
ABSTRACT
Software systems that execute in embedded and pervasive envi-

ronments are frequently required to be self-monitoring, self-adapt-
ing, and self-healing. However, supporting these self-* capabilities
in pervasive environments creates a number of unique engineering
challenges. This paper first describes the challenges that we
believe to be the most significant based on our experience develop-
ing real-world pervasive software applications with self-* capabili-
ties. We then discuss each challenge in the context of four
strategies commonly employed in self-* systems: dynamic soft-
ware update, service discovery, transparent replication, and logical
mobility. Finally, we explain how each strategy is implemented in
our architectural middleware platform, Prism-MW.

1. INTRODUCTION
As software engineers have developed new technologies for

managing the ever-increasing complexity of designing and imple-
menting modern-day software systems, it has become apparent that
there is an equally pressing need for mechanisms that automate
and simplify the management and modification of distributed sys-
tems after they are deployed, i.e., during run-time. For example,
safety-critical embedded systems are expected to be robust in the
presence of failures that may occur throughout the computing
stack — that is, in the hardware, network, operating system, mid-
dleware, and application layers. This implies that such a system is
self-monitoring, self-diagnosing, self-adapting, and self-healing.
Systems with the capability to perform these types of transparent
and autonomic dynamic adaptations during run-time in response to
changes in the operating environment, non-functional require-
ments, or functional specification (e.g., via reconfiguration and/or
redeployment of software components) have been consequently
termed self-* systems [7].

Self-* capabilities are particularly essential for pervasive sys-
tems, which are frequently embedded and mobile [15]. Pervasive
systems are expected to operate in frequently changing contexts
[1]. For example, a pervasive system may have many users with
different tasks and goals, and the functionality of the system may
be required to adjust appropriately. Similarly, a pervasive system
may transition from one location to another during execution, and
find that certain computing resources (software services, hardware
devices, etc.) are no longer available. In response, the system must
discover and access new resources that provide the required ser-
vices. Moreover, it is highly desirable that pervasive systems
remain available even while run-time adaptations are occurring;
that is, software updates, evolution, and maintenance should not
cause system downtime.

Not surprisingly, the most promising strategies for realizing

these run-time capabilities are essentially the same as those that
have been successfully applied to the most difficult and complex
aspects of system construction and development: software archi-
tectures [3, 14] and component middleware [2, 13, 18]. Software
architecture codifies designs and patterns that enable the flexibility
and adaptability required by self-* systems so that they may be
effectively reused. Furthermore, the use of explicit components
and connectors furnishes the system designer with units that may
be easily manipulated during run-time adaptation. Component
middleware provides a complementary set of benefits. Middleware
platforms can encapsulate common algorithms and protocols
needed to implement the functions of self-* systems (context mon-
itoring, service discovery, etc.) in such a way as to insulate applica-
tion designers from this complexity and reuse proven solutions.

Although software architecture and component middleware
provide a solid foundation for implementing self-management in
pervasive systems, numerous research and development challenges
remain. Section 2 enumerates and discusses the challenges we
believe to be the most significant based on our experiences engi-
neering self-* pervasive systems over the past decade. Section 3
proposes several candidate solutions that are the subject of our
ongoing research and are being evaluated by a third-party collabo-
rator in the context of industrial-scale pervasive applications. Sec-
tion 4 concludes the paper with a summary of our insights and
positions on the future of research in this area.

2. CHALLENGES
The development of software for pervasive environments poses

special challenges to programmers, engineers, and architects.
When self-* capabilities are demanded, these challenges become
even more complex and nuanced. Through collaborations with
industry partners (principally Bosch Research and Technology
Center), we have been designing and implementing real-world per-
vasive software applications with self-* capabilities — as well as
the development tools and run-time infrastructure that support
those applications — over the last several years. As a result of this
experience, we have identified several important engineering prob-
lems that arise at the intersection of self-* systems and pervasive
systems, which are discussed in this section. Additionally, the spe-
cific relationship of software architecture and middleware to each
challenge is described.

2.1. Resource Utilization
As noted in Section 1, pervasive systems are nearly always

embedded and are frequently mobile. As a result, pervasive sys-
tems are generally resource-constrained, which demands a high
level of efficient resource utilization. Therefore, the self-* capabil-
ities of pervasive systems are subject to these constraints. How-

Self-* Software Architectures and Component Middleware
in Pervasive Environments

George Edwards1 Chiyoung Seo1 Daniel Popescu1 Sam Malek2 Nenad Medvidovic1

1Computer Science Department 
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.

{cseo, gedwards, neno}@usc.edu

2Department of Computer Science
George Mason University

Fairfax, VA 22030-4444 U.S.A.

smalek@gmu.edu



ever, many self-* functions and services (such as system health
monitoring and data replication management), are relatively
expensive in terms of computational resources such as processing,
memory, and especially network bandwidth. Obviously, this results
in a significant conflict.

To illustrate this problem more clearly, consider a pervasive
application, such as a smart home, in which numerous sensors col-
lect data about the environment and transmit it to hubs where it is
logged, aggregated, and analyzed. In such as system, where a large
amount of sensor data is being exchanged over a wireless network,
network bandwidth becomes an extremely scarce resource. Now
consider the consequences of supporting a self-* capability,
namely, automatic recovery from hub failure, in this environment.
First, hubs must interact to monitor each other’s status and health.
Second, services running on the hubs must be replicated to ensure
that there is no single point of failure; again, this likely requires
interaction over the wireless network to keep replicated resources
synchronized. Depending on the specific application characteris-
tics, these additional sources of network traffic overhead may be
significant, and in some cases, prohibitive.

Software architecture and middleware have significant impacts
on resource utilization concerns. Software architecture provides
developers with abstractions that enable the construction of high-
level design models that can be analyzed with respect to resource
utilization early in the development cycle. Middleware services
encapsulate highly efficient algorithms and design patterns that are
generally superior to the ad-hoc solutions implemented by applica-
tion programmers. On the other hand, middleware adds an addi-
tional layer of abstraction to the computing stack, which incurs
additional overhead. 

2.2. Real-Time Concerns
Pervasive systems must continually interact with the physical

world, which implies some level of real-time requirement. The
performance concerns related to pervasive systems become even
more pronounced when requirements for self-* capabilities exist.
First, if software components are updated or modified dynami-
cally, the system must verify that the changes will not result in vio-
lations to real-time constraints. Second, the system cannot degrade
the level of functionality or performance provided while self-adap-
tation is taking place. Both of these considerations may require
that the system’s configuration (e.g., the allocation of threads or
network bandwidth to components) be altered either temporarily
(while updates are being effected) or semi-permanently (until
another dynamic adaptation takes place).

To demonstrate this complex situation, we return to the smart-
home scenario described in Subsection 2.1. To accommodate real-
time requirements along with automatic failure recovery, the active
model of replication [5] must be used. With active replication,
requests to software services are transmitted to all replicas, which
each process the request independently and reply to it. This allows
a request which caused a failure in one or more replicas to exhibit
the same end-to-end latency as a request which did not cause a fail-
ure. In contrast, in the passive model of replication, requests are
transmitted to only a primary provider of a service, which then
propagates updates — usually lazily — to replicas. When a failure
occurs in the primary service provider, latency increases tempo-
rarily while a backup is promoted. However, it is easy to see that
active replication incurs relatively high network overheads, (every

request is transmitted to every replica and responded to), exacer-
bating the resource utilization problem. Similarly, with fewer repli-
cas providing a service, we may need to increase the priority of
threads executing the service in order to achieve acceptable perfor-
mance.

Software architectures and middleware are commonly
employed in the development of real-time systems, including per-
vasive, self-* systems. Architectural models are necessary to deter-
mine whether a given design will fulfill real-time requirements so
that problems can be addressed before significant resources are
expended on implementation. Middleware is experiencing rapid
adoption in the real-time domain, especially in large-scale systems,
because it provides the ability to configure and ensure many qual-
ity-of-service properties. For example, real-time middleware plat-
forms implement management capabilities for priority-based
thread allocation and message queuing.

2.3. Heterogeneity
A high degree of heterogeneity in a computing environment

tends to encourage brittle system implementations. When applica-
tion components must support particular protocols, target non-
standard or proprietary virtual machines, and drive specialized
hardware devices, they quickly lose portability, flexibility, and
modifiability. Unfortunately, this is exactly the setting in which
most pervasive applications operate. First, as pervasive applica-
tions attempt to integrate seamlessly into their environments, they
tend to have unique user interfaces and displays [17]. Second, per-
vasive applications commonly rely on networking protocols and
hardware other than the ubiquitous “TCP/IP over Ethernet”. For
example, they may use infrared networking or the Controller Area
Network (CAN) protocol [4], common in the automotive domain.
Aside from user interfaces and network technologies, there are
numerous other examples of extreme heterogeneity in pervasive
systems. Of course, the portability, flexibility, and modifiability
that are difficult to achieve under these conditions are, at the same
time, requisites for self-* systems.

Again we illustrate this problem through a simple example.
Suppose the smart home application described above includes a set
of wearable devices with control and management functionality.
Additionally, assume that the system hubs are connected to the
Internet, and periodically check for, download, and install software
updates. The software developers can, consequently, enhance or
upgrade the capabilities on one of the hubs relatively easily. How-
ever, providing access to these new features via the mobile, wear-
able user interface presents a major problem: the device was only
designed to handle certain functionality. Thus, the ability of the
system to self-upgrade and self-evolve is severely hampered.

Software architecture addresses the problem of heterogeneity
by providing mechanisms for creating flexible and modifiable sys-
tems. For example, product-line architectures are composed of
reusable components that can be deployed in different configura-
tions without significant modification. In this way, platform-
dependent architectural elements are encapsulated and can be sub-
stituted as required without impacting core application functional-
ity. Middleware greatly simplifies software development for
heterogeneous environments by creating an abstraction layer
between application components and low-level operating systems,
network protocols, and hardware.



2.4. Scale
Pervasive systems may include a large number (potentially tens

of thousands) of distributed components or subsystems. This scale
of participants is especially challenging for self-* systems because
(1) changes in the system’s environment, users, and requirements
may become extremely frequent (even continual), (2) self-adapta-
tion may be required in many components or subsystems simulta-
neously, and (3) adaptations may take relatively longer to
complete. Self-monitoring of the overall system state, configura-
tion, and architecture becomes hard in the presence of this high
level of dynamism. Without accurate self-monitoring, many other
self-* capabilities (such as self-tuning and self-healing) are diffi-
cult or impossible. Additionally, pervasive systems may vary
widely in the size and complexity of their individual subcompo-
nents, which impacts many self-* activities. For example, if com-
ponents may migrate from one host to another, the costs associated
with the transfer will be greater for a large component than a small
component. Similarly, a complex component is likely to include
far more state information than a relatively simple component;
dynamically updating the configuration or maintaining synchroni-
zation between replicas will therefore also incur a higher cost.

In a scenario in which thousands of smart homes in a city com-
municate with a security monitoring system, self-* capabilities
may be limited due to the number of participants. Some smart
homes could execute a self-adaptation that impacts thousands of
other smart homes, which in turn initiate their own self-adaptation.
If not managed carefully, a pattern in which smart-homes are con-
tinually adapting to the changes of other participants could
develop. Hence, solutions for scalable self-* procedures are
needed.

Software architectures aid the development of large-scale sys-
tems by defining patterns of composition and interaction, or archi-
tectural styles, that scale well. Architectural styles constrain the
ways that components can interact with each other and the run-
time infrastructure in order to promote scalability. For example,
peer-to-peer architectures have been shown to scale very well in
practice. Middleware is important for large-scale systems because
it simplifies application configuration management and provides
functionality, such as event filtering in publish-subscribe services
[6], that reduces overheads.

2.5. Decentralization
Many of the envisioned benefits of pervasive systems result

from an expectation of decentralization. The software components
of pervasive systems, rather than being organized and controlled in
a top-down manner, will discover and interact with external ser-
vices and resources in an ad-hoc fashion. However, this has impor-
tant consequences for self-* systems. In a decentralized setting,
individual components generally do not have access to a global
view or representation of the architecture or configuration of the
system. This makes it extremely difficult to predict how adapta-
tions in one part of the system could impact the functionality or
quality-of-service (QoS) observed in other parts of the system. In
other words, without a single controlling entity, the coordination of
adaptations among individual components or subsystems becomes
a major design consideration, with cross-cutting impacts on
numerous functional and non-functional properties.

In the smart home example, decentralization may become a
factor if the home software wishes to interact with devices (elec-

tronics, appliances, vehicles, etc.) that are not under its manage-
ment. For example, the home might wish to provide services to or
access services on automobiles that are periodically located in the
garage. The home does not know what vehicles may appear or
what the internal software architectures of those vehicles are, and it
does not have the ability or authority to adapt or modify the vehicle
software. Therefore, any self-adaptation performed by either the
smart home or the vehicle could have unforeseen consequences on
their ability to effectively utilize each other’s resources.

Decentralization poses problems for the standard approach to
software architecture. Constructing analyzable and intuitive mod-
els of these highly dynamic and unpredictable systems is still an
area of active research. Middleware, on the other hand, is already a
crucial element in decentralized systems because it provides many
required services, such as transparent resource discovery.

2.6. Safety-Criticality
Pervasive systems have the potential to become increasingly

safety-critical in the future. However, safety-criticality can pose a
problem for self-* systems because adaptation and evolution can
result in an unsafe state. For example, components that are deemed
to be safety-critical are subjected to specific, rigorous standards
during coding, testing, and integration so that they may be certified
by safety authorities. Also, safety-critical systems cannot experi-
ence downtime during self-adaptation. Thus, the update of these
components during run-time will likely be precluded. On the other
hand, dynamic adaptation can also be utilized to improve the
dependability of safety-critical pervasive systems. For example, a
system could dynamically suspend non-critical services in order to
preserve resources for critical services when some resources have
failed.

A smart home application is likely to have at least some safety-
critical functions. The components that implement these functions,
such as fire detection, must be either insulated from dynamic adap-
tations that take place elsewhere in the system, or the dynamic
adaptation must be carefully constrained and limited. For example,
if the fire alarm system relies on certain network links and expects
a minimum bandwidth allocation and access priority, modifica-
tions to any other components utilizing those links must be ensured
to not cause oversaturation of the bandwidth or otherwise preempt
the fire alarm system.

Software architectures play in an important role in the develop-
ment of safety-critical systems. Architectural models are often
employed during safety certification activities to ensure that non-
safety-critical components and subsystems cannot interfere with
the function of safety-critical components. Furthermore, architec-
tures provide the basis for model-checking tools that verify that the
system cannot reach an unsafe state. Middleware, however, is still
used only selectively in safety-critical systems. Most widely-used
middleware platforms are not certified for safety (e.g., they were
not developed using the stringent coding practices required by
safety standards).

3. PROMISING SOLUTION: DYNAMIC
ADAPTATION OF ARCHITECTURAL MID-
DLEWARE

While standard approaches to software architecture and mid-
dleware each address certain aspects of the challenges outlined in
Section 2, these approaches must be refined and enhanced in order



to be applicable to self-* systems. This section discusses how we
address the challenges within four capabilities — dynamic soft-
ware update, service discovery, transparent replication, and logical
mobility — that are commonly employed in self-* systems. Table
1 shows which challenges primarily impact each self-* capability.
For each capability, we first describe its relationship to the chal-
lenges listed in the table. We then explain how each capability is
supported by leveraging our lightweight middleware platform,
Prism-MW [8], which enables architecture-based development of
distributed applications in pervasive environments.

3.1. Dynamic Software Update
Since pervasive software systems may need to modify their

functionality or quality-of-service characteristics due to changing
user requirements or operating environments, they often rely on a
dynamic and transparent software update mechanism (e.g., replac-
ing an existing component with a newer version). However, per-
forming software updates at run-time can violate real-time
constraints if it degrades the system’s functionality or performance
even temporarily. In addition, there are many heterogeneous hard-
ware platforms in pervasive domains, some of which do not have
convenient I/O interfaces (e.g., CD-ROM, monitor, keyboard, etc.)
that can be used for updating software. Finally, since pervasive
systems may consist of a large number of components distributed
over a network, they need an efficient and scalable way of coordi-
nating and controlling software updates.

Unlike many traditional middleware platforms, which support
software upgrade at the granularity of executable software images
or patches, the software update mechanism in Prism-MW operates
at the level of architectural components and connectors. Figure 1
depicts our overall approach to supporting the initial deployment
and run-time update of software components. DeSi [9], our inter-
active deployment and analysis environment, provides the ability
to model the system’s deployment architecture (i.e., allocation of
the system’s software components on its hardware hosts), and vis-
ualize and assess the architecture. DeSi also allows an engineer to
replace the current version of a component with a new version, add
a new component to the system, or remove an existing component
from the system at run-time. An Admin component is a middle-
ware-level component that is responsible for instantiation, addi-
tion, upgrade, and removal of components and connectors by
interacting with DeSi. For example, if an engineer replaces the cur-
rent version of a component, Comp A (shown in Figure 1) with a
newer version using DeSi’s management interface, DeSi will then
transmit the new component implementation to the Admin compo-

nent running on Host 1. The Admin then transfers the old compo-
nent’s state information to the new version and replaces the old
component with the new version only when the old component is
in an idle state. Similarly, if the Admin receives a command from
DeSi to remove one of its local components, it waits until the com-
ponent is idle to perform the operation.

Since Prism-MW updates a component only when it is idle, it
does not incur any degradation of system functionality or require
shutdown. This is usually sufficient to satisfy soft-real time con-
straints; if hard real-time constraints are present, replication must
be used along with dynamic update to ensure that quality-of-ser-
vice is not compromised. Because DeSi distributes software
updates over the network, our solution can be employed with per-
vasive devices that do not have standard I/O interfaces. DeSi auto-
mates most of the update process, allowing it to efficiently support
the update of a large-scale pervasive system.

3.2. Service Discovery
Service discovery in embedded and pervasive environments is

required to support self-* capabilities because (1) a service pro-
vider’s location may not be known at design-time; (2) a service
provider may become unavailable due to hardware, software, or
network failures; and (3) the location of a service provider may
change at run-time (i.e., via physical or logical mobility). In this
domain, discovery of external services at run-time must be sup-
ported in a decentralized manner — service lookup should not be
performed and managed by a single central server, but instead
facilitated via interaction with peer hosts. In addition, since there
might be a large number of services in a large-scale software sys-
tem, service discovery must be performed efficiently.

To support dynamic service discovery, Prism-MW provides a
middleware-level component called SDEngine (shown in Figure
2). A SDEngine on each host maintains a database about all the
services provided by the components running on that host, and
interacts with other SDEngines to process service lookup requests.
Prism-MW also provides a middleware-level connector, called
SDConnector (shown in Figure 2), which is responsible for routing
service requests to the appropriate service provider. Service lookup

Table 1: Addressed Challenges
Capability Challenge
Dynamic Update • Real-Time Concerns

• Heterogeneity
• Scale

Service Discovery • Decentralization
• Scale

Transparent Replication • Real-Time Concerns
• Safety-Criticality 
• Resource Utilization

Logical Mobility • Real-Time Concerns
• Safety-Criticality
• Heterogeneity

Figure 1. Dynamic software update support at runtime.

Host 1

SD 
Engine

SD 
Engine

DeSi Adapter Arch.

Host 2

AdminAdmin

AdminAdmin

EffectorEffector
Repository

Comp BComp B

Comp AComp A

Comp C Comp C 

Connector

U
nicastC

onnector

Com Com

Com

SD 
Engine

SD 
Engine

DeSi
Comp DComp D

Connector



and invocation is performed by the interactions between SDCon-
nectors and SDEngines.

Figure 2 shows a small fragment of a smart home application
that illustrates Prism-MW’s service discovery support. In this
example, the Global Logging Service (GLS) component running
on Host 2 records and maintains messages that client components
have received from sensors. For example, suppose Client 3 on
Host 3 receives an event from a sensor and wants to record the
event in persistent storage via the GLS component running on Host
2. Client 3 sends an event that includes the data to be logged to its
local SDConnector. If the SDConnector does not have any location
information about the GLS in its routing table, it sends a lookup
request to its local SDEngine, which then interacts with other
SDEngines to determine the GLS location. Once Host 3’s
SDEngine receives the location information, it connects the local
SDConnector to Host 2’s SDConnector as shown in Figure 2. Host
3’s SDConnector then sends the request from Client 3 to the GLS
via the connection with Host 2’s SDConnector. Future invocations
of the GLS by Client 3 (or other clients on Host 3) do not require
the above lookup steps. For interested readers, a more detailed
explanation of Prism-MW’s service discovery mechanism is given
in [16].

As described above, our solution processes service lookup
requests in an ad-hoc and decentralized manner via SDEngines,
instead of requiring a single central server to manage service loca-
tion information. Moreover, our approach scales well because the
whole system’s overhead due to dynamic service discovery is dis-
tributed and balanced among the system’s constituent hosts.

3.3. Transparent Replication
In pervasive environments, the services provided by a compo-

nent can become unavailable due to host or network failures, lack
of resources (e.g., battery power), or software errors. Therefore, to
provide continuous services, support for failover facilities through
the replication of service providers is necessary. However, the rep-
lication of software components can incur large resource-usage
overheads (e.g., CPU, network, and battery power) because all rep-
licas must maintain a synchronized state. At the same time, repli-

cation is used to ensure that failures and software updates to not
reduce QoS in real-time systems. Therefore, a service replication
solution for pervasive environments must be efficient in resource
usage while still enabling fast recovery from failure.

Prism-MW’s component replication strategy is based on the
active replication model (discussed in Section 2.2), as the target
domain frequently involves real-time considerations. Figure 3
shows Prism-MW’s replication synchronization and failover strat-
egies. We developed a middleware-level connector, called FTCon-
nector, on top of Prism-MW. A FTConnector delivers service
requests to both the primary provider of a service and all backup
replicas. Each FTConnector is placed between a service provider
(e.g., the GLS component on Host 2) and its local SDConnector as
shown in Figure 3. SDEngines periodically exchange heartbeat
messages; each SDEngine checks these heartbeat messages to
detect when one of its neighbors has experienced a failure. When a
SDEngine determines that a neighboring host has failed, if it has a
backup replica for one or more primary service providers on the
failed host, it promotes the backup replica to the primary role and
informs all other SDEngines of this promotion. For a more detailed
explanation of Prism-MW’s transparent replication implementa-
tion, refer to our previous work [16] on supporting fault tolerance
in pervasive environments.

Typically, one of the main design considerations in service rep-
lication is guaranteeing that all replicas receive and process
requests in the same order. Otherwise, some replicas could end up
in an inconsistent state. Previous solutions [11,12] rely on reliable
totally-ordered multicast protocols such as Totem [10], which can
incur large overheads. In Prism-MW, on the other hand, each
request event is first routed to the FTConnector associated with a
service, and then forwarded to both a primary service provider and
its backups. Therefore, all replicas receive the same sequence of
request events. This approach results in reduced network and pro-
cessing overhead for coordination and synchronization, which is
crucial in resource-constrained environments.

3.4. Logical Mobility
Logical mobility is the capacity for software components to

migrate from host-to-host after initial deployment. In some cases,

Figure 2. Dynamic service discovery support at runtime.

Host 2
Global 

Logging 
Service

Host 3

Client 3Client 2

Host 1

Client 1 SDEngine

SDEngine SDEngine

Legend:

Request port
Reply port

Distribution 
Request Port
Distribution 
Reply Port

SDConnector
SDHandler

SDConnector SDConnector

Figure 3. Fault tolerance support in the MIDAS system.

Host 2Global 
Logging 
Service

Host 3

Client 3Client 2

Host 1

Client 1

Local 
Logging 
Service 

(backup)

SDEngine

SDEngine SDEngine

Legend:

Request port
Reply port

Distribution 
Request Port
Distribution 
Reply Port

SDConnector

SDConnector SDConnector

FTConnector



engineers cannot determine completely the non-functional proper-
ties of a software system or its target environment prior to the sys-
tem’s initial deployment. As a result, the system’s initial
deployment architecture (i.e., allocation of software components to
hardware hosts) may be unsatisfactory within the context of the
actual running system. This is of particular concern in embedded
and pervasive systems, which are affected by unpredictable move-
ment of target hosts and fluctuations in the quality of wireless net-
work links. Therefore, the system’s deployment architecture may
need to be altered by redeploying some components at runtime.
However, logical mobility can violate real-time constraints if ser-
vice downtime occurs during redeployment. Moreover, if the sys-
tem consists of a large number of components, determining an
optimal deployment architecture is computationally expensive (the
computational complexity increases exponentially with the num-
bers of components and hosts [9]). Finally, some safety-critical
components should be precluded from logical mobility.

Prism-MW supports logical mobility through the following
process. Monitoring facilities implemented in each Admin compo-
nent gather data about the run-time properties and behaviors of
software components (e.g., resource utilization patterns) and the
computing environment (e.g., network bandwidth fluctuations),
and transmit this data to DeSi, which provides system visualiza-
tions and populates a deployment model. At this point, one of sev-
eral efficient optimization algorithms (e.g., greedy, genetic
algorithms) provided by DeSi can be selected and executed to
improve the system’s deployment architecture. Finally, the sys-
tem’s new deployment architecture is transmitted back to the
Admin components, which coordinate the redeployment by inter-
acting with each other. DeSi also allows an engineer to specify a
set of constraints on the system, which are then used as constraint
inputs to the optimization algorithms provided.

As Admin components only perform the redeployment of a
component when it is in an idle mode, our solution produces little
downtime and can still satisfy soft real-time constraints. By using
efficient approximation algorithms for determining the system’s
new deployment architecture at runtime, our solution still exhibits
good performance for large-scale systems (although it cannot guar-
antee that it will find an optimal deployment architecture [9]).
Using system constraints to specify a set of components that are
precluded from redeployment easily prohibits the dynamic adapta-
tion of safety-critical components.

4. CONCLUSIONS
This paper described five significant challenges that arise in

supporting self-* capabilities in pervasive environments. This
paper also demonstrated how a middleware platform can provide
four self-* capabilities — dynamic software update, service dis-
covery, transparent replication, and logical mobility — in a perva-
sive environment. All four capabilities rely on the use of explicit
architectural elements in the middleware platform. For example,
software components serve as the units on which dynamic update
and logical mobility operations execute. Similarly, explicit soft-
ware connectors are an integral part of our service discovery and
transparent replication solutions. Consequently, we believe that
software architecture represents a promising approach to address-
ing the challenges of pervasive systems, and will continue to be a
focus of ongoing research in this domain.

5. REFERENCES
[1] Abowd, G.D. Software Engineering Issues for Ubiquitous 

Computing. In Proc. of the 21st Intl. Conference on Software 
Engineering (ICSE ‘99), Los Angeles, CA, 1999.

[2] Castaldi, M., et al. A Lightweight Infrastructure for Reconfig-
uring Applications. In Proc. of the 11th Intl. Workshop on 
Software Configuration Management, Berlin, 2003.

[3] Cheng, S., et al. Software Architecture-based Adaptation for 
Pervasive Systems. In Proc. of the Intl. Conference on Archi-
tecture of Computing Systems: Trends in Network and Perva-
sive Computing (ARCS ‘02), April 2002.

[4] Controller Area Network (CAN), http://www.can-cia.org/.
[5] Coulouris, G., Dollimore, J. and Kindberg, T. Distributed Sys-

tems: Concepts and Design. Addison-Wesley, 2001.
[6] Edwards, G., et al. Integrating Publisher/Subscriber Services 

in Component Middleware for Distributed Real-time and 
Embedded Systems. In Proc. of the 42nd Annual ACM South-
east Conference, April 2004.

[7] Kramer, J. and Magee, J. Self-Managed Systems: an Archi-
tectural Challenge. 2007 Future of Software Engineering. 
IEEE Computer Society, 2007.

[8] Malek, S., et al. A Style-Aware Architectural Middleware for 
Resource Constrained, Distributed Systems. IEEE Transac-
tions on Software Engineering. March 2005.

[9] Mikic-Rakic, M., et al. A Tailorable Environment for Assess-
ing the Quality of Deployment Architectures in Highly Dis-
tributed Settings. 2nd Int’l. Working Conf. on Component 
Deployment (CD 2004), Edinburgh, Scotland, May 2004.

[10] Moser, L. E., et al. Totem: A fault-tolerant multicast group 
communication system. Comms. of the ACM. April 1996.

[11] Narasimhan, P., et al. State Synchronization and Recovery for 
Strongly Consistent Replicated CORBA Objects. DSN 2001, 
July 2001.

[12] Narasimhan, P., et al., Eternal-A Component-based Frame-
work for Transparent Fault-Tolerant CORBA. Software Prac-
tice and Experience, Vol. 32, pp. 771-788, 2002.

[13] Norris, B., et al. Middleware for Dynamic Adaptation of 
Component Applications. In Proceedings of the IFIP WoCo9 
Conference, July 17-21, 2006.

[14] Oreizy, P., et al. An Architecture-Based Approach to Self-
Adaptive Software. IEEE Intelligent Systems, May/June ‘99.

[15] Satyanarayanan, M. Pervasive Computing: Vision and Chal-
lenges. IEEE Personal Communications, August 2001.

[16] Seo, C., et al. Exploring the Role of Software Architecture in 
Dynamic and Fault Tolerant Pervasive Systems. In Proc. of 
the Workshop on Software Engineering of Pervasive Comput-
ing Applications, Systems and Environments (SEPCASE), 
MN, May 2007.

[17] Smailagic, A. An evaluation of audio-centric CMU wearable 
computers. Mobile Networks and Applications, vol. 4, no. 1, 
1999.

[18] Wang, N., et al. Towards a Reflective Middleware Framework 
for QoS-enabled CORBA Component Model Applications. 
IEEE Distributed Systems Online, July, 2001.

[19] Weiser, M. The Computer for the 21st Century. Scientific 
American, September 1991.


