Liang, Y. Liu, and E. Chen, “Systematically
testing background services of mobile apps,” in Automated Software
Engineering (ASE), 2017 32nd IEEE/ACM International Conference on.
IEEE, 2017, pp. 4–15.

[18] “MyTracker Android App,” 2017. [Online]. Available: https://github.
com/ReyhanJB/MyTracker

[19] “Location manager strategies,” 2017. [Online]. Available: https:
//developer.android.com/guide/topics/location/strategies.html

[20] Y. Liu, C. Xu, S.-C. Cheung, and J. Lü, “Greendroid: Automated
diagnosis of energy inefficiency for smartphone applications,” IEEE
Transactions on Software Engineering, vol. 40, no. 9, pp. 911–940, 2014.

[21] M. Harman and P. McMinn, “A theoretical and empirical study of search-
based testing: Local, global, and hybrid search,” IEEE Transactions on
Software Engineering, vol. 36, no. 2, pp. 226–247, 2010.

[22] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search based
software engineering: Techniques, taxonomy, tutorial,” in Empirical
software engineering and verification. Springer, 2012, pp. 1–59.

[23] E. Cantu-Paz and D. E. Goldberg, “Efficient parallel genetic algorithms:
theory and practice,” Computer methods in applied mechanics and
engineering, vol. 186, no. 2-4, pp. 221–238, 2000.

[24] F. Asadi, G. Antoniol, and Y.-G. Gueheneuc, “Concept location with
genetic algorithms: A comparison of four distributed architectures,” in
Search Based Software Engineering (SSBSE), 2010 Second International
Symposium on. IEEE, 2010, pp. 153–162.

[25] “Robolectric,” 2017. [Online]. Available: http://robolectric.org/
[26] “Android testing support library : Espresso,” 2017. [Online]. Available:

https://google.github.io/android-testing-support-library/docs/espresso/
[27] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,

“Soot-a java bytecode optimization framework,” in Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative
research. IBM Press, 1999, p. 13.

[28] D. Octeau, D. Luchaup, M. Dering, S. Jha, and P. McDaniel, “Composite
constant propagation: Application to android inter-component commu-
nication analysis,” in Proceedings of the 37th International Conference
on Software Engineering-Volume 1. IEEE Press, 2015, pp. 77–88.

[29] Y. Liu, C. Xu, S.-C. Cheung, and V. Terragni, “Understanding and
detecting wake lock misuses for android applications,” pp. 396–409,
2016.

[30] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,” in
Proceedings of the 7th ACM european conference on Computer Systems.
ACM, 2012, pp. 29–42.

[31] “Android api reference,” 2017. [Online]. Available: https://developer.
android.com/reference/packages.html

[32] “crawler4j,” 2017. [Online]. Available: https://github.com/yasserg/
crawler4j

[33] “Cobweb website,” 2018. [Online]. Available: https://sites.google.com/
view/icse-cobweb

[34] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 59:1–59:11.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393666

[35] H. van der Merwe, B. van der Merwe, and W. Visser, “Execution
and property specifications for jpf-android,” SIGSOFT Softw. Eng.
Notes, vol. 39, no. 1, pp. 1–5, Feb. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2557833.2560576

[36] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing
with targeted event sequence generation,” in Proceedings of the 2013
International Symposium on Software Testing and Analysis, ser. ISSTA
2013. New York, NY, USA: ACM, 2013, pp. 67–77. [Online].
Available: http://doi.acm.org/10.1145/2483760.2483777

[37] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “Sig-droid:
Automated system input generation for android applications,” in Soft-
ware Reliability Engineering (ISSRE), 2015 IEEE 26th International
Symposium on. IEEE, 2015, pp. 461–471.

[38] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Mining energy-greedy api usage
patterns in android apps: an empirical study,” in Proceedings of the 11th
Working Conference on Mining Software Repositories. ACM, 2014, pp.
2–11.

[39] “UI/Application Excersizer Monkey,” 2017. [Online]. Available:
http://developer.android.com/tools/help/monkey.html

[40] L. Ben-Zur, “Using Trepn Profiler for Power-
Efficient Apps,” https://developer.qualcomm.com/
blog/developer-tool-spotlight-using-trepn-profiler-power-efficient-apps,
2017.

[41] “EMMA: a free Java code coverage tool,” http://emma.sourceforge.net.
[42] Y. Lyu, D. Li, and W. G. Halfond, “Remove rats from your code:

automated optimization of resource inefficient database writes for mobile
applications,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. ACM, 2018, pp. 310–
321.

[43] A. Banerjee, L. K. Chong, C. Ballabriga, and A. Roychoudhury, “En-
ergypatch: Repairing resource leaks to improve energy-efficiency of
android apps,” IEEE Transactions on Software Engineering, vol. 44,
no. 5, pp. 470–490, 2018.

[44] T. Wu, J. Liu, Z. Xu, C. Guo, Y. Zhang, J. Yan, and J. Zhang, “Light-
weight, inter-procedural and callback-aware resource leak detection for
android apps.” IEEE Trans. Software Eng., vol. 42, no. 11, pp. 1054–
1076, 2016.

[45] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto,
M. Di Penta, and D. Poshyvanyk, “Optimizing energy consumption of
guis in android apps: a multi-objective approach,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering.
ACM, 2015, pp. 143–154.

[46] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
“Detecting energy bugs and hotspots in mobile apps,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 588–598.

[47] D. Li, A. H. Tran, and W. G. Halfond, “Making web applications
more energy efficient for oled smartphones,” in Proceedings of the 36th
International Conference on Software Engineering. ACM, 2014, pp.
527–538.

[48] H. Ye, S. Cheng, L. Zhang, and F. Jiang, “DroidFuzzer: Fuzzing the
Android Apps with Intent-Filter Tag,” in Proceedings of International
Conference on Advances in Mobile Computing & Multimedia, ser.
MoMM ’13. New York, NY, USA: ACM, 2013, pp. 68:68–68:74.
[Online]. Available: http://doi.acm.org/10.1145/2536853.2536881

[49] K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan,
“IntentFuzzer: Detecting Capability Leaks of Android Applications,”
in Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security, ser. ASIA CCS ’14. New
York, NY, USA: ACM, 2014, pp. 531–536. [Online]. Available:
http://doi.acm.org/10.1145/2590296.2590316

[50] R. Sasnauskas and J. Regehr, “Intent Fuzzer: Crafting Intents of
Death,” in Proceedings of the 2014 Joint International Workshop on
Dynamic Analysis (WODA) and Software and System Performance
Testing, Debugging, and Analytics (PERTEA), ser. WODA+PERTEA
2014. New York, NY, USA: ACM, 2014, pp. 1–5. [Online]. Available:
http://doi.acm.org/10.1145/2632168.2632169

[51] A. Maji, F. Arshad, S. Bagchi, and J. Rellermeyer, “An empirical study
of the robustness of Inter-component Communication in Android,” in
2012 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Jun. 2012, pp. 1–12.

[52] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and
A. M. Memon, “Using gui ripping for automated testing of android
applications,” in Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 258–261. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351717

[53] D. Amalfitano, A. Fasolino, P. Tramontana, B. Ta, and A. Memon,
“Mobiguitar: Automated model-based testing of mobile apps,” Software,
IEEE, vol. 32, no. 5, pp. 53–59, Sept 2015.

[54] W. Yang, M. Prasad, and T. Xie, “A grey-box approach for automated
gui-model generation of mobile applications,” in Fundamental
Approaches to Software Engineering, ser. Lecture Notes in Computer
Science, V. Cortellessa and D. Varr, Eds. Springer Berlin Heidelberg,
2013, vol. 7793, pp. 250–265. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-37057-1 19

[55] T. Azim and I. Neamtiu, “Targeted and depth-first exploration for
systematic testing of android apps,” SIGPLAN Not., vol. 48, no. 10, pp.
641–660, Oct. 2013. [Online]. Available: http://doi.acm.org/10.1145/
2544173.2509549

[56] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’14.
New York, NY, USA: ACM, 2014, pp. 204–217. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594390

[57] K. Mao, M. Harman, and Y. Jia, “Crowd intelligence enhances auto-
mated mobile testing,” in Automated Software Engineering (ASE), 2017
32nd IEEE/ACM International Conference on. IEEE, 2017, pp. 16–26.

[58] R. Hay, O. Tripp, and M. Pistoia, “Dynamic detection of inter-
application communication vulnerabilities in android,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis,
ser. ISSTA 2015. New York, NY, USA: ACM, 2015, pp. 118–128.
[Online]. Available: http://doi.acm.org/10.1145/2771783.2771800

[59] A. Sadeghi, R. Jabbarvand, and S. Malek, “Patdroid: permission-aware
gui testing of android,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, 2017, pp. 220–232.

[60] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing and
detecting resource leaks in android applications,” in Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on.
IEEE, 2013, pp. 389–398.

[61] A. Gupta, T. Zimmermann, C. Bird, N. Nagappan, T. Bhat, and S. Em-
ran, “Mining energy traces to aid in software development: An empirical
case study,” in Proceedings of the 8th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement. ACM,
2014, p. 40.

[62] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann,
“Ecodroid: An approach for energy-based ranking of android apps,”
in Proceedings of the Fourth International Workshop on Green and
Sustainable Software. IEEE Press, 2015, pp. 8–14.

[63] H. Wu, S. Yang, and A. Rountev, “Static detection of energy defect pat-
terns in android applications,” in Proceedings of the 25th International
Conference on Compiler Construction. ACM, 2016, pp. 185–195.

[64] S. Chowdhury, S. Di Nardo, A. Hindle, and Z. M. J. Jiang, “An
exploratory study on assessing the energy impact of logging on android
applications,” Empirical Software Engineering, vol. 23, no. 3, pp. 1422–
1456, 2018.

[65] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for android apps,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis. ACM,
2016, pp. 425–436.

[66] H. Wu, Y. Wang, and A. Rountev, “S entinel: generating gui tests for
android sensor leaks,” in Proceedings of the 13th International Workshop
on Automation of Software Test. ACM, 2018, pp. 27–33.

[67] I. Manotas, L. Pollock, and J. Clause, “Seeds: a software engineer’s
energy-optimization decision support framework,” in Proceedings of the
36th International Conference on Software Engineering. ACM, 2014,
pp. 503–514.

[68] A. Banerjee and A. Roychoudhury, “Automated re-factoring of android
apps to enhance energy-efficiency,” 2016.

[69] D. Li, Y. Lyu, J. Gui, and W. G. Halfond, “Automated energy optimiza-
tion of http requests for mobile applications,” in Proceedings of the 38th
International Conference on Software Engineering. ACM, 2016, pp.
249–260.

