
IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 3, AUGUST 2012 425

A Middleware Platform for Providing Mobile and
Embedded Computing Instruction to Software

Engineering Students
Chris A. Mattmann, Senior Member, IEEE, Nenad Medvidović, Sam Malek, Associate Member, IEEE,

George Edwards, Member, IEEE, and Somo Banerjee

Abstract—As embedded software systems have grown in
number, complexity, and importance in the modern world, a
corresponding need to teach computer science students how to
effectively engineer such systems has arisen. Embedded software
systems, such as those that control cell phones, aircraft, and
medical equipment, are subject to requirements and constraints
that are significantly different from those encountered in the stan-
dard desktop computing environment. For example, embedded
systems must frequently address challenges that arise from severe
resource restrictions (e.g., low memory and network bandwidth),
heterogeneous hardware platforms, and safety-critical operations.
Software architecture has been shown to be an effective means
for coping with such issues, yet traditional courses on embedded
software development rarely focus on software architectural
abstractions. Instead, they have concentrated on lower-level issues
such as programming languages and hardware interfaces. Since
2005 at the University of Southern California, Los Angeles, a
unique course has been developed that affords students the op-
portunity to gain experience and insights on developing software
architectures for embedded systems. At the heart of the course
is a middleware platform, Prism-MW, that helps students use
software architectural principles to construct embedded systems
and understand the important challenges of the embedded systems
domain. This paper describes this course through the explanation
and evaluation of four years of class projects, weaving together
the course, the middleware platform, and the relationship of each
to three key pedagogical goals that drove the formulation of the
course curriculum.

Index Terms—Glide, mobile computing education, Prism-MW,
software architecture, software engineering.

Manuscript received July 12, 2011; revised October 07, 2011; accepted De-
cember 01, 2011. Date of publication January 27, 2012; date of current version
July 31, 2012. This material is based upon work supported by the National Sci-
ence Foundation under Grants CCR-9985441 and ITR-0312780. The effort was
also supported by the Jet Propulsion Laboratory, managed by the California In-
stitute of Technology under a contract from the National Aeronautics and Space
Administration.
C. A. Mattmann is with the Jet Propulsion Laboratory, California Institute of

Technology, Pasadena, CA 91109 USA, and also with the Instrument and Sci-
ence Data Systems Section, NASA Jet Propulsion Laboratory, and the Computer
Science Department, University of Southern California, Los Angeles, CA 90089
USA (e-mail: mattmann@jpl.nasa.gov; chris.a.mattmann@jpl.nasa.gov).
N. Medvidović is with the Computer Science Department, University of

Southern California, Los Angeles, CA 90089 USA (e-mail: neno@usc.edu).
S. Malek is with the Department of Computer Science, Volgenau School of IT

and Engineering, George Mason University, Fairfax, VA 22030 USA (e-mail:
smalek@gmu.edu).
G. Edwards is with Blue Cell Software, Los Angeles, CA 90069USA (e-mail:

george@bluecellsoftware.com).8359 Fountain Avenue
S. Banerjee is with Software Engineering, CarsDirect.com, El Segundo, CA

90245 USA (e-mail: s.s.banerjee@gmail.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TE.2012.2182998

I. INTRODUCTION

I N THE first decade of the 21st century, the world of
computing has moved from large, stationary, desktop ma-

chines to small, mobile, handheld, and embedded devices. The
methods, techniques, and tools for developing software systems
that were successfully applied in the former scenario are not as
readily applicable in the latter. Software systems running on
networks of embedded devices must necessarily exhibit prop-
erties that are not always required of more traditional systems:
near-optimal performance, robustness, distribution, decen-
tralization, dynamism, and mobility. Consequently, software
engineering for embedded systems is distinctly different from
generalized software engineering, and the subject demands
specialized courses to be given adequate treatment.
Since 2005, a class titled “Software Engineering for Em-

bedded Systems” has been taught at the University of Southern
California (USC), Los Angeles, that examines the key proper-
ties of software systems in the embedded, resource-constrained,
mobile, and highly distributed world; assesses the applicability
of mainstream software engineering methods and techniques
(namely, software architecture and middleware) to the em-
bedded systems domain; and exposes students to real-world
embedded technology and cutting-edge research in the field.
While not the primary focus of the class, some enabling ad-
vances in other areas (e.g., embedded, real-time operating
systems, wireless networking, the Internet) are also studied
from a software application development perspective.
A crucial element of the course is a class project that gives

students hands-on experience in engineering software for em-
bedded systems, either through implementing software devel-
opment infrastructure or developing applications in this impor-
tant domain. The key enabler of the project is a middleware
platform for mobile and embedded computing instruction. The
platform, Prism-MW [1], has several important characteristics
that make it possible to achieve three pedagogical goals around
which the class as a whole is centered. The first goal (G1) is for
students to understand and appreciate the unique requirements,
constraints, and challenges of the embedded systems domain.
The second goal is for students to understand: 1) how and when
to apply generalized software engineering methodologies and
tools to embedded systems (G2a); and 2) how and when to apply
engineering techniques that are specialized for embedded sys-
tems (G2b). The third goal (G3) is to provide students hands-on
experience with emerging examples of embedded technology.

0018-9359/$31.00 © 2012 IEEE

426 IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 3, AUGUST 2012

TABLE I
PEDAGOGICAL GOALS FOR PRISM-MW AND FOR OUR COURSE

Prism-MW allows these goals to be achieved more effectively
than would otherwise be possible, given the relatively limited
time and resources of a one-semester university course. The
goals are summarized in Table I.
The decision to use Prism-MW as an instructional tool was

based on two key insights: First, software architecture is an ef-
fective means of embedded system design; second, middleware
is an effective means for embedded system implementation.
Prism-MW is an extensible middleware platform that supports
the efficient implementation of software architectures in the
embedded and mobile setting. To achieve this, Prism-MW is
specialized in a number of important ways. First, Prism-MW
addresses the specific challenges posed by embedded systems
engineering. For example, Prism-MW abstracts heterogeneous
hardware interfaces and is exceptionally lightweight. Second,
Prism-MW is both extensible and easy to learn, which makes it
particularly well suited to the classroom environment. Finally,
and perhaps most importantly, Prism-MW provides program-
ming language-level constructs for implementing software
architecture-level concepts such as component, connector,
configuration, and event (similar to other frameworks such
as ArchJava [2] as will be discussed in Section II-D). This
last property allows students to rapidly implement software
architectures for embedded systems, thereby gaining hands-on
experience without getting mired in extraneous issues. Fur-
thermore, students are expected to modify and enhance the
Prism-MW platform itself to successfully complete the class
project, which exposes them to an even wider range of devel-
opment challenges.
The approach taken by this course stands in stark contrast

to the typical embedded systems engineering course found in
many universities. Such a course regularly focuses on very
low-level issues (e.g., code optimization) rather than high-level
strategies (e.g., how architectures are developed, evaluated,
implemented, and evolved). By focusing on the principles of
software architecture, the middleware platform described here
provides a unique opportunity for students to gain experience
with, and insights into, the process of developing software for
embedded devices, from design through implementation. Ul-
timately, the Prism-MW middleware platform has been found
to be invaluable in students’ development into effective em-
bedded software systems engineers. In this paper, the authors

describe their experience teaching the class over a five-year
period, focusing on the middleware implementation platform
as the key enabler of their novel approach to this difficult topic,
and on three unique years of course projects that demonstrate
Prism-MW’s unique ability to provide effective architectural
training in the embedded software systems domain.
The rest of the paper is organized as follows. Section II dis-

cusses relevant related work and background on software engi-
neering education for embedded systems. Section III discusses
in detail the objectives of Prism-MW, as stated briefly above.
Section IV describes the three years of class projects. Section V
concludes the paper with final thoughts and insights.

II. BACKGROUND AND RELATED WORK

This section begins with background describing the type
(graduate versus undergraduate) and number of students, as
well as other key properties of the course. Then follows discus-
sion of four academic areas that are most related to the teaching
experience using Prism-MW. First, relevant courses in the
general area of Software Engineering Education are identified,
and their curriculum and pedagogical goals contrasted with that
of the authors’ course at USC. Second, some related courses
are surveyed, which instruct students in mobile technology.
Then, courses are identified, which cover design and imple-
mentation aspects of embedded systems software, and finally
a similar architectural middleware implementation technology
is mentioned.

A. Software Engineering for Embedded Systems at USC

The USC course “CS589: Software Engineering for Em-
bedded Systems” is a lecture-style course available to graduate
students at any level, with an average enrollment between
2005–2010 of 24 students. Most graduate students take the
course in their first or second years.
The course requires students to review research literature (rel-

evant selected papers in embedded systems, software architec-
ture, mobile computing, wireless grids, etc.) and to select one
paper to present in a selected week over the 15-week semester.
Student presentations last 20 min, with 5 min reserved for ex-
plicit questions, and two or three presentations are typically
scheduled per class, leaving about 30 min for open discussion

MATTMANN et al.: MIDDLEWARE PLATFORM FOR PROVIDING MOBILE AND EMBEDDED COMPUTING INSTRUCTION 427

at the end of the class on the day’s presentations. The class pre-
sentation is worth 15% of the overall grade.
A written exam tests the students on the papers, and on the

presentation materials, and represents 25% of the overall grade.
Two or three times during the semester, students are given
quizzes consisting of short questions about the readings and/or
the prior week’s presentations. The total percentage value for
the quizzes is 10% of the overall grade. Class participation
amounts to 10% of the grade.
Students are required to perform a team-based final project

using Prism-MW that is worth the remaining 40% of the grade.
This project has allowed students to expand upon Prism-MW
core functionality directly by extending the core classes, and
also to treat Prism-MW as immutable and to build applications
on top of the Prism-MW core. This will be discussed further
when describing the class projects in Section IV.
Section II-B compares this course to other relevant courses in

the field.

B. Software Engineering Education

Most software engineering courses offered as part of the com-
puter science curriculum in various universities deal with the
broad and general aspects of software engineering [3]–[6]. The
pair of courses taught by Boehm et al. [5], [6] deal with appli-
cation of software engineering concepts, models, and manage-
ment approaches for design and development of large software
systems, and the projects that have been done as part of these
courses over the past years reflect this approach [6]. The course
offered by Arms [7] is also of a similar nature and imparts in-
struction on software engineering’s various aspects including
feasibility, requirements, design, implementation, testing, and
delivery. Anderson, in his course [8], also addresses the same is-
sues while additionally talking about software engineering tools
and performance evaluation. Chen and Poon [9] use a sophisti-
cated classification tree method (CTM) to instruct students in
“black-box” testing as a method of software testing and ver-
ification. In the USC course, on the other hand, the focus is
more on software engineering as applicable to embedded, mo-
bile technology, which, as far as the authors are aware, is a novel
approach to address cross-cutting issues in the fields of soft-
ware engineering and embedded, mobile, resource-constrained
systems.
Emmerich’s course “Advanced Software Engineering” [10]

is a natural compliment to the software modeling and design
that is emphasized in the USC course. The stated goals of
Emmerich’s course are to “widen the understanding of software
engineering by considering it in a broader context.” Topics
within the course include instruction in software engineering
process, architecture, and advanced modeling. The course
described here differs from Emmerich’s in that it is focused on
the above course topics within the domain of mobile, embedded
technology. However, Emmerich’s course considers software
engineering in the larger context of distributed applications. Ad-
ditionally, Emmerich’s course does not include a course project
and involves only examinations and assignments. Projects are
an important part of software engineering education [3], [4],
and they have been incorporated into the USC course in order
to allow the students to encounter, understand, and tackle

the embedded systems-related software engineering issues
discussed in class in a more realistic and practical scenario.
Kogut’s course [11] also revolves around team projects where

teams of four or fewer students have to choose one of the two
project scenarios. The difference between this course and the
USC course is that while in Kogut’s course the students are just
required to do the project management planning, requirement
analysis, and design of the project, in the USC course students
are required to do the actual development and implementation
of the required application on top of Prism-MW.

C. Courses in Mobile Technology

Some courses [12], [13] focus on the application and design
of mobile technology, without the supplementary constraints
levied by the embedded systems domain. An example of this
is Nixon’s course [13], which has the goal of instructing stu-
dents in the design, implementation, and evaluation of mobile
applications. Mobile middleware, context-aware applications,
andmodels ofmobile systems implementation and design are all
highlighted and listed as key concepts that the students should
learn. Nixon’s course differs from the USC course in that the
latter requires students to learn mobile technology with the addi-
tional constraints of embedded software (low memory, low pro-
cessor power, and so on). Additionally, the USC course requires
students to read and understand several seminal and current
research papers defining the problem space of software engi-
neering for embedded systems. Nixon’s course only focuses on
the design and implementation of mobile technology. Another
example of the this trend is the course byMyatt and Starner [12],
titled “Mobile and Ubiquitous Computing,” which has three
main objectives: 1) understand important historical precedents;
2) identify critical technologies; and 3) obtain necessary re-
search skills. The course further requires students to demon-
strate their understanding of the research material and also to
conduct research through the exploration and proposal of an ad-
vanced research project in ubiqutious and mobile computing.
Students submit a project proposal, perform the research, and
are evaluated on their design and its implementation. Myatt
and Starner’s course, however, focuses more on the applications
and use of ubquitous mobile computing, rather than its design,
and evaluation. Additionally, the USC course focuses on inter-
face design (such as middleware interfaces), whereas Myatt and
Starner’s course neglects to consider interface enabling tech-
nologies (although another related course in their curriculum is
identified as addressing this topic).
One important aspect of the USC course is its emphasis on

a learner-based learning scenario where the students are en-
couraged to learn the course content by teaching it to them-
selves, rather than by just listening to it in class lectures. While
Ohlsson et al. [4] and Bruce et al. [14] attempt to achieve this,
mainly by introducing projects as part of the curriculum where
the student plays an active role, the course described here takes
it a step further. Apart from a project that requires the students to
form teams and play different roles, the students are also respon-
sible for reading an assortment of selected papers addressing
various software engineering issues and concerns in the con-
text of embedded systems. They are then required to present a
paper of their choice using presentation tools of their choice.

428 IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 3, AUGUST 2012

Moreover, they are also required to actively participate in dis-
cussions based on these papers and the student presentations.
Similar presentation-centric pedagogical approaches have also
been used in other courses [11], [15], [16]. Kogut’s course [11]
provides the students with a list of topics. The student is required
to choose one of these topics. The instructor then provides the
student with a publication on this topic, which the student has
to analyze, dissect, and present. The authors’ approach differs
from Kogut’s in that the list of publications is already provided
to the students to see and read before they choose their topic.
This not only allows the student to read and understand before-
hand what issues the paper tries to address, but also encourages
her/him to delve further into a topic that she/he likes.
Corner’s course [16] is the closest in principle to the USC

course in that it presents a list of publications from which the
student chooses the one that she/he would like to present in
class. Similarly, a major emphasis is on a semester-long project.
There are some differences, though between Corner’s course
and the USC course. First, Corner’s course is a seminar course
and does not have examinations and assignments. The USC
course also includes weekly assignments based on the read-
ings scheduled for that week, and one exam that encompasses
all the readings. This ensures that the students read all the pa-
pers and are hence better prepared to participate in class during
the presentations and discussions. The written exam focuses on
the general principles discussed in class across the presenta-
tions and discussions. Another difference is that while Corner’s
course allows the students to pick a project of their choice,
which had to be approved by the instructor, the USC course pro-
vides the students with a realistic project problem that tries to
address the salient features of software engineering issues in the
context of mobile, resource-constrained embedded systems. In
some cases, though, students have been allowed to work on a
project of their choice if they could convince the instructor of
the suitability and relevance of the chosen project to this course.
Here again, the pedagogical issue of learner-based learning is
addressed by providing enough flexibility for students to exper-
iment freely within the broad umbrella provided by the course
content.

D. Courses in Embedded Systems

Maher’s course [17] titled “Hardware and Software Engi-
neering for Embedded Systems” has the objective of instructing
students how to understand real-time, operating systems. It in-
volves a course project dealing with deployment of a real-time,
embedded software system on an embedded processor. While
Maher’s class deals with software engineering issues such as
embedded systems’ implementation (using the C language), it
fails to focus on mobile technology. Additionally, Maher does
not focus on design-level software engineering issues such as
software architecture, separation of concerns, and evolvability.
The USC course, however, focuses on all of these design issues
in addition to the implementation aspects of mobile, embedded
systems. Furthermore, because Maher’s class is primarily
geared toward undergraduates, the class fails to focus on the
research aspects of embedded, mobile systems. Zalewsk and
colleagues have described similar approaches to the study of

real-time systems [18], [19], and there have also been related
workshops focused on real-time systems education [20].
Vahid taught a course in 1998 called “Software and Hard-

ware Engineering of Embedded Systems” [21]. The goals of
Vahid’s courses are closest to those of the course described here.
In Vahid’s class, students are required to read research papers
on the design and implementation of embedded systems and
also to present a short 10-min summary outlining their compre-
hension of the underlying material. Vahid notes in his syllabus
that embedded and mobile computer systems are becoming per-
vasive, and that their design is an often-overlooked pedagog-
ical goal in the current curriculum. Vahid’s course differs from
USC’s in that Vahid’s course is a seminar course and does not
involve a course project. The USC course also gives the stu-
dents an opportunity to relate embedded systems design and re-
search to hands-on experience (via the course project). Hsiung’s
course [22] “Embedded Software Engineering” gives students
the opportunity to learn how to design efficient and concurrent
embedded software systems. The students are required to for-
mulate a course research project, perform the research and im-
plementation work, and then report on the results in a formal
presentation to the rest of the class. Hsiung’s course, like that
described here, focuses not only on embedded systems’ imple-
mentation issues, but also on system design (both software and
hardware architecture). The USC course differs from Hsiung’s
in that it also requires students to become familiar with topolog-
ical research studies in embedded systems through the reading
and discussion of research papers on embedded systems. Fur-
thermore, Hsiung’s course does not focus on embedded tech-
nology for mobile devices, as is the case in here.
The course by Schawn et al. [15] is titled “Embedded Sys-

tems” and is focused around three major course projects. The
first involves the implementation of real-time priorities and dy-
namic adaption of taskswithin a real-time operating system. The
second involves the design and implementation of a wireless
MPEG delivery system. A third option available to the students
is to come up with a project of their choice that fits the nature of
instruction and the course content. While the course is different
from the USC course in that the USC Prism-MW-based projects
are focused on the application layer, above the OS, the notion of
a wirelessMPEG delivery system is similar to the course project
in Year 4 (see Section IV-C). In addition, even though students
can choose their own project in the USC course, this was not the
norm, and the students were encouraged to follow the general
project description and guidelines.

E. Relationship to ArchJava

Another related architectural middleware similar to
Prism-MW is the ArchJava [2] project. ArchJava is an ex-
tension to the Java programming language, allowing the
explicit declaration and inclusion of architectural constructs
within implementation code. ArchJava focuses on the intro-
duction of new keywords and constructs to Java that allow
students and developers to explicitly declare components,
connectors, ports, and other architectural constructs in code,
akin to Prism-MW. Though Prism-MW does not extend the
Java language to do this, it simply provides a framework for
constructing architectures via classes, methods, parameters, and

MATTMANN et al.: MIDDLEWARE PLATFORM FOR PROVIDING MOBILE AND EMBEDDED COMPUTING INSTRUCTION 429

so forth. Unlike Prism-MW, though, ArchJava is not strictly
focused on architectural styles and does not provide explicit
support for modeling styles in implementation or code (though
it does support this architectural capability explicitly). Both
frameworks are useful pedagogically and have similar teaching
utility for those who desire to teach software engineering and
architecture in the embedded systems domain. ArchJava has
been leveraged in several courses taught by Aldrich et al.,
including the Spring 2011 CSE 403 Software Engineering
course at the University of Washington, Seattle [23].

III. PRISM-MW: OBJECTIVES AND CAPABILITIES

As outlined in Section I, USC’s Software Engineering for
Embedded Systems course is centered around the application of
software architecture to embedded systems’ design. Therefore,
the effective use of software architectural constructs was made
integral to the class project. However, the selection of a develop-
ment platform for such a project presents a number of seemingly
conflicting requirements. On the one hand, the platform should
expose students to the inherent difficulties of the embedded sys-
tems domain, while at the same time allowing them to focus
on core architectural concepts [24]. Similarly, the development
platform needs to be simple and intuitive enough to learn in a
short time period, while also challenging students intellectually
and providing them with opportunities to pursue interesting and
novel project extensions and engineering solutions. The unique
design and capabilities of Prism-MW resolve these potential
conflicts, and hence provide an effective middleware platform
for course projects that supports the original pedagogical goals.
This section details the reasons why Prism-MW is particularly
advantageous as a design and implementation tool for this em-
bedded software course.

A. Addressing the Challenges of Embedded Systems

In order to achieve G1, the first pedagogical goal—for
students to understand the unique challenges of the embedded
systems domain—Prism-MW provides effective solutions to
several important embedded software engineering problems.
Prism-MW deals with drastic resource constraints imposed in
embedded environments through its efficiency and compact
memory and complexity footprint. Additionally, Prism-MW
transparently mitigates hardware platform heterogeneity and
interface heterogeneity that is common among embedded
systems. Because successful completion of the class projects
requires the development of extensions and enhancements to
Prism-MW, students become proficient in implementing these
solutions.
1) Resource-Constrained Environments: Devices on which

embedded applications reside may have limited power, net-
work bandwidth, processor speed, memory, and display size
and resolution. These constraints demand highly efficient
software systems in terms of computation, communication,
and memory footprint. They also demand more unorthodox
solutions such as “off-loading” nonessential parts of a system
to other devices [25]. Prism-MW imposes minimal overhead
on an application’s execution and enables efficient execution
of applications on platforms with varying characteristics [1].

To illustrate, Prism-MW’s core, recorded at the time of ar-
chitecture initialization, is 2.3 kB. Prism-MW incorporates
several optimization techniques, including event routing based
on architectural topology and a centralized event queue with a
configurable thread pool per address space. These properties
make Prism-MW a suitable platform for highly resource-con-
strained devices (e.g., cell phones, PDAs, robotic rovers, etc.).
2) Heterogeneous Hardware Platforms: Embedded com-

puting environments distinguish themselves with proprietary
operating systems (e.g., PalmOS, Symbian), specialized di-
alects of existing programming languages (e.g., Sun’s Java
KVM, Microsoft’s Embedded Visual C++, or EVC++), and
device-specific data formats (e.g., prc for PalmOS, efs for
Qualcomm’s Brew). To adapt to these different environments,
Prism-MW is extensible and configurable. For instance,
Prism-MW supports multiple architectural styles, awareness,
mobility, dynamic reconfigurability, security, real-time support,
and delivery guarantees [1]. Prism-MW has been implemented
in the Java JVM. Subsets of the described functionality have
also been implemented in Java KVM, C++, EVC++, Python,
and Qualcomm’s Brew; they have been used in sample appli-
cations and in evaluating Prism-MW.

B. Providing a Flexible and Intuitive Learning Platform

The use of Prism-MW as a teaching tool imposes special con-
siderations on its design. Given the relatively short time period
available to students to learn the middleware, Prism-MW must
be simple and easy to understand. This allows students to con-
centrate on the fundamental concepts around which Prism-MW
is constructed, rather than idiosyncrasies of the middleware it-
self. Also, Prism-MW must have an open and extensible struc-
ture that allows students to experiment with novel approaches to
engineering problems. The course project is designed in such a
way that many different implementations and solutions are pos-
sible, and students are required to extend the middleware plat-
form itself. By incorporating open-ended issues into the class
projects, students are encouraged to think creatively and formu-
late original solutions. Descriptions of the projects are given in
Section IV.
1) Usability: Prism-MW has a very simple core, with only

11 classes and four interfaces (under 900 SLOC), allowing stu-
dents to learn to use the framework in a short time period. Be-
cause of this, the students can rapidly advance to the important
problem-solving elements of the course project. Furthermore,
the design of the core (and the entire middleware) was, in so
far as possible, kept highly modular by limiting direct depen-
dencies among the classes via abstract classes, interfaces, and
inheritance as discussed below.
2) Extensibility: Prism-MW has been designed to be easily

extensible, allowing students to enhance the existing mid-
dleware while abiding by the constraints provided by the
embedded, mobile environment. The design of Prism-MW’s
core supports this objective by providing extensive sepa-
ration of concerns via explicit architectural constructs and
use of abstract classes and interfaces. The core constructs
(Component, Connector, Port, Event, and Architecture) are
subclassed via specialized classes (ExtensibleComponent,
ExtensibleConnector, ExtensiblePort, ExtensibleEvent, and

430 IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 3, AUGUST 2012

Fig. 1. UML class design view of Prism-MW. Core classes are highlighted.

ExtensibleArchitecture), each of which has a reference to a
number of abstract classes (AbstractExtensions). Each Ab-
stractExtension class can have multiple implementations,
thus enabling selection of the desired functionality inside
each instance of a given Extensible class. If a reference to an
AbstractExtension class is instantiated in a given Extensible
class instance, that instance will exhibit the behavior realized
inside the implementation of that abstract class. Multiple
references to abstract classes may be instantiated in a single
Extensible class instance. In that case, the instance will ex-
hibit the combined behavior of the installed abstract class
implementations.

C. Supporting Architecture-Based Software Development

The core elements of a software architecture areComponents,
the units of computation;Connectors, models of the interactions
between the Components; and Configurations, arrangements
of Components and Connectors, and the rules that guide their
composition [26]. Prism-MW provides direct implementation
of software architectures in embedded environments through
the contribution of programming language-level constructs for
implementing the aforementioned software architecture-level
atomic elements, including implementation-level support for
arbitrary architectural styles (ingredients for architecture found
to be effective independent of a particular software domain).
Prism-MW allows students to transfer architectural decisions
directly into implementations [1].
1) Design: Fig. 1 demonstrates the class-level view of

Prism-MW where software classes are named boxes, and
where unfilled arrow heads and lines represent inheritance, e.g.,
class B is a child of class A if there is a directed arrow from B
to A, with the endpoint of the arrow unfilled and pointing at
A. Filled arrow heads on directed lines indicate an association
relationship—for example, class A has an instance of class B
via association if there is a directed line from A to B, with the
filled arrow head pointing at B at the end of the line.

Lightly shaded classes constitute the middleware core. The
core is a minimal subset of the system that allows for architec-
ture-based implementations that run locally in a single address
space. Only the dark gray classes of Prism-MW’s core are rel-
evant to the application developer, meaning the application de-
veloper need only learn six classes and four interfaces to begin
writing Prism-MW-based applications. The goal was to keep the
core compact and highly modular; direct dependencies among
the classes were limited by using abstract classes, interfaces, and
inheritance as discussed below.
Brick is an abstract architectural building block. It aggre-

gates commonality of its subclasses (Architecture, Component,
Connector, and Port). Architecture records the configuration of
its constituent components, connectors, and ports and allows
them to be dynamically modified possibly at system runtime.
A distributed application is implemented as a set of interacting
Architecture objects.
Events represent architectural communication. An event is

comprised of a name and payload. An event’s payload includes
a set of typed parameters for carrying data and meta-level infor-
mation (e.g., sender, type). An event type is either a request or
a reply.
Ports are the loci of interaction in an architecture. A link be-

tween two ports is made by “welding” them together. A port can
be welded to at most one other port.
Components compute and maintain their own internal state.

Each component can have an arbitrary number of attached ports
and can interact with other components by exchanging events
via their ports, directly, or indirectly, via connectors.
Connectors are used to control the routing of events among

the attached components. Each connector can have an arbitrary
number of attached ports. Components attach to connectors by
creating a link between a component port and a single connector
port. Connectors may support unicast, multicast, or broadcast
delivery. In order to support the needs of dynamically changing
applications, each Prism-MW component or connector is ca-
pable of adding or removing ports a system runtime. Coupled
with event-based interaction, dynamic addition of ports has al-
lowed us to dynamically reconfigure software systems, a key
behavior in the embedded domains that must respond to con-
stant environmental change.
Each subclass of the Brick class has an associated interface.

The IArchitecture interface allows two ports to be “welded”
together, and it also exposes send and handle methods used
for exchanging events. The IConnector interface provides a
handle method for routing of events. The IPort provides the
setMutualPort method for creating a one-to-one association
between two ports.
Finally, Prism-MW’s core associates the Scaffold class

with every Brick. Scaffold is used to schedule and queue
events for delivery (via the AbstractScheduler class) and
pool execution threads used for event dispatching (via the
AbstractDispatcher class) in a decoupled manner. Prism-MW’s
core provides default implementations of AbstractScheduler
and AbstractDispatcher: FIFOScheduler and RoundRobinDis-
patcher, respectively. These extension points allow Prism-MW
to independently select the most suitable event scheduling,
queueing, and dispatching policies for a given application.

MATTMANN et al.: MIDDLEWARE PLATFORM FOR PROVIDING MOBILE AND EMBEDDED COMPUTING INSTRUCTION 431

Fig. 2. Prism-MW’s extensibility mechanism.

Furthermore, they allow independent assignment of different
scheduling, queueing, and dispatching policies to each archi-
tectural element, and possibly even to change these policies at
runtime. Scaffold also directly aids architectural awareness [27]
by allowing probing of the runtime behavior of a Brick via the
AbstractMonitor class.
2) Using Prism-MW: Prism-MW’s core allows developers

to construct complex applications, so long as they rely on
the default facilities (e.g., event scheduling, dispatching, and
routing) and stay within a single address space. First, a devel-
oper creates the application-specific portion of each component
by subclassing the Component class and providing custom
functionality in its handle and start methods. Next, the devel-
oper constructs an Architecture class and adds Components
(and Connectors if needed). Instances of Ports for components
(and Connectors if they are used in a given architecture) are then
associated with their container Components (or Connectors),
and finally the developer attaches components and connectors
via their ports into a configuration, which is achieved by using
the Architecture class’s weld method.
Developing an application that leverages extensions is done

similarly. The statement will be illustrated by describing the
method for developing a remote communication extension.
First, the developer needs to create a distribution enabled port.
To create a distribution enabled port that communicates over
TCP/IP, the developer needs to override the default implemen-
tation of Prism-MW’s core port. Thus, an implementation of the
appropriate communication protocol (in this case TCP/IP) is in-
stantiated and associated with an instance of an ExtensiblePort.
Since each Extensible class instance is subclassed from one
of Prism-MW’s core classes (as is shown in Fig. 2), the mid-
dleware core (more specifically the thread dispatching, event
handling, and routing) is not affected by the new behavior.
Section IV describes the use of Prism-MW in three sample

course projects between 2005–2010. After the description of
each project, the project and its use of Prism-MWwill be related
to the pedagogical goals for the class.

IV. DESCRIPTION OF CLASS PROJECTS

The projects described here are selected from three represen-
tative years, starting from the second year of the course. In the

first year of teaching the course, the projects were not well de-
veloped, and the results were thus not altogether satisfactory.
Years two, three, and four are described as they present sound
examples of course projects that fall in line with the stated goals
of the course. Each of the projects demonstrates goal G3 from
Table I, providing the students with hands-on experience in the
embedded systems domain.
The challenges faced by students in developing mobile and

embedded solutions for their projects are discussed as is the
way in which the basic core of Prism-MW was leveraged
and extended by the students as appropriate to meet these
challenges. Students had access to the following resources
throughout the class: 1) a private lab consisting of 10 mid-range
wireless-enabled PCs with Intel Pentium IV 1.5-GHz proces-
sors and 256 MB of RAM running JVM 1.4.2 on Microsoft
Windows XP; 2) 30 PDAs of type Compaq iPAQ H3800 with
200-MHz processors, 64 MB of RAM, WL110 Wireless PC
cards, and running Jeode JVM on WindowsCE 2002; and 3) a
dedicated network leveraging a dual-band wireless 2.4-GHz
router.

A. Year Two

The “Dynamic Service Discovery” project was created
during the second year of the course offering. The goal of the
project is to develop an application that supports a graceful
degradation of services in a distributed system having mobile
devices that connect and disconnect unpredictably. This di-
rectly illustrates goal G1 from Table I by demonstrating one of
the important challenges from the embedded systems domain:
disconnected operation. Each device provides and requires
different sets of services, and each service is provided and
required by multiple devices. Sets of provided and required
services may change during runtime. All devices serve as both
mobile servers and clients, providing their own local services
to other devices and/or using local services provided by other
devices. In addition, clients of services provided by devices
that become disconnected are required to search for no longer
available service(s) that are provided by other “live” device(s).
The described setting is supposed to simulate a distribution
that integrates mobile devices and other devices, sometimes
termed spontaneous networking [28], providing the following
key features: 1) easy connection to a local network; 2) easy
integration with local services, such as automatic discovery of
connected devices, with no special configuration actions by
the user; and 3) limited connectivity. Furthermore, the project
requirements are also in accordance with two major discovery
service interfaces: 1) registration service, and 2) lookup service.
The following describes constraints of the project assign-

ment. Compaq iPAQ PocketPC H3800 Series devices with
WL110 Wireless PC cards were used as mobile devices. De-
vices communicated with each other in an ad hoc wireless
network using IEEE 802.11 standard. The application was
required to be implemented on top of the Java version of
Prism-MW. Furthermore, each PocketPC was equipped with
JeodeRuntime as a Java virtual machine implementation of
Sun’s Personal Java 1.2 (JDK 1.1.8) specification. There were
eight teams of three students. As a sample application for the
specified project goal, students were required to implement a
simple calculator application with various arithmetic operations

432 IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 3, AUGUST 2012

serving as services. The correctness and performance of the
solutions were determined based on results obtained from a me-
diated competition among teams. Therefore, the requirements
specification included protocols for proper communication
among devices belonging to different teams, such as protocols
for device and service discovery. The development of such
protocols allowed the students to see examples of software
engineering specific tools and approaches (the development
of protocols, or connectors for communication), helping to
illustrate goal G2a from Table I.
Furthermore, various gauges were used to measure the per-

formance, such as resource awareness (CPU speed and network
throughput) or device load (CPU load and network load per
socket). Each solution was required to meet the following cri-
teria of being able to:
1) access required services locally;
2) access required services from a known remote host;
3) discover and access services in a decentralized setting;
4) discover and access services in a decentralized setting but
most efficiently (based on resource awareness and/or de-
vice load);

5) discover and access services in a decentralized setting but
for multiple devices simultaneously;

6) discover and access services in a decentralized setting but
with trusted devices being added;

7) discover and access services in a decentralized setting, but
with potentially nontrusted (the opponents’) devices being
added.

The winners were determined based on the following two cri-
teria: 1) smallest number of nonserviced requests due to discon-
nection, and 2) fastest execution time.

B. Year Three

In the third year, 14 teams of three students were created. The
project was intended to empower students with the ability to
build support for dynamic software architecture adaptation in a
distributed and embedded environment, focusing in part on goal
G2a from Table I. The focus of this project was on the deploy-
ment and migration of software components between devices.
The project was broken down into four tasks and an extra credit
portion.
1) Build support for component deployment and migration:

a) ability to deploy software components from a central-
ized server (i.e., a desktop PC) onto mobile hosts (i.e.,
PDAs);

b) ability to migrate a component from one mobile host
to another mobile host;

c) ability to link remote software components to other
remote components and connectors;

d) ability to start and execute remote components.
This feature of the project allowed the students to under-
stand where it made sense to consider how Prism-MW’s
Architecture class (recall Section III-C.I) model can assist
in determining the appropriate hardware hosts to migrate
software components to. In addition, the project illustrates
challenges in embedded systems (goal G1 from Table I)
such as disconnected operation, low memory or band-
width, and quality of service (QoS).

Fig. 3. Prism-MW’s deployment extensions.

2) Create a software architectural model of the system:
a) create and maintain local architectural model of the
system on each mobile host; b) create and maintain a
complete model of the system’s architecture on the central
server. This demonstrates goal G2a from Table I.

3) Display the system’s software architecture; a) using the
models, display the local architecture on each host; b) dis-
play the complete system’s architecture on a centralized
server. Again, this demonstrates goal G2a from Table I.

4) Maintain consistency: a) ability to maintain the software
architecture models and displays; and b) automatically
make the appropriate linkages when a component is mi-
grated from one host to another host. This demonstrates
both goals G2a and G2b from Table I.

5) Extra credit: Maintain consistency in a decentralized envi-
ronment (i.e., when there is no centralized server to hold
the entire system’s architecture model). This portion high-
lights developing specialized embedded systems and archi-
tectural algorithms (goals G2a and G2b from Table I) for
autonomic system behavior in an embedded environment.

Successful completion of the project required the students
to leverage Prism-MW’s support for meta-level components.
The role of components at the meta-level is to observe and/or
facilitate different aspects of the execution of application-level
components. Meta-level components may be welded to specific
application-level connectors to exercise control over a particular
portion of the architecture. Alternatively, a meta-level compo-
nent may remain unwelded and may instead exercise control
over the entire architecture via its pointer to the Architecture
object. Typically, a meta-level component is implemented as
an ExtensibleComponent, which contains a reference to the
Architecture object via the IArchitecture interface and allows
the component’s instances to effect runtime changes on the
system’s local (sub)architecture. The ExtensibleComponent
class can also have references to abstract classes that provide
specific (meta-level) functionality (see Fig. 3). The students
had to develop the implementation of the two extensions shown
in Fig. 3.

MATTMANN et al.: MIDDLEWARE PLATFORM FOR PROVIDING MOBILE AND EMBEDDED COMPUTING INSTRUCTION 433

Fig. 4. Different visualizations of the system’s deployment architecture by different teams. (a) Diagram inspired by flower petals, where the half-circles present
in the upper left represent the components, the curve lines represent the connectors, and the straight lines represent component interdependencies. (b) Diagram that
does not show the connectors. (c) Diagram that only shows the connection between components and connectors. (d) Very detailed depiction of system’s architecture
inspired by circuitry diagrams that shows the configuration of components and connectors.

The extra credit portion of the project (step 5 of the project)
was much more challenging. The students were to devise tech-
niques to ensure consistency between the hosts in a semidiscon-
nected topology of hosts. This required each host to store some
information about the architecture of other hosts. There were
two challenges that students had to overcome: 1) determine the
information they need from other hosts, and 2) determine how
to acquire that information from the remote hosts.
To address the first challenge, students had to provide a mech-

anism for each AdminComponent to determine the interdepen-
dent points between the local architecture and other remote ar-
chitectures. An example of such an interdependency is a com-
ponent that makes requests to a remote component, in which
case the host should store the location (host) of the remotely de-
ployed component.
To address the second challenge, students had to implement

a mechanism to communicate with hosts that were not directly
connected. Students took various different approaches to ad-
dress this challenge, such as relaying messages via neighboring
hosts to a desired remote host or selective group broadcasting
of messages.
Another challenge that the students had to face was the

visualization of the system’s architecture (step 3 of the project).
Students had to be creative in rendering arbitrarily large de-
ployment architectures on the PDA’s small display monitor.
Students had to make a tradeoff between the amount of in-
formation presented visually versus the clarity of images
displayed. The above challenges were exacerbated by the fact

that students had to develop their code in emulators before
testing it on the actual PDA. Furthermore, they were limited to
writing code that used a subset of JDK libraries for graphical
rendering (subset of AWT package), which is supported by the
version of JVM (Jeode) available on the PDAs. Fig. 4 shows
the different visualization schemes created by the students. It
shows the various tradeoffs and levels of detail that students
chose to capture.

C. Year Four

In the fourth year of projects, five teams of three students and
two teams of four students were created. The project given to
the students was intended to provide them with experience of
the new paradigm of grid computing in the embedded systems
realm. Each team was given the following scenario (shown in
Fig. 5). A team of scientists onMars would like to perform some
science observations that require the use of computing resources
across the team. The scientists are distributed, each have dif-
ferent kinds and amounts of data (and processing power) and
need an infrastructure and methodology to reliably share data
and computing resources in order to achieve the necessary sci-
ence goals, e.g., “identify rock and take sample,” or “communi-
cate temperature measurement to science colleague.” With this
high-level scenario, the students were required to use replica-
tion and distribution to increase the system availability and ul-
timately aid the scientists in achieving their science goals. Stu-
dents replicated data and computing resources across the coali-
tion of scientists to increase data and compute availability, il-

434 IEEE TRANSACTIONS ON EDUCATION, VOL. 55, NO. 3, AUGUST 2012

Fig. 5. Example GUI for the fourth-year project scenario: sharing resources on
Mars.

lustrating goals G2a and G2b from Table I. Data and computing
resources were replicated by distributing one or more resources
from one (set of) PDA(s) to another. The project was broken
down into four major components.
1) Develop a quantifiable measure of the system’s availability
based on the current state of compute and data resources.
Then, increase the overall availability of the system and
quantifiably show this increase. This illustrates goal G3
from Table I in coming up with an embedded system spe-
cific measurement of availability and how to show increase
in it.

2) Create a generic, pluggable replica location service by ex-
tending the existing Prism-MW. The replica location ser-
vice will determine where (i.e., which PDAs) to replicate
resources to increase availability. This illustrates goal G2a
from Table I in coming up with an architecture-based ser-
vice in Prism-MW to replicate components from one hard-
ware host to another.

3) Create a generic, pluggable replica distribution service by
extending the existing Prism-MW. The replica distribution
service will create and move the resource replicas to pre-
calculated PDAs, which will result in an availability in-
crease. In focusing on data replication, the students were
asked to hone in on pedagogical goal G2ab from Table I.

4) Write an application that creates a heavy request and pro-
cessing load to demonstrate increased availability. This
illustrated all the goals—G1, G2a, G2b, and G3—from
Table I.

Teams that successfullycompleted theproject all implemented
the replica monitoring, resource sharing, and replica actuation
services described above. The replica monitoring component
gathered data, such as the amount of times a particular resource
was requested, which host requested it, and so on. The resource
sharing component was responsible for providing access to,
and cataloging compute and data resources available on, each
host. Finally, the replica actuator provided a standard method
for replicating different resources (such as files in a file system,
rows in a database, or components running on a mobile host).
One of the major challenges of the project was leveraging the

existing Prism-MW capabilities, along with a set of basic grid
services, dubbed GLIDE [29], built on top of Prism-MW.

V. CONCLUSION

This paper has presented the authors’ experience from
2005–2010 teaching a course titled “CS589: Software Engi-

neering for Embedded Systems” at the University of Southern
California. This course distinguishes itself from others like
it by focusing on architectural abstractions and design for
embedded systems and mobile software technology, rather
than just implementation-level detail and optimizations. The
course teaches students how to effectively architect and de-
sign software systems suitable for deployment in embedded
environments.
The course has three key pedagogical goals that are aided and

abetted by an architectural middleware platform, “Prism-MW,”
which helps to teach the class. Students learn Prism-MW easily,
and rapidly, allowing them to extend and use Prism-MW to build
complex class projects; since 2005, students have conducted
sound research and even provided novel solutions. The class is
supplemented through the use of learning devices including stu-
dent presentations, surveys of topical embedded software liter-
ature, and team-based, cooperative learning.

REFERENCES
[1] S. Malek, M. Mikic-Rakic, and N. Medvidovic, “A style-aware ar-

chitectural middleware for resource-constrained, distributed systems,”
IEEE Trans. Softw. Eng., vol. 31, no. 3, pp. 256–272, Mar. 2005.

[2] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: Connecting
software architecture to implementation,” in Proc. ICSE, 2002, pp.
187–197.

[3] R. Dawson, “Twenty dirty tricks to train software engineers,” in Proc.
ICSE, 2000, pp. 209–218.

[4] L. Ohlsson and C. Johansson, “A practice driven approach to software
engineering education,” IEEE Trans. Educ., vol. 38, no. 3, pp. 291–295,
Aug. 1995.

[5] B. Boehm, E. Colbert, and A.W. Brown, “Software Engineering I, Fall
2004 syllabus,” University of Southern California, Los Angeles, CA,
2004 [Online]. Available: http://sunset.usc.edu/classes/cs577a_2004/

[6] B. Boehm, “Software Engineering II, Fall 2002 syllabus,” University
of Southern California, Los Angeles, CA, 2002 [Online]. Available:
http://sunset.usc.edu/classes/cs577b_2002/index.html

[7] W. Y. Arms, “Software Engineering, Spring 2004 syllabus,” Cor-
nell University, Ithaca, NY, 2004 [Online]. Available: http://www.
cs.cornell.edu/courses/cs501/2004sp/syllabus.html

[8] K. Anderson, “Software Engineering Methods and Tools, Fall 2004
syllabus,” University of Colorado, Boulder, CO, 2004 [Online].
Available: http://www.cs.colorado.edu/users/kena/classes/3308/f04/
schedule.html

[9] T. Y. Chen and P. Poon, “Experience with teaching black-box testing
in a computer science/software engineering curriculum,” IEEE Trans.
Educ., vol. 47, no. 1, pp. 42–50, Feb. 2004.

[10] W. Emmerich, “Advanced Software Engineering syllabus,” Uni-
versity College London, London, U.K., 2004 [Online]. Avail-
able: http://web.archive.org/web/20051221184427/http://www.cs.
ucl.ac.uk/teaching/syllabus/ug/3c05.htm

[11] P. Kogut, “MCS580 Software Engineering, Fall 2004 syllabus,”
Drexel University, Philadelphia, PA, 2004 [Online]. Available:
http://web.archive.org/web/20061010215752/http://www.mcs.drexel.
edu/~pkogut/mcs580.html

[12] E. Mynatt and T. Starner, “Mobile and Ubiqutous Computing,
Spring 2000 syllabus,” Georgia Institute of Technology, Atlanta, GA,
2000 [Online]. Available: http://www.cc.gatech.edu/classes/AY2000/
cs7470_spring/

[13] P. A. Nixon, “Mobile Software and Applications, Spring 2005 syl-
labus,” University of Strathclyde, Glasgow, U.K., 2005 [Online].
Available: http://www.cis.strath.ac.uk/teaching/ug/syllabus/504.html

[14] J. W. Bruce, J. C. Harden, and R. B. Reese, “Cooperative and progres-
sive design experience for embedded systems,” IEEE Trans. Educ., vol.
47, no. 1, pp. 83–92, Feb. 2004.

[15] K. Schawn, C. Pu, and L. Daley, “Cs4220: Embedded Systems,
Spring 2002 syllabus,” Georgia Institute of Technology, Atlanta, GA,
2002 [Online]. Available: http://www.cc.gatech.edu/classes/AY2002/
cs4220_spring/

[16] M. Corner, “Mobile and Pervasive Computing, Fall 2003 syllabus,”
University of Massachusetts, Amherst, MA, 2003 [Online]. Available:
http://www.cs.umass.edu/~mcorner/courses/691M/syllabus.pdf

MATTMANN et al.: MIDDLEWARE PLATFORM FOR PROVIDING MOBILE AND EMBEDDED COMPUTING INSTRUCTION 435

[17] R. Maher, “Syllabus for EE475: HW&SW Engineering for Embedded
Systems, Fall 2003,” Montana State University, Bozeman, MT,
2003 [Online]. Available: http://www.coe.montana.edu/ee/rmaher/
ee475_FL03/syllabus.htm

[18] J. Zalewski, “Real-time software architectures and design patterns:
Fundamental concepts and their consequences,” Annu. Rev. Control,
vol. 25, pp. 133–146, 2001.

[19] A. J. Kornecki, J. Zalewski, and D. Eyassu, “Learning real-time pro-
gramming concepts through vxworks lab experiments,” in Proc. Conf.
Softw. Eng. Educ. Training, 2000, pp. 294–294.

[20] J. Madsen, “Embedded systems education for the future,” Proc. IEEE,
vol. 88, no. 1, pp. 23–30, Jan. 2000.

[21] F. Vahid, “Software and Hardware Engineering of Embedded Sys-
tems, Fall 1998 syllabus,” University of California, Riverside, CA,
1998 [Online]. Available: http://www.cs.ucr.edu/~vahid/courses/
269_f98/syllabus.html

[22] P. Hsiung, “Syllabus (Embedded Software Engineering),” Na-
tional Chung Cheng University, Taiwan, 2004 [Online]. Available:
http://www.cs.ccu.edu.tw/ pahsiung/courses/ese/info/syllabus.html

[23] J. Aldrich, C. Chambers, and D. Notkin, “ArchJava: Connecting
software architecture to Implementation,” University of Washington,
Seattle, WA, 2011 [Online]. Available: http://www.cs.washington.edu/
education/courses/cse403/04sp/lectures/ArchJava-4up.pdf

[24] M. Mikic-Rakic and N. Medvidovic, “Adaptable architectural middle-
ware for programming-in-the-small-and-many,” in Proc. Middleware,
2003, pp. 162–181.

[25] N.Medvidovic,M.Mikic-Rakic, N. R.Mehta, and S.Malek, “Software
architectural support for handheld computing,” Computer, vol. 36, no.
9, pp. 66–73, 2003.

[26] N. Medvidovic and R. N. Taylor, “A classification and comparison
framework for software architecture description languages,” IEEE
Trans. Softw. Eng., vol. 26, no. 1, pp. 70–93, Jan. 2000.

[27] L. Capra, W. Emmerich, and C. Mascolo, “Middleware for mobile
computing,” University College London, London, U.K., Tech. Rep.
RN/30/01, 2001.

[28] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:
Concepts and Design. Reading, MA: Addison-Wesley, 2001.

[29] C. A. Mattmann and N. Medvidovic, “The gridlite dream: Bringing
the grid to your pocket,” in Proc. Monterey Workshop, F. Kordon and
J. Sztipanovits, Eds., 2005, vol. 4322, Lecture Notes in Computer Sci-
ence, pp. 70–87.

Chris A. Mattmann (M’03–SM’10) received the Ph.D. degree in computer
science from the University of Southern California, Los Angeles, in 2007.
He is a Senior Computer Scientist with NASA’s Jet Propulsion Laboratory,

Pasadena, CA, working on instrument and science data systems on earth science
missions and informatics tasks. He is also an Adjunct Assistant Professor with
the Computer Science Department, University of Southern California. He is the
first NASA member elected to the Apache Software Foundation, the world’s
most prominent open-source software organization. His research interests are
primarily software architecture and large-scale data-intensive systems.
Dr. Mattmann is a member of the ACM and ACM SIGSOFT.

NenadMedvidović received the Ph.D. degree in information and computer sci-
ence from the University of California, Irvine, in 1999.
He is a Professor with the Computer Science Department, University of

Southern California (USC), Los Angeles. He is the Director of the USC Center

for Systems and Software Engineering (CSSE). He is a coauthor of a textbook
on software architectures. His research interests are in the area of architec-
ture-based software development. His work focuses on software architecture
modeling and analysis, middleware facilities for architectural implementation,
domain-specific architectures, architectural styles, and architecture-level sup-
port for software development in mobile, resource-constrained, and embedded
environments.
Prof. Medvidović is a member of the ACM and ACM SIGSOFT. He was

the Program Co-Chair of the 2011 International Conference on Software En-
gineering (ICSE 2011). He is a recipient of the National Science Foundation
CAREER Award, the Okawa Foundation Research Grant, the IBM Real-Time
Innovation Award, and the USC Mellon Mentoring Award. He is a coauthor of
the ICSE 1998 paper titled “Architecture-Based Runtime Software Evolution,”
which was recognized as that conference’s Most Influential Paper.

Sam Malek (A’11) received the B.S. degree in information and computer sci-
ence (cum laude) from the University of California, Irvine, in 2000, and the
M.S. and Ph.D. degrees in computer science from the University of Southern
California (USC), Los Angeles, in 2004 and 2007, respectively.
He is an Assistant Professor with the Department of Computer Science,

George Mason University (GMU), Fairfax, VA. He is also a faculty member of
the C4I Center, GMU. His general research interests are in the field of software
engineering, and to date his focus has spanned the areas of software archi-
tecture, distributed and embedded software systems, middleware, autonomic
computing, service-oriented architectures, and quality-of-service analysis. His
research has been funded by NSF, DARPA, the US Army, and SAIC.
Dr. Malek is a member of the ACM and ACM SIGSOFT. His dissertation re-

search was nominated by USC for the final round of the ACM Doctoral Disser-
tation Competition in 2007. He is the recipient of numerous awards, including
the USC Viterbi School of Engineering Fellow Award in 2004 and the GMU
Computer Science Department’s Outstanding Young Faculty Research Award
in 2011.

George Edwards (M’10) received the B.S. degree from Vanderbilt University,
Nashville, TN, in 2003, and the M.S. and Ph.D. degrees from the University of
Southern California (USC), Los Angeles, in 2006 and 2010, respectively, all in
computer science.
He is the CEO and Chief Scientist with Blue Cell Software, LLC, Los An-

geles, CA, a developer of advanced modeling, simulation, and analysis soft-
ware. He formerly worked as a Researcher and Engineer with IBM, Yorktown
Heights, NY; Boeing, Huntington Beach, CA; and USC. He has authored dozens
of articles related to software engineering and distributed systems for scientific
journals and industry magazines. He is listed as a co-inventor on two pending
patent applications for novel software technology, and he has served as a soft-
ware expert for plaintiffs in patent litigation.

Somo Banerjee received the M.S. degree in computer science, majoring in
software architecture, from Louisiana State University (LSU), Baton Rouge,
in 2004.
He is a Senior Java Developer with CarsDirect.com, Los Angeles, CA, an

automotive e-commerce company. He has also worked as a Research Assistant
with the University of Southern California, Los Angeles.
Mr. Banerjee was a recipient of LSU’s Graduate Student Supplement Award

in 2003.

