
Test Transfer Across Mobile Apps
Through Semantic Mapping

Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek
School of Information and Computer Sciences

University of California, Irvine, USA
{junwel1, jabbarvr, malek}@uci.edu

Abstract—GUI-based testing has been primarily used to ex-
amine the functionality and usability of mobile apps. Despite the
numerous GUI-based test input generation techniques proposed
in the literature, these techniques are still limited by (1) lack of
context-aware text inputs; (2) failing to generate expressive tests;
and (3) absence of test oracles. To address these limitations, we
propose CRAFTDROID, a framework that leverages information
retrieval, along with static and dynamic analysis techniques, to
extract the human knowledge from an existing test suite for
one app and transfer the test cases and oracles to be used for
testing other apps with the similar functionalities. Evaluation of
CRAFTDROID on real-world commercial Android apps corrobo-
rates its effectiveness by achieving 73% precision and 90% recall
on average for transferring both the GUI events and oracles. In
addition, 75% of the attempted transfers successfully generated
valid and feature-based tests for popular features among apps in
the same category.

Index Terms—Test transfer, test migration, GUI testing, natu-
ral language processing, semantic similarity

I. INTRODUCTION

GUI testing is the primary way of examining the func-
tionality and usability of mobile apps. To reduce the cost
of manual GUI testing, many automated test input generation
techniques have been proposed in the literature over the past
years [1]–[19]. These techniques follow different exploration
strategies, such as random, model-based, stochastic, or search-
based, for generating inputs in order to achieve a pre-defined
testing goal, e.g., maximizing code coverage or finding more
crashes. Despite all these efforts to automate the GUI test input
generation, several studies indicate that they are not widely
adopted in practice and majority of the mobile app’s testing is
still manual [20]–[22]. There are three main reasons that limit
the viability of these techniques:

(1) Lack of context-aware text inputs. Most of the state-
of-the-art techniques use random input values or rely on the
manual configurations for text inputs. However, contextual text
inputs are critical to thoroughly test majority of the apps,
e.g., city names for a navigation app, correct URLs for a
browser app, and valid username/password for a mail client
app. Without such meaningful inputs, exploration of the App
Under Test (AUT) may get stuck at the very beginning and
GUI states deep in the testing flow may never been exercised.

(2) Failing to generate expressive tests. Majority of
the automated testing techniques aim to maximize the code
coverage or reveal as many crashes as possible. The generated
tests by such techniques are typically feature-irrelevant or
unrepresentative of the canonical usages of apps [9], [23].
This lack of expressiveness makes debugging cumbersome,

as such tests do not include the reproduction steps that can be
organized by use cases or features [22].

(3) Absence of test oracles. Despite a few efforts for
automatic generation of test oracles for mobile apps [15],
[24], majority of the existing test generation tools are unable
to identify failures other than crashes or run-time exceptions.
Without automated test oracles, such tests cannot thoroughly
verify correct behavior of the AUT.

To address these limitations, we propose CRAFTDROID,
a framework to reuse an existing test suite for one app to
test other similar apps. CRAFTDROID is inspired by recent
work from Behrang and Orso [25] and Rau et al. [26], which
provided initial evidence of the feasibility of test transfer for
mobile apps and web applications, respectively. Like their
works, our proposed technique transfers available test cases
corresponding to a specific feature or use-case scenario of
one app to other apps with similar functionality. However,
unlike their work, CRAFTDROID is also able to transfer
the test oracles, if they exist. To enable context-awareness
for text inputs, CRAFTDROID relies on information retrieval
techniques to extract the human knowledge from an existing
test suite and reuse it for other apps. Since test transfer is
across apps with similar functionalities/features, the generated
tests using CRAFTDROID are inherently feature-relevant and
expressive. As CRAFTDROID not only transfers test inputs, but
also oracles (assertions), it is able to thoroughly verify correct
behavior of the AUT.

Two insights from the prior literature [27], [28] form the
foundation of our work. First, apps within the same cat-
egory share similar functionalities. For example, shopping
apps should implement user registration and authentication
to provide personalized services. As another example, web
browsers should implement common features such as brows-
ing, adding/removing tabs, or bookmarking URLs, despite
different strategies they take for enabling privacy. Second, GUI
interfaces for the same functionality are usually semantically
similar, even if they belong to different apps with different
looks and styles. By semantic similarity, we mean the con-
ceptual relation between the textual information, e.g., the text,
adjacent labels, or variable names, which can be retrieved
from actionable GUI widgets such as buttons, input fields,
or checkboxes. For instance, a button to start the registration
process on an app can appear with text ”Join”, ”Sign Up”, or
”Create Account”. Even if the texts are syntactically different,
they are semantically related. As another example, a ”Confirm
and Pay” button on a shopping app for checkout can be a

”Place Order” button on another shopping app.
Extensive evaluation of CRAFTDROID on real-world com-

mercial and open-source Android apps collected from various
categories on Google Play, including popular apps such as
Wish, Yelp, and Firefox Focus, confirms effectiveness of the
proposed approach. In fact, 75% of the attempted transfers by
CRAFTDROID successfully generated valid and feature-based
test cases, with 73% precision and 90% recall on average for
the transferred GUI events and oracles. This paper makes the
following contributions:
• A novel technique for transferring both test inputs and

oracles across mobile apps through semantic mapping of
actionable GUI widgets.

• An implementation of the proposed framework for An-
droid apps, which is publicly available [29].

• Empirical evaluation on real-world apps demonstrating
the utility of CRAFTDROID to successfully transfer tests
across mobile apps.

The remainder of this paper is organized as follows. Sec-
tion II introduces a motivating example that is used to describe
our research. Section III provides an overview of our frame-
work and Sections IV-VI describe the details of the proposed
technique. Section VII presents the evaluation results. The
paper concludes with a discussion of the related research and
avenues for future work.

II. MOTIVATING EXAMPLE

To illustrate how CRAFTDROID works, consider Rainbow
Shops [30], a shopping app for women clothing, and Yelp
[31], a local-search app for services and restaurants. Figures 2
and 3 show the registration process on Rainbow Shops and
Yelp, respectively. To register a new account on Rainbow
Shops, user starts by clicking on the “Join” button (Figure 2-
a), which directs the user to a registration form (Figure 2-b).
By filling the required fields of registration form and clicking
on the “Create Account” button, Rainbow Shops creates an
account for the user and moves to the profile page (Figure 2-
c), which shows information about user, such as her username,
i.e., Sealbot.

To initiate the registration process on Yelp, the testing flow
starts by clicking on the profile tab, denoted by “Me” in Figure
3-a. Then, the user should navigate through several screens to
provide required registration information (Figures 3-d to 3-e).
Finally, by clicking on the “Sign Up” button (Figure 3-f), the
registration process is complete and Yelp moves to the profile
page, where user can see her username, i.e., Sealbot (Figure
3-g).

While the overall registration process in these two apps fol-
lows the same steps—clicking on a button to start registration,
filling the registration form, and submitting information—a
direct copy of the test steps from Rainbow Shops to Yelp is not
possible due to the following reasons: (1) The mapping of test
steps between the two apps is not one-to-one. For example, to
reach the registration form, Rainbow Shops requires only one
click (Figure 2-a), while it takes three clicks in Yelp to reach
the registration form (Figures 3-a, 3-b, and 3-c). As another
example, a user provides personal information using two forms
in Yelp compared to the one form in Rainbow Shops. (2) The

Fig. 1: Overview of CRAFTDROID

mapping of GUI widgets is challenging, especially if they are
syntactically different but semantically similar. For example,
the clicked buttons in these two test flows are different in terms
of their label, i.e., “Join” in Rainbow Shops and “Sign Up” in
Yelp.

Despite these challenges, CRAFTDROID is able to transfer
a test case that verifies the registration process in Rainbow
Shops to Yelp by semantically mapping their GUI widgets.
In the following sections, we describe the details of how
CRAFTDROID identifies the matches and transfers GUI/oracle
events from Rainbow Shops to Yelp.

III. APPROACH OVERVIEW

Figure 1 provides an overview of CRAFTDROID consisting
of three major components: (1) Test Augmentation component
that augments test cases available for an existing app, i.e.,
source app, with the information extracted from its GUI
widgets that are exercised during test execution, (2) Model
Extraction component that uses program analysis techniques
to retrieve the GUI widgets and identify transitions between
Activity components of a target app, and (3) Test Generation
component that leverages Natural Language Processing (NLP)
techniques to compute similarity between GUI widgets of the
source and target apps to transfer tests.

More specifically, CRAFTDROID takes an existing mobile
app and its test case as input. It then instruments, executes,
and augments the source test with textual information retrieved
from the GUI widgets it exercised during its execution. Af-
terwards, CRAFTDROID statically analyzes the target app to
extract its UI Transition Graph (UITG). Finally, CRAFTDROID
uses UITG of the target app to search for widgets that are
similar to those found in the source app to generate a new
test. It leverages NLP techniques, such as word embedding, to
compute the similarity between GUI widgets in the source and
target apps. Regarding the transfer of oracle, CRAFTDROID is
able to deal with several types of oracles that are commonly
used in practice, including negative ones such as nonexistence
check of text. We will describe these three components in more
detail in the following sections.

IV. TEST AUGMENTATION

Algorithm 1 shows how Test Augmentation component
works. It takes the source app, srcApp, with an existing test
case, t, as input, and generates an augmented test case t′,
which contains textual meta-data related to the GUI widgets

Fig. 2: Excerpted registration process on Rainbow Shops

Fig. 3: Excerpted registration process on Yelp

that are exercised by t. We formulate test case t as a set of GUI
events {(w1, a1), (w2, a2), ...}, where wi is a GUI widget, e.g.,
Button, and ai is the action performed on wi, e.g., click. An
action ai can be a single operation such as click or an operation
with arguments such as swipe that contains starting and ending
coordinates. If a test comes with an oracle, CRAFTDROID
identifies it as a special type of event (wi, ai), where ai is an
assertion, e.g., assertEqual. If the assertion is widget-specific,
e.g., existence check of a widget, wi denotes the widget to
be checked. On the other hand, if the assertion is widget-

irrelevant, e.g., existence of certain text on the screen, wi is
set to be empty.

Algorithm 1 starts by initializing variables (Line 1) and
launching the source app (Line 2). For each GUI or oracle
event (wi, ai) in t, Test Augmentation component dynamically
analyzes current screen to retrieve required textual information
of wi, such as the resource-id, text, and content-desc. To that
end, it uses adb tool [32] to dump current screen, i.e., an XML
file of current UI hierarchy (Line 4), and parses the XML file
(Line 5). Algorithm 1 updates wi with textual information to

Algorithm 1 Test Augmentation

Input:
A source app srcApp;
A test case t = {(w1, a1), (w2, a2), ...} for srcApp

Output:
An augmented test case t′ = {(w′1, a1), (w′2, a2), ...}

1: t′ = ∅;
2: launchApp(srcApp)
3: for each (wi, ai) ∈ t do
4: screen = dumpCurrentState()
5: info = getExtraInfo(wi, screen)
6: w′i = augment(wi, info)
7: t′ = t′ ∪ (w′i, ai)
8: execute(wi, ai)
9: end for

10: return t′

Fig. 4: Excerpted UI Transition Graph for Yelp

produce augmented widget w′i and adds it to the augmented
test (Line 6-7). Finally, it executes wi (Line 8) to move to the
next widget.

V. MODEL EXTRACTION

Model Extraction component statically analyzes the tar-
get app, targetApp, to generate a model called UI Tran-
sition Graph (UITG). This model represents how Activi-
ties/Fragments of an app interact with each other through
invoking GUI widgets’ event handlers. UITG will later be
used by Test Generation component to search for a match
for a given widget of source app in the target app.

At a high level, UITG represents Activity components com-
prising the target app as nodes and GUI events as transitions
among the nodes. Each node of UITG in turn contains a list
of widgets that can be rendered directly through the Activity,
or indirectly through Fragments comprising the Activity. It is
important to consider Fragments, since an Activity may consist
of several Fragments, which can be called from different
Activities. Figure 4 shows a partial UITG for Yelp. As demon-
strated by this UITG, clicking on the “Me” widget transfers
users from the Home Activity to the UserProfileLoggedOut
Activity.

Model Extraction constructs the UITG in two steps:
(1) Extracting Activities, Fragments, and their corre-

sponding GUI widgets. Model Extraction parses Manifest file

of the target app to collect a list of Activity components. For
each identified Activity, it then extracts all of the GUI widgets,
e.g., Button, EditText, and TextView, that it renders during
execution of the app. These widgets are either implemented
by the Activity itself or inside Fragments within the Activity.

To extract widget list, Model Extraction analyzes XML-
based meta-data (Resource files)—for statically defined GUI
widgets—as well as the source code—for dynamically defined
ones. More specifically, to get the list of statically defined GUI
widgets, Model Extraction first refers to the source code of
each Activity/Fragment and looks for specific methods, such
as setContentView() and findViewById(), to identify resource
files corresponding to widgets. It then adds all the widgets
identified in the resource file to the widget list of the Activity.
To get the list of dynamically defined GUI widgets, Model
Extraction analyzes the source code of Activity/Fragment
components to identify initialization of GUI widget elements
in them and adds the corresponding widgets to the widget list.
During extraction of widgets, Model Extraction also retrieves
and stores their corresponding textual information.

(2) Identifying transitions between Activities. Model Ex-
traction starts from the launcher Activity, which is specifically
identified in the Manifest file. For each Activity, it analyzes the
event handlers of all the GUI widgets in the Activity’s widget
list, e.g., onClick() for a button or onCheckedChanged() for a
check box. If the event handler of a widget invokes specific
methods that result in transition to another Activity (e.g.,
startActivity()) or Fragment (e.g., beginTransaction()), Model
Extraction includes a transition between the two Activity
Components. We identify two types of transitions in UITG:

1) Inter-component transition. The method call results in a
transfer of control between two distinct Activities. For
example, when user clicks on the “Me” tab in Figure 3-
a, the onClick() handler of this widget initiates an Intent
message and invokes startActivity() method to transfer the
control to UserProfileLoggedOut Activity.

2) Intra-component transition. The method call to a GUI
event handler results in a transition back to the same
Activity. Such transitions happen when an Activity con-
sists of multiple Fragments and performing an action on
one Fragment results in transition to another Fragment
within the same Activity. For instance, Figures 3-d and
3-e represent two Fragments related to the CreateAccount
Activity. Clicking on the “Next” button on the first Frag-
ment moves the control to the second Fragment. Thereby,
this transition causes a loop in the UITG, as shown in
Figure 4.

After generation of UITG, Model Extraction component
combines the widgets collected for all nodes into an associative
array, denoted as map. This construct maps all the GUI
widgets in targetApp to the corresponding Activity/Fragment
that can render them during execution of app.

VI. TEST GENERATION

Algorithm 2 demonstrates how the Test Generation com-
ponent of CRAFTDROID works. This component takes the
targetApp, its corresponding UITG and widget map, and an
augmented test for the srcApp, t′, as input and generates a

Algorithm 2 Test Generation

Input:
targetApp,
UITG of targetApp,
map widgets on each Activity/Frag. in the targetApp,
t′ = {(w′1, a1), (w′2, a2), ...} from srcApp,

Output:
tnew = {(wn1

, an1
), (wn2

, an2
), ...} for targetApp

1: while true do
2: tnew = ∅
3: for each (w′i, ai) ∈ t′ do
4: candidates = getCandidates(w′i,map, UITG)
5: for each wn ∈ candidates do
6: leadingEvents =

getLeadingEvents(wn, UITG,map, tnew)
7: if leadingEvents 6= null then
8: an = generateAction(w′i, ai, wn)
9: tnew = tnew ∪ leadingEvents∪ (wn, an)

10: break
11: end if
12: end for
13: end for
14: if ∆ fitness(tnew) ≤ threshold or timeout
15: break
16: end if
17: end while
18: return tnew

19: function GETLEADINGEVENTS(wn, UITG,map, tnew)
20: execute(tnew)
21: srcAct = getCurrentActivity()
22: destAct = getActivity(wn,map)
23: paths = getPaths(srcAct, destAct, UITG)
24: sort(paths)
25: for each path ∈ paths do
26: isV alid = validate(wn, path,map)
27: if isV alid = true then
28: return path
29: end if
30: end for
31: return null
32: end function

new test case tnew for targetApp by transferring the GUI and
oracle events of t′.

To that end, it iterates over every GUI or oracle event
(wi, ai) in t′ and collects a list of candidate widgets in
targetApp, candidates, which are ranked based on their
similarity to wi (Line 4, details in Section VI-A). For each
GUI widget wn in candidates, Algorithm 2 checks to see if
it is reachable, and if so, identifies a sequence of events—
leading events—that should be executed to reach wn (Line 6,
details in Section VI-B).

For a reachable candidate wn, Algorithm 2 identifies the
appropriate action an (Line 8, details in Section VI-C), adds
(wn, an) along with the leading events to tnew (Line 9), and

moves to the next w′i to find its match (Line 10).
Once all the widgets in t′ are checked for a match in

targetApp, Algorithm 2 checks the termination criteria (Line
14, details in Section VI-D). If termination criteria are met, it
terminates (Line 15). Otherwise, it repeats the whole process
of transfer. The reason for repeating the test generation process
is that Test Generation component relies on UITG to identify
reachability of the candidate widgets. Since UITG is derived
through static analysis, it is an over approximation of the app’s
runtime behavior. In addition, static analysis is not able to
realize dynamically generated contents such as pop-up dia-
logues or buttons in Android’s WebView. To overcome these
limitations, CRAFTDROID executes targetApp to determine
reachability and updates UITG based on runtime information.
Thereby, Test Generation repeats transfer with an updated
UITG to increase the chance of successful transfer.

In the remainder of this section, we describe the key
components of Test Generation in more detail.

A. Computing Similarity Score
In the getCandidates function (Line 4), Test Genera-

tion considers two factors to compute the similarity between
widgets: (1) their corresponding textual information, and (2)
their location in UITG. More specifically, to determine the
similarity of a candidate widget wn to source widget w′i,
Test Generation first computes scoret—a measure of how
similar are the textual information of wn to that of w′i. It then
normalizes scoret based on how close wn is to the current
Activity by leveraging UITG to compute the final similarity
value.

1) Computing textual similarity score, scoret: CRAFT-
DROID collects the textual information of a GUI widget from
multiple sources, such as widget’s attributes, the name of
Activity/Fragment that renders it, and its immediate parent
and siblings. CRAFTDROID follows a two step process to
measure the textual similarity. It first retrieves raw textual data
from different sources and processes them. It then utilizes the
processed data to measure the similarity in a weighted scheme
among all sources.

Text Processing. Test Generation processes the collected
textual information by Test Augmentation and Model Extrac-
tion through applying a series of common practices in NLP,
including tokenization and stopword removal. The result of
this step is a set of word lists for every textual information.
For example, textual information for the button Sign Up in
Figure 3-b can have three word lists: (1) [“Sign”,“Up”] from
its label, (2) [“sign”, “up”, “button”] from its resource-id of
sign up button, and (3) [“user”, “profile”, “logged”, “out”]
from its Activity name of UserProfileLoggedOut.

Computing Textual Similarity. To determine scoret be-
tween two GUI widgets wn and w′i, Test Generation computes
the similarity score for each information source and then
calculates a weighted sum of the individual scores. Since the
previous step produces a set of word lists for each GUI widget,
the problem of determining the textual similarity between two
GUI widgets is dual to the problem of computing the similarity
score between word lists.

CRAFTDROID leverages Word2Vec [33]—a model that cap-
tures the linguistic contexts of words—to compute the simi-

larity score between two word lists. That is, it first computes
the cosine similarity for all possible word pairs in the word
lists. Next, it identifies the best match among pairs based on
two criteria: (1) the pair has the highest cosine similarity, and
(2) every word is only matched once.

For instance, consider the Create Account button in Fig-
ure 2-b and Sign Up button in Figure 3-b from the motivating
example. The two word lists corresponding to these buttons
are [“Create”, “Account”] and [“Sign”, “Up”]. To compute the
similarity score between them, the pairwise cosine similarity
is calculated as follows:

[Create Account

Sign 0.405 0.168
Up 0.201 0.158

]
In this example, the word pairs that match the mentioned
criteria are (”Create”, ”Sign”) and (”Account”, ”Up”) with
cosine similarity of 0.405 and 0.158, respectively. Thereby, the
final similarity score between these two word lists is calculated
as (0.405+0.158)/2 = 0.282, which is the score for the text of
these two buttons. Similarly, the two word lists corresponding
to the resource-id of these two widgets are [“button”, “sign”,
“up”] and [“sign”, “up”, “button”]. The cosine similarity for
these lists are as follows:

button sign up

sign 0.117 1.0 0.149
up 0.048 0.149 1.0

button 1.0 0.117 0.048

Based on these values, the score for resource-id is calcu-
lated as (1.0 + 1.0 + 1.0)/3 = 1.0. If only these two
information sources are considered to compute the similarity
score, the final textual similarity between these two buttons is
(0.282 + 1.0)/2 = 0.641.

2) Computing final similarity score: To compute the final
similarity score between wn and wi, Test Generation normal-
izes scoret based on the distance of wn from current screen.
Test Generation consults UITG to get the shortest distance d,
i.e., number of GUI events, from the current screen to the
Activity to which wn belongs. It computes the final similarity
as follows:

similarity(wn, w
′
i) =

scoret, if d = 0

scoret
1 + log2 d

, otherwise

This adjustment assigns a higher priority to candidate GUI
widgets that are closer to the current screen. This is because
intuitively, the steps or events to test the same functionality
should not be significantly different even in different apps. For
example, consider the Join button from Figure 2-a in Rainbow
Shops. The most semantically similar widget in Yelp app to
this button is the Sign Up button, which appears in multiple
UIs, e.g., Figures 3-b, 3-c, and 3-f. To identify which one of
these buttons is the best match for Join, CRAFTDROID starts
from the launcher Activity of Yelp, Home Activity, and finds
the closest node in its UITG (Figure 4) that contains a Sign
Up button, UserProfileLoggedOut Activity, which is shown in
Figure 3-b.

B. Reachability Check

The function getLeadingEvents in Algorithm 2 checks
the reachability of wn, a candidate widget in targetApp that
can be matched to w′i. If reachable, the function returns the
GUI events leading to the Activity holding wn. To that end,
first tnew—series of GUI events successfully transferred so
far—is executed and the last activity srcAct executed by tnew
is identified (Line 21). The widget map is then used to
pinpoint the Activity destAct that holds wn (Line 22). Next,
all the potential paths in UITG from srcAct to destAct are
explored to derive sequences of GUI events—leading events—
that execute each path (Line 23).

The identified paths are sorted based on their length (Line
24). This way, shorter paths have a higher chance of being
selected, thereby making the length of final transferred test
shorter, which is generally desirable for debugging purposes.
The function validate then verifies whether wn is reach-
able by executing actions corresponding to each path on
targetApp (Line 26). The first path that verifies reachability
of destAct from srcAct is returned as output (Lines 27-28). If
no path is found or could be verified, null is returned (Line
31), indicating that wn is not reachable.

Finally, it is worth mentioning that in addition to verifying
the reachability of each path, function validate (1) updates
UITG by removing invalid paths, i.e., unreachable paths, (2)
updates the widget map by adding new GUI widgets that
are encountered at runtime (i.e., those that are loaded dy-
namically), and (3) determines the correct screen for asserting
negative oracles (details in Section VI-C).

C. Actions for the Transferred GUI and Oracle Events

Once a widget match wn is found, Algorithm 2 determines
the proper action an for it to successfully transfer (w′i, ai)
(Line 8). Based on the type of event, i.e., GUI or oracle event,
Algorithm 2 identifies an as follows:

GUI event. Even when the type of matched GUI widgets
in srcApp and targetApp are the same, their corresponding
action might be different. For example, removing an item in
a to-do list app can be performed by a swipe, while the same
task in another to-do list app might be performed by a long
click. To overcome this challenge, CRAFTDROID considers a
series of possible actions for wn and finds the one that properly
works on wn in targetApp. To that end, it first analyzes the
source code of targetApp to find a specific event listener,
such as onSwiped() or setOnLongClickListener(), registered
for the matched widget wn, and returns an as the action
corresponding to such an event listener. If no specific action
can be identified, it reuses the same action in srcApp, i.e.,
assign an = ai.

Oracle event. For oracle events (w′i, ai) in srcApp, where
ai is an assertion, CRAFTDROID generates an for targetApp
based on whether ai is widget-specific, e.g., existence check
of a widget, or widget-irrelevant, e.g., existence check of text.

Table I lists the types of oracle events supported by the
current version of CRAFTDROID. For widget-specific asser-
tions, Test Generation modifies the assertion so that it matches
the target widget, wn. For example, when ai checks if the
resource-id of w′i matches a specific value, the generated an

TABLE I: Types of oracle supported by CRAFTDROID. (w′i, ai): the source oracle event. (wn, an): the transferred target oracle
event.

ai an Widget-specific?
assertEqual(V ALUEi, attr(w

′
i)) assertEqual(V ALUEn, attr(wn)) Y

elementPresense(w′
i) elementPresense(wn) Y

elementInvisible(w′
i) elementInvisible(wn) Y

textPresense(STRING) textPresense(STRING) N
textInvisible(STRING) textInvisible(STRING) N

should also check if the resource-id of wn matches a specific
value (First row in Table I). On the other hand, if ai is widget-
irrelevant, it can be directly transferred to targetApp.

Transferring negative oracle events, e.g., nonexistence of
text, is challenging, as they can make the transferred test pass,
regardless of the successful transfer of tests. For example,
consider testing the functionality of removing a task from to-
do list. To ensure that an item has been successfully deleted,
the oracle could be a negative assertion of textInvisible to
check non-existence of item’s text. Suppose that we have a
source app that removes a task without confirmation, while
target app requires one additional step to get confirmation of
removal from user before removing the task. An unsuccessful
transfer of test that does not consider user confirmation in
target app can still pass, since the negative assertion will be
checked at the confirmation step, where the text of item is not
visible, yet item is not deleted. Thereby, the main challenge of
transferring negative oracles is to identify the correct screen
for them to be executed.

A heuristic that allowed us to overcome this challenges
is as follows: a negative oracle is likely to be asserted on
the proper screen when its negation (i.e., positive oracle)
is also asserted on that same screen, albeit with different
content displayed on the screen. To find the correct screen
for a negative oracle, CRAFTDROID uses anchor widget—
an actionable widget that appears in the screen where both
a negative oracle and negation of the negative oracle (i.e.,
positive oracle) should be asserted. The anchor widget serves
as a reference to the correct screen. To identify an anchor
widget, CRAFTDROID first negates the assertion of negative
oracle and then searches for a screen where that assertion
can be verified. Any actionable widget in that screen can be
considered as the anchor widget. To that end, CRAFTDROID
analyzes the source test, t′i, before transfer and determines the
negate of negative oracle, if one exists. During test transfer, it
examines the negated assertion on all screens and selects an
actionable widget in a screen that the negated assertion passes
as an anchor widget1.

In the example of to-do list apps, CRAFTDROID negates
the negative oracle of text non-existence to existence, i.e.,
checks if the text of an item exists in the current screen. The
anchor widget in this example could be an Add widget that
is used to add items to a list. This is because existence of
the text of a to-do item should be checked when that item is
being added. Thereby, a widget for adding always exists in the
screen that list items exist. Later for transfer of oracle event,

1CRAFTDROID uses anchor widget instead of Activity names, since Activ-
ity might have multiple Fragments. Thereby, just getting back to the Activity
does not guarantee the screen is correct.

CRAFTDROID leverages UITG to first navigate back to the
screen, where the Add exists, and then transfers the oracle.

D. Termination Criteria
Algorithm 2 iteratively improves the quality of test transfer

through updating UITG and the widget map. It terminates
once the fitness of a transferred test cannot be improved any
further, or a timeout value is reached. The fitness of a trans-
ferred test is the average of similarity values (Section VI-A)
computed for its corresponding events.

VII. EVALUATION

We investigate the following research questions in our
experimental evaluation of CRAFTDROID:
RQ1. How effective is CRAFTDROID in terms of the number

of successful transfers compared to total attempted
transfers? What are the precision and recall for at-
tempted GUI and oracle transfers?

RQ2. What are the main reasons yielding transfer failure?
RQ3. How efficient is CRAFTDROID in terms of the running

time to transfer tests from one app to another?
RQ4. What are the factors impacting the efficiency of CRAFT-

DROID?

A. Experimental Setup
We implemented CRAFTDROID with Python and Java for

test cases written using Appium [34], which is an open source
and cross-platform testing framework. Existing test cases for
the subject apps are written using Appium’s Python client and
the augmented/generated test cases are stored in JSON format.
The Model Extraction component is built on top of Soot, a
static analysis framework for Java [35]. For our experiments,
we used a Nexus 5X Emulators running Android 6.0 (API 23)
installed on a Windows laptop with 2.8 GHz Intel Core i7
CPU and 32 GB RAM.

Subject apps. We evaluated the proposed technique using
both open-source and commercial Android apps. CRAFT-
DROID is able to transfer tests for similar functionalities
implemented differently on separate apps. Thereby, we per-
formed test transfers among apps within the same category
and for each category, identified main functionalities to be
tested. To that end, we selected five categories that have large
number of apps on Google Play, namely Browser, To-Do
List, Shopping, Mail Client, and Tip Calculator. These five
categories are often used in prior research that either studied
common functionalities across mobile/web apps [26], [28],
[36], [37] or proposed Android GUI testing solutions [11],
[12], [38], [39]. Table II shows the list of 25 subjects and
their categories.

For each category, we identified two main functionalities
and the corresponding test steps. The test steps for each

TABLE II: Subject apps.

Category App (version) Source

a1-Browser

a11-Lightning (4.5.1) F-Droid
a12-Browser for Android (6.0) Google Play
a13-Privacy Browser (2.10) F-Droid
a14-FOSS Browser (5.8) F-Droid
a15-Firefox Focus (6.0) Google Play

a2-To Do List

a21-Minimal (1.2) F-Droid
a22-Clear List (1.5.6) F-Droid
a23-To-Do List (2.1) F-Droid
a24-Simply Do (0.9.1) F-Droid
a25-Shopping List (0.10.1) F-Droid

a3-Shopping

a31-Geek (2.3.7) Google Play
a32-Wish (4.22.6) Google Play
a33-Rainbow Shops (1.2.9) Google Play
a34-Etsy (5.6.0) Google Play
a35-Yelp (10.21.1) Google Play

a4-Mail Client

a41-K-9 (5.403) Google Play
a42-Email mail box fast mail (1.12.20) Google Play
a43-Mail.Ru (7.5.0) Google Play
a44-myMail (7.5.0) Google Play
a45-Email App for Any Mail (6.6.0) Google Play

a5-Tip Calculator

a51-Tip Calculator (1.1) Google Play
a52-Tip Calc (1.11) Google Play
a53-Simple Tip Calculator (1.2) Google Play
a54-Tip Calculator Plus (2.0) Google Play
a55-Free Tip Calculator (1.0.0.9) Google Play

TABLE III: Test cases for the proposed functionalities.

Functionality #Test
Cases

Avg#
Total Events

Avg#
Oracle Events

b11-Access website by URL 5 3.4 1
b12-Back button 5 7.4 3
b21-Add task 5 4 1
b22-Remove task 5 6.8 2
b31-Registration 5 14.2 5
b32-Login with valid credentials 5 9 4
b41-Search email by keywords 5 5 3
b42-Send email with valid data 5 8 3
b51-Calculate total bill with tip 5 3.8 1
b52-Split bill 5 4.8 1

Total 50 6.6 2.4

functionality, which are listed in Table IV include at least one
oracle step. The oracle steps are implemented as assertion and
wait-until statements.

Test cases. To construct tests suites, we first collected tests
for each subject app2, if there were any, and then augmented
the test suites with the test cases corresponding to the steps
described in Table IV. The number of events for tests among
different categories varies from 3 to 19, with an average of
6.6 events, including 2.4 oracle events 3.

Attempted transfers. For each test case validating a func-
tionality of an app, CRAFTDROID transfers the test case
to the other four apps under the same category. Thereby,
the number of attempted transfers for each category are
5 (test cases) × 4 (transfers) = 20, making the total number
of attempted transfers for evaluating CRAFTDROID to be 200.
After each transfer, we manually examined the test and its
execution to identify false positive, false negative, and true
positive cases as follows: false positive occurs when the target
widget of manual transfer is different from wn identified by
CRAFTDROID; false negative occurs when CRAFTDROID fails
to find a target widget, while manual transfer can; and true

2Test suites for Geek, Wish, and Etsy apps are from [37]
3The number of actual GUI and oracle events in the test cases may be more

than the number of steps shown in Table IV, since Table IV only provides
general instructions for testing the functionalities

positive occurs when the target widget from manual transfer
matches wn identified by CRAFTDROID. Based on these
metrics, we measured the Precision as the number of generated
target events that are correct. Additionally, Recall measures
how many of the source events are correctly transferred. Our
experimental data is publicly available [29].

B. RQ1: Effectiveness
Table V demonstrates the effectiveness of CRAFTDROID

in terms of successful transfers for each functionality listed in
Table IV. These results demonstrate that on average, 74.5% of
the attempted transfers by CRAFTDROID are successful, with
an overall 73% precision and 90% recall considering all the
transferred GUI and oracle events. Thereby, CRAFTDROID is
substantially effective in identifying correct GUI widgets and
successfully transferring tests across mobile apps.

The results shown in Table V also confirm that finding a
match for all the widgets in source test is not necessary to suc-
cessfully transfer a test. As an instance for such cases, consider
the functionality b11, where its corresponding precision for
transferring GUI events is 79%, while it successfully transfers
all tests (success rate = 100%). That is, transfer of events from
source app to target app in b11 has been accompanied by
false positives, i.e., the target widget is identified incorrectly.
However, these false positives are not harmful, since different
apps might implement common functionalities in different
ways. For example, while one app may require the user to
confirm the provided password during registration and before
an account is created, this confirmation may not be required
in another app, thereby, can be skipped.

While false positive may be acceptable, false negative is not,
as it prevents the examination of the desired functionality. In
other words, high recall is more important than high precision
in test transfer, as false negatives typically have more adverse
affect compared to false positives. CRAFTDROID’s high recall
of 90% for transferring GUI and oracle events makes it suitable
for test transfer.

Another important observation from the results in Table V
is that the success rate varies significantly among different
categories of apps, ranging from 100% success rate for the
apps under Browser and Mail Client categories to 40% for
Shopping apps. Even within the same category, the success
rate varies for different functionalities. In the next research
question, we investigate the attributes that impact the success
rate of test transfer.

C. RQ2: Factors Impacting Effectiveness
To identify the factors that impact effectiveness of a test

transfer, we manually investigated all of the attempted trans-
fers, including both successful and failed ones. We identified
the following reasons for transfer failure:

Length of test. Intuitively, transfer of a long test is more
challenging compared to a shorter one, since more GUI
and oracle events should be transferred. Thereby, more false
positives and false negatives might be generated. To identify
how the length of tests impact effectiveness of a test transfer,
we calculated the Pearson correlation coefficient [40] between
the average length of tests, i.e., number of total events, and the
effectiveness metrics in our experiments. Table VI represents

TABLE IV: Identified main functionalities for subject apps.

Category Functionality Test Steps

a1-Browser b11-Access website by URL
1. Locate the address/search bar
2. Input a valid URL and press Enter
3. Specific content about the URL should appear

b12-Back button

1. Locate the address/search bar
2. Input valid URL1 and press Enter
3. Specific content about URL1 should appear
4. Input valid URL2 and press Enter
5. Specific content about URL2 should appear
6. Click the back button
7. Specific content about URL1 should appear

a2-To Do List b21-Add task

1. Click the add task button
2. Fill the task title
3. Click the add/confirm button
4. The task title should appear in the task list

b22-Remove task

1. Add a new task
2. Click/long-click/swipe the task in the task list to remove the task
3. Click the confirm button if exists
4. The task should not appear in the task list

a3-Shopping b31-Registration

1. Click the register/signup button
2. Fill out necessary personal data
3. Click the submit/signup button to confirm registration
4. Personal data should appear in the profile page

b32-Login with valid credentials

1. Click the login/signin button
2. Fill out valid credentials
3. Click the submit/signin button to login
4. Personal data should appear in the profile page

a4-Mail Client b41-Search email by keywords

1. Start the inbox activity
2. Click the search button
3. Input keywords for search and press Enter
4. Specific email related to the keywords should appear

b42-Send email with valid data

1. Start the inbox activitiy
2. Click compose button
3. Input an unique ID for the subject
4. Input a valid email address for the recipient
5. Click send button
6. The unique ID should appear in the inbox

a5-Tip Calculator b51-Calculate total bill with tip
1. Start the tip calculation activity
2. Input bill amount and tip percentange
3. Total amount of bill should appear based on the values in step 2

b52-Split bill

1. Start the tip calculation activity
2. Input bill amount and tip percentage
3. Input number of people
4. Total amount of bill per person should appear based on the values in step 2 and 3

TABLE V: Effectiveness and Efficiency Evaluation of CRAFTDROID.

Functionality GUI Event Oracle Event #Successful
Transfer

Avg. Transfer
Time (sec)Precision Recall Precision Recall

b11 79% 100% 100% 100% 20/20 (100%) 1,144
b12 85% 100% 100% 100% 20/20 (100%) 4,986
b21 78% 100% 85% 100% 17/20 (85%) 1,051
b22 69% 100% 85% 80% 11/20 (55%) 10,611
b31 44% 90% 34% 67% 8/20 (40%) 14,974
b32 53% 82% 56% 61% 10/20 (50%) 8,644
b41 100% 100% 100% 100% 20/20 (100%) 349
b42 85% 80% 89% 89% 14/20 (70%) 2,611
b51 82% 100% 100% 80% 16/20 (80%) 2,581
b52 80% 100% 100% 65% 13/20 (65%) 6,762

Total 70% 94% 79% 85% 149/200 (74.5%) 5,371

TABLE VI: Pearson correlation coefficient between average
test length and effectiveness.

GUI Event Oracle Event #Successful
TransferPrecision Recall Precision Recall

Avg.
Test Length -0.74 -0.60 -0.87 -0.51 -0.71

the computed correlation coefficients. These results indicate a
strong and negative correlation between the length of tests and
success of a test transfer.

Complexity of app. Complexity of subject apps, in terms of

their interface and functionality, also impacts the effectiveness
of CRAFTDROID. Some categories of apps have standard
or de-facto design guidelines, such as arrangement of GUI
widgets to follow, which makes the transfer of test cases across
such apps easier. For example, the design guideline for browser
apps is to have a simple main screen that only contains a
search bar and few actionable GUI widgets. This relatively
simple design for the browser apps makes the transfer of the
GUI events across them easier, since there are fewer candidate
widgets on a screen to be analyzed for proper mapping.

On the other hand, apps without uniform design guidelines,
such as Shopping apps, are flexible to determine the number
of functionalities contained on a screen and the number of
required steps for a functionality. This flexibility makes the
search for finding correct matches more complicated. As
demonstrated by the results in Table V, while CRAFTDROID
successfully transfers all the tests under the Browser category,
the success rate of transfer among Shopping apps is not as
high as other categories.

D. RQ3: Efficiency
Table V shows the average running time of CRAFTDROID

to transfer a test from one app to another when executed
sequentially. On average, a test transfer takes less than 1.5
hours, ranging from 6 minutes to 4.2 hours among different
functionalities. Performance evaluation of different compo-
nents of CRAFTDROID shows that validating reachability
of a candidate widget is the most time-consuming part of
test transfer. That is, the function getLeadingEvents in
Algorithm 2 dominates the execution time, as it frequently
restarts the target app to validate the potential paths for a
candidate widget.

Fortunately, this function can be easily parallelized. Multiple
devices or emulators can be used to drastically cut down the
execution time by performing the reachability check in paral-
lel. For example, in our experiments, CRAFTDROID verifies
6.6 paths on average to transfer a source event. As a result, by
using 6 emulators, we can speed up the transfer approximately
6 times to reduce the average running time to 15 minutes.
We believe this is a reasonable amount of time to produce a
feature-based test, consisting of both inputs and oracles.

E. RQ4: Factors Impacting Efficiency
By analyzing efficiency of test transfer among different apps

and functionalities, we identified three factors that impact the
efficiency of CRAFTDROID: (1) length of tests, (2) transfer
success, and (3) size of target app. Intuitively, the longer
is a test, it takes more time to transfer its events. In fact,
the average test length and average transfer time are strongly
and positively correlated, as the Pearson correlation coefficient
between them is 0.81 in our experiments.

In addition, we observed that unsuccessful transfers take
more time compared to successful ones. That is, an unsuc-
cessful transfer often needs to examine and validate more
candidate widgets during transfer. In our experiments, the
average running time of the 149 successful transfers is 3, 577
seconds, while this number for the remaining 51 unsuccessful
transfers is 10, 613 seconds, meaning unsuccessful transfers
are 3x slower. Finally, the size of UITG is positively correlated
to the size of app—with correlation coefficient = 0.5. Since
CRAFTDROID heavily relies on the UITG to search and
validate the correct widget, it requires more time to transfer a
test for a larger target app.

F. Threats to Validity
The major external threat to validity of our results is the

generalization to other mobile apps and test cases. To mitigate
this threat, we collected 25 commercial and open-source apps
from Google Play and F-Droid under various categories. The

main internal threat to validity of the proposed approach is
the possible mistakes involved in our implementation and
experiments. We manually inspected all of our results to
increase our confidence in their correctness. The experimental
data is also publicly available for external inspection. In
terms of the construct validity, CRAFTDROID assumes that
the source test is transferable, i.e., the source and the target
apps share similar functionalities, which is not always true.
However, CRAFTDROID is not designed to generate test cases
for every possible or app-specific features. It aims at reducing
the manual effort of implementing tests for common or popular
functionalities across apps. Our evaluation shows that this
assumption does hold for apps under different categories.

VIII. RELATED WORK

1) Common functionalities across GUI-based apps: Several
prior works have discussed common functionalities across
desktop software [28], application-agnostic features across
mobile apps [15], and common GUI patterns used in web app
testing [19], [41]. Augusto [28] studies common functionalities
such as authentication and saving a file in desktop software
and proposes an automated technique to generate GUI tests
for them with pre-defined GUI structures and formal pre/post
conditions. Zaeem et al. [15] introduce several application-
agnostic UI interactions, which can serve as oracles for mobile
testing. Ermuth and Pradel [19] propose that sequences of low-
level UI events, which correspond to high level logical steps
can be inferred from test traces and to be further used for
test generation. Moreira et al. [41] develop a domain-specific
language to assist modeling and testing of UI patterns. Similar
to the above work, CRAFTDROID exploits the existence of
commonality across GUI-based apps. However, unlike them,
CRAFTDROID aims to generate feature-based tests for an app
from existing tests for apps within the same category (similar
features).

2) Semantic mapping of GUI widgets: In recent years, re-
searchers have proposed approaches for transferring or reusing
tests on different platforms. Rau et al. [26] proposed a tech-
nique for mapping of GUI widgets among web applications.
Behrang and Orso [25] proposed an approach to transfer test
cases by mapping the GUI widgets to support assessment
of mobile app coding assignments. Hu et al. [37] presented
a framework that leverages machine learning to synthesize
reusable UI tests for mobile apps. Qin et al. [42] recently
proposed to migrate GUI events for the different instances of
the same app running on different operating systems. Unlike
all prior work, CRAFTDROID is able to transfer test oracles. In
fact, [26], [25], and [42] only discuss GUI element mapping,
and [37] focuses on generating GUI tests from high-level,
manually written test cases. Additionally, CRAFTDROID uti-
lizes an unsupervised and data-driven model, i.e., Word2Vec,
to compute the similarity score between GUI widgets, hence
it is fully automated. On the other hand, [25] uses a lexical
database such as WordNet, and [37] adopts supervised machine
learning, both of which require human effort in database
maintenance or data annotation, for this purpose. Finally,
CRAFTDROID leverages both static and dynamic analyses to
transfer tests, while [25] only adopts dynamic analysis.

Concurrent to our development of CRAFTDROID, Behrang
and Orso developed APPTESTMIGRATOR [43] to migrate
GUI tests, including oracles, for mobile apps with similar
functionality. While at a high level both works adopt similar
techniques, e.g., using Word2Vec models and combination of
static and dynamic analyses, CRAFTDROID is different from
APPTESTMIGRATOR in terms of several algorithmic details,
such as the ways it leverages the statically extracted model
of app and computes similarity between GUI widgets. Since
both approaches have similar goals, an empirical comparison
between them in future may provide more insights into their
relative strengths and weaknesses.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented CRAFTDROID, a framework for
transferring tests across mobile apps through semantic map-
ping of actionable GUI widgets. We evaluated CRAFTDROID
using 25 real-world apps from 5 categories. Our experimental
results show that 75% of the attempted transfers are successful,
with 73% precision and 90% recall for the transferred GUI
and oracle events. We also discussed the factors impacting
the effectiveness and efficiency of CRAFTDROID, which can
be used as a guideline by researchers to improve test transfer
techniques.

For the future work, we are planning to conduct empirical
study with more apps and incorporate techniques such as
crowd sourcing to improve the effectiveness of CRAFTDROID.
We share the vision of Behrang and Orso [27] toward the
establishment of a centralized repository similar to App Store,
but for test cases. This Test Store will be able to generate
feature-based test cases for newly developed apps. The knowl-
edge mined from existing tests and apps, which we use for test
transfer, can also have applications beyond testing, such as
suggesting missing features and improving GUI layouts/flows
for new apps.

ACKNOWLEDGMENT

This work was supported in part by awards CCF-1618132
and CNS-1823262 from the National Science Foundation.

REFERENCES

[1] https://developer.android.com/studio/test/monkey.
[2] https://firebase.google.com/docs/test-lab/android/robo-ux-test.
[3] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and A. M.

Memon, “Mobiguitar: Automated model-based testing of mobile apps,”
IEEE Software, vol. 32, no. 5, pp. 53–59, Sept 2015.

[4] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 59:1–59:11.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393666

[5] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps
with minimal restart and approximate learning,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, ser. OOPSLA ’13.
New York, NY, USA: ACM, 2013, pp. 623–640. [Online]. Available:
http://doi.acm.org/10.1145/2509136.2509552

[6] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “Puma:
Programmable ui-automation for large-scale dynamic analysis of mobile
apps,” in Proceedings of the 12th Annual International Conference
on Mobile Systems, Applications, and Services, ser. MobiSys ’14.
New York, NY, USA: ACM, 2014, pp. 204–217. [Online]. Available:
http://doi.acm.org/10.1145/2594368.2594390

[7] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi, and
Y. Donmez, “Qbe: Qlearning-based exploration of android applications,”
in Software Testing, Verification and Validation (ICST), 2018 IEEE 11th
International Conference on. IEEE, 2018, pp. 105–115.

[8] C. S. Jensen, M. R. Prasad, and A. Møller, “Automated testing
with targeted event sequence generation,” in Proceedings of the 2013
International Symposium on Software Testing and Analysis, ser. ISSTA
2013. New York, NY, USA: ACM, 2013, pp. 67–77. [Online].
Available: http://doi.acm.org/10.1145/2483760.2483777

[9] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran,
and D. Poshyvanyk, “Mining android app usages for generating
actionable gui-based execution scenarios,” in Proceedings of the 12th
Working Conference on Mining Software Repositories, ser. MSR ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 111–122. [Online].
Available: http://dl.acm.org/citation.cfm?id=2820518.2820534

[10] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input
generation system for android apps,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2013. New York, NY, USA: ACM, 2013, pp. 224–234. [Online].
Available: http://doi.acm.org/10.1145/2491411.2491450

[11] R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented
evolutionary testing of android apps,” in Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2014. New York,
NY, USA: ACM, 2014, pp. 599–609. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635896

[12] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for android applications,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA
2016. New York, NY, USA: ACM, 2016, pp. 94–105. [Online].
Available: http://doi.acm.org/10.1145/2931037.2931054

[13] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek, “Sig-droid:
Automated system input generation for android applications,” in 2015
IEEE 26th International Symposium on Software Reliability Engineering
(ISSRE), Nov 2015, pp. 461–471.

[14] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for auto-
mated gui-model generation of mobile applications,” in Fundamental
Approaches to Software Engineering, V. Cortellessa and D. Varró, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 250–265.

[15] R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated generation
of oracles for testing user-interaction features of mobile apps,” in
Proceedings of the 2014 IEEE International Conference on Software
Testing, Verification, and Validation, ser. ICST ’14. Washington, DC,
USA: IEEE Computer Society, 2014, pp. 183–192. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2014.31

[16] H. Zhang and A. Rountev, “Analysis and testing of notifications in
android wear applications,” in Proceedings of the 39th International
Conference on Software Engineering, ser. ICSE ’17. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 347–357. [Online]. Available:
https://doi.org/10.1109/ICSE.2017.39

[17] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu,
Y. Liu, and Z. Su, “Guided, stochastic model-based gui testing of
android apps,” in Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2017. New
York, NY, USA: ACM, 2017, pp. 245–256. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106298

[18] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in Proceedings of
the 39th International Conference on Software Engineering, ser. ICSE
’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 643–653. [Online].
Available: https://doi.org/10.1109/ICSE.2017.65

[19] M. Ermuth and M. Pradel, “Monkey see, monkey do: Effective
generation of gui tests with inferred macro events,” in Proceedings of
the 25th International Symposium on Software Testing and Analysis,
ser. ISSTA 2016. New York, NY, USA: ACM, 2016, pp. 82–93.
[Online]. Available: http://doi.acm.org/10.1145/2931037.2931053

[20] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges
in mobile app development,” in 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement,
Baltimore, Maryland, USA, October 10-11, 2013, 2013, pp. 15–24.
[Online]. Available: https://doi.org/10.1109/ESEM.2013.9

[21] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo,
“Understanding the test automation culture of app developers,” in
Software Testing, Verification and Validation (ICST), 2015 IEEE 8th
International Conference on. IEEE, 2015, pp. 1–10.

[22] M. Linares-Vsquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk,
“How do developers test android applications?” in 2017 IEEE Interna-

tional Conference on Software Maintenance and Evolution (ICSME),
Sept 2017, pp. 613–622.

[23] P. Tonella, R. Tiella, and C. D. Nguyen, “Interpolated n-grams for
model based testing,” in Proceedings of the 36th International
Conference on Software Engineering, ser. ICSE 2014. New
York, NY, USA: ACM, 2014, pp. 562–572. [Online]. Available:
http://doi.acm.org/10.1145/2568225.2568242

[24] R. Jabbarvand and S. Malek, “µdroid: an energy-aware mutation testing
framework for android,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM, 2017, pp. 208–219.

[25] F. Behrang and A. Orso, “Test migration for efficient large-scale
assessment of mobile app coding assignments,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2018. New York, NY, USA: ACM, 2018, pp. 164–
175. [Online]. Available: http://doi.acm.org/10.1145/3213846.3213854

[26] A. Rau, J. Hotzkow, and A. Zeller, “Transferring tests across web
applications,” in Web Engineering, T. Mikkonen, R. Klamma, and
J. Hernández, Eds. Cham: Springer International Publishing, 2018,
pp. 50–64.

[27] F. Behrang and A. Orso, “Automated test migration for mobile
apps,” in Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, ser. ICSE ’18. New
York, NY, USA: ACM, 2018, pp. 384–385. [Online]. Available:
http://doi.acm.org/10.1145/3183440.3195019

[28] L. Mariani, M. Pezzè, and D. Zuddas, “Augusto: Exploiting popular
functionalities for the generation of semantic gui tests with oracles,”
in Proceedings of the 40th International Conference on Software
Engineering, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp. 280–
290. [Online]. Available: http://doi.acm.org/10.1145/3180155.3180162

[29] https://github.com/seal-hub/CraftDroid.
[30] https://play.google.com/store/apps/details?id=com.rainbowshops.
[31] https://play.google.com/store/apps/details?id=com.yelp.android.
[32] https://developer.android.com/studio/command-line/adb.html.
[33] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their
compositionality,” in Advances in Neural Information Processing
Systems 26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, Eds. Curran Associates, Inc., 2013, pp. 3111–
3119. [Online]. Available: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf

[34] https://github.com/appium/appium.
[35] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,

“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. IBM Press, 1999, pp. 13–. [Online].
Available: http://dl.acm.org/citation.cfm?id=781995.782008

[36] A. Rosenfeld, O. Kardashov, and O. Zang, “Automation of android
applications functional testing using machine learning activities
classification,” in Proceedings of the 5th International Conference on
Mobile Software Engineering and Systems, ser. MOBILESoft ’18.
New York, NY, USA: ACM, 2018, pp. 122–132. [Online]. Available:
http://doi.acm.org/10.1145/3197231.3197241

[37] G. Hu, L. Zhu, and J. Yang, “Appflow: Using machine learning to
synthesize robust, reusable ui tests,” in The ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), ser. ESEC/FSE 2018, 2018.

[38] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet? (e),” in Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), ser. ASE ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 429–440. [Online]. Available:
https://doi.org/10.1109/ASE.2015.89

[39] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in gui testing of android applications,” in Software En-
gineering (ICSE), 2016 IEEE/ACM 38th International Conference on.
IEEE, 2016, pp. 559–570.

[40] https://en.wikipedia.org/wiki/Pearson correlation coefficient.
[41] R. M. Moreira, A. C. Paiva, and A. Memon, “A pattern-based approach

for gui modeling and testing,” in Software Reliability Engineering
(ISSRE), 2013 IEEE 24th International Symposium on. IEEE, 2013,
pp. 288–297.

[42] X. Qin, H. Zhong, and X. Wang, “Testmig: Migrating gui test cases
from ios to android,” in Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2019. New York, NY, USA: ACM, 2019, pp. 284–295. [Online].
Available: http://doi.acm.org/10.1145/3293882.3330575

[43] F. Behrang and A. Orso, “Test migration between mobile apps with
similar functionality,” in Proceedings of the The 34th IEEE/ACM Inter-
national Conference on Automated Software Engineering, ser. ASE ’19,
2019. To appear.

