
Nemo: Multi-Criteria Test-Suite Minimization
with Integer Nonlinear Programming
Jun-Wei Lin

University of California, Irvine
junwel1@uci.edu

Reyhaneh Jabbarvand
University of California, Irvine

jabbarvr@uci.edu

Joshua Garcia
University of California, Irvine

joshug4@uci.edu

Sam Malek
University of California, Irvine

malek@uci.edu

ABSTRACT
Multi-criteria test-suite minimization aims to remove redundant
test cases from a test suite based on some criteria such as code
coverage, while trying to optimally maintain the capability of the
reduced suite based on other criteria such as fault-detection effec-
tiveness. Existing techniques addressing this problem with integer
linear programming claim to produce optimal solutions. However,
the multi-criteria test-suite minimization problem is inherently
nonlinear, due to the fact that test cases are often dependent on
each other in terms of test-case criteria. In this paper, we propose a
framework that formulates the multi-criteria test-suite minimiza-
tion problem as an integer nonlinear programming problem. To
solve this problem optimally, we programmatically transform this
nonlinear problem into a linear one and then solve the problem
using modern linear solvers. We have implemented our framework
as a tool, called Nemo, that supports a number of modern linear
and nonlinear solvers. We have evaluated Nemo with a publicly
available dataset and minimization problems involving multiple
criteria including statement coverage, fault-revealing capability,
and test execution time. The experimental results show that Nemo
can be used to efficiently find an optimal solution for multi-criteria
test-suite minimization problems with modern solvers, and the op-
timal solutions outperform the suboptimal ones by up to 164.29%
in terms of the criteria considered in the problem.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
Test-suite minimization, integer programming
ACM Reference Format:
Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek. 2018.
Nemo: Multi-Criteria Test-Suite Minimization with Integer Nonlinear Pro-
gramming. In Proceedings of ICSE ’18: 40th International Conference on Soft-
ware Engineering , Gothenburg, Sweden, May 27-June 3, 2018 (ICSE ’18),
11 pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180174

1 INTRODUCTION
Software testing plays an essential role in software development,
providing a means to determine automatically whether a program
behaves as expected. To ensure the correctness of a program as it
evolves, engineers should perform regression testing on it to ensure
that modified or introduced code does not break the program’s
original functionality. To exercise new behaviors or detect newly
discovered faults in software, test suites for regression testing are
continuously expanded, and hence may become too large to exe-
cute in their entirety [29]. For example, a test suite for a system
with about 20,000 source lines of code may require seven weeks
to run [40]. Moreover, during the development of Microsoft Win-
dows 8.1, more than 30 million test executions were performed
[22]. Consequently, large test suites can make regression testing
impractical.

To address this problem, several approaches for test-suite main-
tenance such as test-suite minimization, test-case selection, and
test-case prioritization have been proposed [50]. Specifically, test-
suite minimization aims to find the minimal subset of the original
test suite which satisfies the same testing requirements [20]. Al-
though an existing minimization technique may work well with
respect to a single criterion, the capability of a minimized test suite
may be severely compromised in terms of other criteria, such as
fault-revealing power [39, 49]. As a result, a tester may consider
multiple criteria when performing the reduction. For instance, she
may want to generate a reduced suite with the same statement
coverage and maximal fault-detection capability.

To accommodate multi-criteria test-suite minimization (MCTSM)
problems, existing techniques [5, 23] model the problems as binary
integer linear programming (ILP) problems. A binary ILP problem
optimizes a linear objective function consisting of binary variables
under a set of linear constraints [47]. By encoding test-case cri-
teria (e.g., faults or statements covered by tests) as constraints or
objective functions of a binary ILP problem, existing techniques
claim that the computed solutions are optimal for the minimiza-
tion problem [23]. However, an ILP formulation actually results
in sub-optimal solutions, since the MCTSM problem is inherently
nonlinear. The nonlinearity arises due to the fact that test cases
are often dependent on each other in terms of test-case criteria.
For example, consider the case where the goal of the test-suite
minimization is to select test cases in a suite that (1) maximize the
fault-detection effectiveness of the reduced suite and (2) maintain
the same code coverage as the original unminimized test suite. In
this example, simply selecting test cases that reveal more faults
ignores the possibility of the same fault being revealed by multi-
ple test cases, which our results indicate actually occurs often. To

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek

ensure that test cases cover a diverse number of faults, a nonlinear
formulation of the test-suite optimization problem is required.

To deal with dependencies among test cases in a MCTSM prob-
lem, we formulate the problem as an integer nonlinear program-
ming problem. To solve this problem optimally, we present a novel
approach that programmatically transforms this nonlinear problem
into a linear problem and then solves the problem using modern
ILP solvers. We evaluate our proposed approach using a publicly
available dataset of open-source projects [21]. Our experiments for
bi-criteria test-suite minimization problems show that modeling
the objective functions nonlinearly results in minimized test suites
that, on average, cover more faults. For our experiments involving
a tri-critera problem, the test suites reduced by a nonlinear formula-
tion always obtain superior statement coverage and fault-detection
effectiveness, given an execution-time budget for the test suite.

The contributions of this paper are as follows:

• We propose the first approach for optimally solving MCTSM
problems involving dependencies among test-case criteria.
Our approach takes into account the inherent nonlinearity
of the problem, unlike previous approaches that model the
problem linearly.

• We implement a prototype tool, called Nemo (NonlinEar
test suite MinimizatiOn), allowing testers to specify MCTSM
problems. The tool programmatically transforms nonlinear
problems into linear ones so that modern ILP solvers can be
leveraged to compute optimal solutions. We also provide a
version of Nemo that leverages nonlinear solvers.

• We conducted an empirical study in which the proposed
approach is evaluated with a publicly available dataset of
open-source projects.

The rest of this paper is organized as follows. Section 2 introduces
background on ILP problems, particularly in the context of MCTSM,
and provides a motivating example.We describe our novel approach
for formulating MCTSM problems nonlinearly in Section 3 and
its corresponding implementation in Section 4. We empirically
evaluate Nemo in Section 5. Section 6 describes work related to
Nemo. Section 7 concludes the paper.

2 BACKGROUND AND EXAMPLE
In this section, we discuss a motivating example to demonstrate that
formulating MCTSM problems linearly may result in suboptimal
solutions. An MCTSM problem is a multi-objective optimization
problem in which the best subset of the original test suite is selected
from available alternatives based on some minimization criteria. As
a result, integer linear programming (ILP) for mathematical opti-
mization can be adopted to model and solve the problem. Specifi-
cally, existing approaches [5, 23] formulate the MCTSM problem as
a binary ILP problem. Such a problem tries to find the optimal value
of a linear objective function consisting of binary decision variables,
which are restricted to be 0 or 1, while satisfying a set of linear
(in)equality constraints, which we refer to as constraint criteria. The
objective function maximizes or minimizes one or more optimiza-
tion criteria. Although finding a solution for a binary ILP problem
is NP-complete, some important subclasses of the problem are effi-
ciently solvable by modern ILP solvers, due to recent algorithmic
and implementation advances [47].

To aid in illustrating the encoding of an MCTSM problem into
a binary ILP problem, consider the example in Table 1, which de-
picts a set of three test cases with each test case’s corresponding
statement and fault coverage. In this example, the problem under
consideration involves the following criteria: a constraint criterion
c1, i.e., maintaining the same statement coverage as the original
test suite, and an optimization criterion o1, i.e., maximizing the
fault-detection effectiveness of the reduced suite.

Criteria
Test cases

t1 t2 t3

St
at
em

en
t stmt1 1 0 1

stmt2 0 1 0
stmt3 0 1 1

Fa
ul
t

f1 0 1 1
f2 0 1 1
f3 0 1 1
f4 1 0 0

Table 1: An example test suite with coverage and fault detec-
tion data

We model the problem based on state-of-the-art formulations
provided in previous work [5, 23]. First, we let a binary decision
variable ti represent whether the ith test case is included in the
reduced suite, i.e., each ti takes a 1 if the corresponding test case is
selected, and 0 otherwise. Next, we model constraint criterion c1,
as follows, to ensure that every statement covered by the original
suite is covered at least once by the reduced suite:

|T |∑
i=1

σi j ti ≥ 1, 1 ≤ j ≤ q (1)

|T | is the number of test cases in the test suite, and q is the total
number of distinct statements covered by the test suite. σi j is a
binary variable indicating whether statement stmtj is covered by
test case ti . For the example test suite in Table 1, equation 1 becomes:

t1 + t3 ≥ 1
t2 ≥ 1

t2 + t3 ≥ 1

We express the goal to minimize the test suite and optimization
criterion o1 as a linear objective function as follows:

min
|T |∑
i=1

ϵ (ti) ti (2)

The minimum function tries to select the smallest subset of the
original test suite. The function ϵ(ti) models the capability of the
test case ti to find faults, specifically the optimization criterion o1.
A test detecting more faults would have a smaller value returned
by ϵ , and thus more likely to be selected. ϵ is formulated as follows:

ϵ (ti) = (1 −w (ti)), w (ti) =

∑m
j=1 vi j
m

(3)

m is the total number of distinct faults covered by the test suite.
vi j is a binary variable indicating whether test case ti reveals fault
fj . In this formulation, vi j is 1 if ti reveals fault fj ; otherwise, vi j
is 0. For the example test suite in Table 1, the values assigned by ϵ
are shown in the equation below:

min
3∑
i=1

ϵ (ti) ti = (1 −
1
4
)t1 + (1 −

3
4
)t2 + (1 −

3
4
)t3 (4)

2

Nemo: Multi-Criteria Test-Suite Minimization
with Integer Nonlinear Programming ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

The formulated problem can then be solved by using an ILP solver.
We refer to this approach as LF_LS (LinearFormulation_LinearSolver),
which models an MCTSM problem with a linear formulation and
solves it with a linear solver. This is the approach that has been fol-
lowed in prior work [5, 19, 23], including a general tool for test-suite
minimization by Hsu and Orso, called MINTS [23].

The optimal solution for this binary ILP problem is {t2, t3} with
a minimal value 1

2 under the constraints. However, from Table 1,
we can see that {t2, t3} detects only three of the four faults (i.e.,
it misses fault f4)—and hence is not the optimal solution for the
minimization problem, which is actually {t1, t2}. Note that {t1, t2}
obtains a value of 1 for equation 4. The correct solution can not be
computed by LF_LS, because the linear objective function tends to
select test cases revealing more faults but not necessarily distinct
faults. For example, once t2 is selected, no further distinct faults can
be revealed by t3, but t3 would still be selected because it reveals
more faults than t1 (i.e., three faults instead of just one). In fact,
t1 should be selected for the minimization problem instead of t3
because t1 reveals a fault distinct from the faults in t2 and t3.

Such dependencies among test cases cannot be encoded with a
linear objective function; they must be encoded using a nonlinear
objective function. Specifically, the test cases currently selected
are dependent on the test cases previously selected. To model such
dependencies among test cases, the optimization problem must be
formulated in a manner such that the decision variables (i.e., ti s
in the previous equations) are multiplied with each other, making
them inherently nonlinear. In the next section, we describe this
formulation.

3 NONLINEAR PROBLEM FORMULATION
To nonlinearlymodel theMCTSMproblem,we describe the problem
more formally, illustrate how our nonlinear formulation models
test-case dependencies and multiple objective criteria, and describe
the manner in which we utilize linear solvers to optimally solve
the nonlinear formulation of the problem.

3.1 Problem definition
To clarify our proposed idea, we formally define the MCTSM prob-
lem as follows:
Given:

(1) A test suite T = {t1, t2, ..., tn }
(2) A set of constraint criteria C = {c1, c2, ..., ck } which must

be satisfied by T
(3) A set of optimization criteria O = {o1,o2, ...,ol }, i.e., the

criteria to be optimized by an objective function
(4) A non-negative function ϵ(t) that represents the significance

of a test case t ∈ T with respect to the optimization criteria.
ϵ(t) is a weighted sum of functions indicating the capability
of t with respect to each of the optimization criteria. For
example, if the optimization criteria are (o1) maximizing fault
detection effectiveness and (o2) minimizing test execution
time, we can define ϵ(t) as ϵ(t) = α1ϵ1(t)+α2ϵ2(t). Here, ϵ1(t)
represents the fault-detection capability of t ; ϵ2(t) represents
the execution time of t . Each factor α is a weight prioritizing
a criterion.

Problem: Find a minimum test suite T ′ ⊆ T such that
(p1) T ′ satisfies C
(p2) ∀T ′′ satisfying C , |T ′ | ≤ |T ′′ |

(p3) ∀T ′′ satisfying C ,
∑
ti ∈T ′ ϵ(ti) ≥

∑
tk ∈T ′′ ϵ(tk)

This minimization problem is NP-complete, because it is in NP
and can be reduced from the minimum set-covering problem in
polynomial time [16].

To deal with dependencies among tests over multiple optimiza-
tion criteria, we must formulate the criteria in a nonlinear fashion.
Specifically, when our new formulation computes the capability of
a test with respect to each optimization criterion, the formulation
needs to consider if the criterion is satisfied by other selected tests.
To that end, we alter equations 2-3 to account for (1) multiple op-
timization criteria and (2) dependencies among test cases over a
specific optimization criterion using the following equation:

min
∑
o∈O

αo
|T |∑
i=1

ϵo (ti) ti , ϵo (ti) = (1 − w̃o (ti)) (5)

o ∈ O is an optimization criterion; αo is the assigned weight for
o; ϵo (ti) is a function computing the capability of a test case ti in
terms of a criterion o. A novelty of our approach is that we consider
dependencies among test cases in modeling w̃o (ti), which makes
the formulation nonlinear (more details in Section 3.2). w̃o (ti) is
a function computing the problem-specific significance of a test
case and, thus, can be defined as needed for different criteria and
minimization problems. For example, w̃o (ti) canmodel whether test
case ti identifies faults distinct from previously selected test cases.
As another example, w̃o (ti) can model whether test case ti covers
the most frequently executing statements a certain number of times.
We next illustrate an instantiation of w̃o (ti) for the fault-detection
criterion from the example of Section 2.

3.2 Modeling test-case dependencies
In this subsection, we illustrate an instantiation of the proposed
formulation for an MCTSM problem involving the two criteria
from our motivating example: a constraint criterion (c1) that main-
tains the same statement coverage as the original test suite, and an
optimization criterion (o1) that maximizes the fault-detection effec-
tiveness of the reduced suite. Note that this instantiation involves
a single constraint criterion and a single optimization criterion—
even though our formulation can handle multiple constraint and
optimization criteria—due to space limitations and to maximize
readability of our nonlinear formulation. First, for optimization
criterion o1, we set the weight as one (i.e., α1 = 1) and assign the
objective function using equation 5 as follows:

min
∑
o∈O

αo
|T |∑
i=1

ϵo (ti) ti (6)

= 1
|T |∑
i=1

ϵo1 (ti) ti (7)

=

|T |∑
i=1

(1 − w̃o1 (ti)) ti (8)

Furthermore, to model dependencies among tests over o1, i.e., fault-
detection effectiveness, when calculating how many faults are re-
vealed by a test, we have to consider if the faults are already revealed
by selected tests. As a result, we can define w̃o1 (ti) as follows:

w̃o1 (ti) =
1
|F |

(

|F |∑
j=1

vi jdi j) (9)

di j =
∏
t∈Tj

(1 − t), t , ti (10)

3

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek

|F | is the number of distinct faults in F = { f1, f2, ..., f |F |} revealed
by T . Tj is the set of test cases that reveal fj . di j accounts for
dependencies among test cases in terms of each fj : If at least one of
the test cases inTj is selected, di j evaluates to zero, which decreases
(1) the value of w̃o1 (ti) contributed by ti and fj , and (2) the likeliness
of ti being selected.

To illustrate the use of equations 8, 9, and 10, we apply it to the
example in Table 1. In the example in Table 1, T = {t1, t2, t3}, and
F = { f1, f2, f3, f4}. Consequently, the objective function for this
scenario is the following:

min
∑
o∈O

αo
3∑
i=1

ϵo (ti) ti (11)

= 1 (ϵo1 (t1) t1 + ϵo1 (t2) t2 + ϵo1 (t3) t3) (12)
= (1 − w̃o1 (t1)) t1 + (1 − w̃o1 (t2)) t2 + (1 − w̃o1 (t3)) t3 (13)

= (1 −
1
4
(

4∑
j=1

v1j d1j)) t1︸ ︷︷ ︸
test case t1

+ (1 −
1
4
(

4∑
j=1

v2j d2j)) t2︸ ︷︷ ︸
test case t2

+ (1 −
1
4
(

4∑
j=1

v3j d3j)) t3︸ ︷︷ ︸
test case t3

(14)

In the above formulation, test case t1 reveals fault f4, and f4 is not
revealed by any other test case. As a result, the set of test cases
revealing f4 (i.e., T4) is {t1}, and the coefficient for t1 in equation
14 is expanded as follows:

(1 −
1
4
(

4∑
j=1

v1j d1j)) t1

= (1 −
1
4
(v11 d11 + v12 d12 + v13 d13 + v14 d14)) t1

= (1 −
1
4
(0d11 + 0d12 + 0d13 + 1d14)) t1

= (1 −
1
4
(1d14)) t1

= (1 −
1
4
(1 ×

∏
t∈T4

(1 − t))) t1, t , t1

= (1 −
1
4
(1)) t1

= (1 −
1
4
) t1

The above equation expresses t1 as independent of other test cases,
since it reveals a fault that no other test case in the suite reveals.

Recall that test cases t2 and t3 reveal the same set of faults, i.e.,
{ f1, f2, f3}. As a result, the set of test cases revealing each of those
faults are also the same, i.e., T1 = T2 = T3 = {t2, t3}. Consequently,
the coefficient of t2 in equation 14 is expanded as follows:

(1 −
1
4
(

4∑
j=1

v2j d2j)) t2

= (1 −
1
4
(v21 d21 + v22 d22 + v23 d23 + v24 d24)) t2

= (1 −
1
4
(1d21 + 1d22 + 1d23 + 0d24)) t2

= (1 −
1
4
(1d21 + 1d22 + 1d23)) t2

= (1 −
1
4
(1 ×

∏
t∈T1

(1 − t) + 1 ×
∏
t∈T2

(1 − t) + 1 ×
∏
t∈T3

(1 − t))) t2, t , t2

= (1 −
1
4
((1 − t3) + (1 − t3) + (1 − t3)))t2

Note that the equation above shows an interaction or dependency
between test cases t2 and t3, as represented by the multiplication of
those two decision variables, clearly showing their formulation as
nonlinear. Recall that this dependency is expected since both test
cases detect the same set of faults.

Finally, due to test case t3 revealing the same faults as t2, the t3
coefficient of equation 14 can be expanded in a manner similar to
that of t2:

(1 −
1
4
(

4∑
j=1

v3j d3j)) t3

= (1 −
1
4
(v31 d31 + v32 d32 + v33 d33 + v34 d34)) t3

= (1 −
1
4
(1d31 + 1d32 + 1d33 + 0d34)) t3

= (1 −
1
4
(1d31 + 1d32 + 1d33)) t3

= (1 −
1
4
(1 ×

∏
t∈T1

(1 − t) + 1 ×
∏
t∈T2

(1 − t) + 1 ×
∏
t∈T3

(1 − t))) t3, t , t3

= (1 −
1
4
((1 − t2) + (1 − t2) + (1 − t2)))t3

For constraint criterion c1, we adopt constraints similar to those
in equation 1 because all requirements of a constraint criterion (e.g.,
all statements) for c1 have to be satisfied (e.g. covered) at least once
by the reduced suite:

|T |∑
i=1

σi j ti ≥ 1, 1 ≤ j ≤ |c1 |

|c1 | is the size of constraint criterion c1; σi j is a binary variable
indicating whether ti satisfies the jth requirement of c1 (e.g., the
jth statement).

With the above objective function and constraints, the proposed
formulation for Table 1 results in the following assignment for the
optimization problem:
minimize:

(1 −
1
4
)t1 + (1 −

1
4
((1 − t3) + (1 − t3) + (1 − t3)))t2

+(1 −
1
4
((1 − t2) + (1 − t2) + (1 − t2)))t3

under the constraints:

t1 + t3 ≥ 1
t2 ≥ 1

t2 + t3 ≥ 1

With this nonlinear formulation, the optimal solution for integer
nonlinear programming (INP) problem is {t1, t2} with a minimal
value 1. This solution is the correct, optimal solution for the min-
imization problem. Note that the solution selected by the linear
objective function in equation 3, i.e., {t2, t3}, obtains a value 2 using
the nonlinear objective function; thereby it will not be selected as
the final solution.

The above nonlinear formulation can be supplied directly to
a nonlinear solver, which is an approach for solving an MCTSM
problem that we refer to as NF_NS (NonlinearFormulation_ Nonlin-
earSolver). However, utilizing nonlinear solvers does not guarantee
optimal solutions [48], leading us to propose a different approach
to solving the nonlinear formulation, as described in the next sub-
section.

4

Nemo: Multi-Criteria Test-Suite Minimization
with Integer Nonlinear Programming ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

3.3 Transformation to linear programming
There is no known efficient algorithm for solving an INP problem op-
timally other than trying every possible combination. Furthermore,
for problems with non-convex functions (such as MCTSM), non-
linear solvers are not guaranteed to find an optimal solution [48],
making NF_NS not necessarily optimal. As a result, instead of di-
rectly solving the nonlinear formulation, we investigated how to
transform the nonlinear formulation into a linear one. A linear
formulation can be solved optimally given the recent advances in
ILP solver technology [48]. We refer to this approach of solving
the nonlinear formulation using linear solvers as NF_LS (Nonlin-
earFormulation_LinearSolver) and describe it in the remainder of
this section.

To allow the use of linear solvers for NF_LS, we transform the
nonlinear MCTSM problem into a linear one by introducing new
“auxiliary” variables [7]. We demonstrate the approach using the
instantiation of the MCTSM problem in Section 3.2. We introduce
up to |F | × |T | new decision variables v̄i j defined as follows:

v̄i j = vi jdi j ti

v̄i j is a binary variable indicating whether a fault fj is revealed
by ti or any other previously selected test case: v̄i j is 1 if ti reveals
fj and is not revealed by the previously selected test cases, and 0
otherwise. Using the newly introduced variables, equation 8 can be
rewritten as follows:

min
|T |∑
i=1

(ti −
1
|F |

|F |∑
j=1

¯vi j) (15)

Notice that in this formulation, decision variables t are no longer
multiplied. However, the transformation has resulted in the intro-
duction of new decision variables v̄ . We add an additional set of
constraints to the model to avoid having an unselected test case
affect the minimized value of a solution. Specifically, v̄i j should
be subject to the selection of ti , i.e., v̄i j matters only when ti is
selected, resulting in the following constraints:

v̄i j ≤ ti , ∀fj revealed by ti (16)

These constraints illustrate that if a test case ti is not selected,
v̄i j is forced to be 0. However, if ti is selected, v̄i j could be either 1
or 0, depending on whether fj is revealed by the previously selected
test cases.

In addition, we add constraints to make the selected test cases
more diverse in terms of fj :

|T |∑
i=1

vi j v̄i j ≤ 1, 1 ≤ j ≤ |F | (17)

The constraints in (17) model our preference for selecting test
cases revealing faults that are not revealed by the previously se-
lected test cases: If a fault fj is revealed by a selected test case ti and
its v̄i j is set to 1, then for all other test cases revealing fj , their v̄i j
has to be 0. For example, for the constraint v̄21 + v̄31 ≤ 1 obtained
from equation 17, wherev21 = v31 = 1, only t2 or t3 can be selected
but not both.

To illustrate the proposed transformation (i.e., the objective func-
tion in equation 15 and additional constraints in equation 16 and
17), we apply it to the example of Table 1 (i.e., T = {t1, t2, t3},

F = { f1, f2, f3, f4}, and α1 = 1), and transform the nonlinear for-
mulation discussed in Section 3.2 to the following assignment:

minimize:

(t1 −
1
4
(v̄14))

+ (t2 −
1
4
(v̄21 + v̄22 + v̄23))

+ (t3 −
1
4
(v̄31 + v̄32 + v̄33))

under the constraints:
t1 + t3 ≥ 1 (or iдinal)

t2 ≥ 1 (or iдinal)

t2 + t3 ≥ 1 (or iдinal)

v̄14 ≤ t1 (f rom (16))
v̄21 ≤ t2, ¯v22 ≤ t2, ¯v23 ≤ t2 (f rom (16))
v̄31 ≤ t3, ¯v32 ≤ t3, ¯v33 ≤ t3 (f rom (16))
v̄21 + ¯v31 ≤ 1 (f rom (17))
v̄22 + ¯v32 ≤ 1 (f rom (17))
v̄23 + ¯v33 ≤ 1 (f rom (17))
v̄14 ≤ 1 (f rom (17))

Notice that the decision variables are no longer multiplied in
the objective function, making the formulation linear, while still
solving the nonlinear problem. The optimal solution for this trans-
formed linear problem is {t1, t2, ¯v14, ¯v21, ¯v22, ¯v23} with a minimal
value 1. This minimal value is identical to the optimal value for the
untransformed nonlinear problem. The computed solution for the
minimization problem (i.e., {t1, t2}) is also the optimal solution.

Optimality of NF_LS. NF_LS yields the optimal solution. The
usage of auxiliary variables to transform a nonlinear problem for-
mulation to a linear one is well studied in the literature and has been
proven to generate an equivalent formulation [7, 48]. After trans-
forming the nonlinear MCTSM problem to an instance of an ILP
problem, the optimal solution can be found by leveraging modern
solvers. Note that theMCTSM problem is known to be NP-complete,
which means that an optimal solution cannot be found in polyno-
mial time. However, that does not preclude modern solvers from
finding optimal solutions through utilization of branch and bound
and other algorithmic advancements for sizable problems [48]. That
is, ILP solvers do not guarantee to return a solution within a time
limit, but guarantee that the returned solution is optimal1.

4 IMPLEMENTATION
Figure 1 depicts our framework for solving the MCTSM problems
as implemented in our tool, called Nemo. The tool takes test-related
data and a configuration as input. Test-related data includes the
original test suite and the corresponding coverage data such as
statement and fault coverage of the test suite. In the configuration
file, users can specify the optimization and constraint criteria. Users
can also specify which of the three approaches (i.e., LF_LS, NF_NS,
and NF_LS) should be used in the minimization of the test suite.

The Formulator component takes the input and expresses the
minimization problem as an integer programming problem. For-
mulator is capable of representing the problem as either linear or
nonlinear, as well as transforming the nonlinear formulation into a
linear form. The output model can then be fed into external solvers
1In our experiments, we actually never encountered a problem for which NF_LS could
not find a solution.

5

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek

Figure 1: Overview of our approach

to compute the solution. For now our tool supports lp and ampl
formats, which many modern solvers, such as lp_solve [1], CPLEX
[13] and Couenne [12] use.

Once the solution for the encoded problem is computed, the
Generator component produces the minimized test suite in various
formats for presentation to the user. Currently, our tool handles
solutions generated by the aforementioned solvers and web services
using those solvers, such as the NEOS Server [14] and DropSolve [2].

The proposed tool is the only one of its kind to formulate and
consider the inherent nonlinearity of the MCTSM problem, and
is available for download [3]. In the next section, we evaluate our
approach using Nemo to answer a set of research questions.

5 EMPIRICAL EVALUATION
We assess three approaches for solving the MCTSM problem: LF_LS
(see Section 2), NF_NS (see Section 3.2), and NF_LS (see Section
3.3). For LF_LS, we reimplemented the technique in a tool called
MINTS proposed by Hsu and Orso [23]. We could not use the origi-
nal implementation of MINTS because the solvers it supports are
outdated and not scalable for our dataset. Using these approaches,
we investigate the following research questions:
RQ1. How does NF_LS compare against LF_LS with respect
to effectiveness and runtime performance? To assess this re-
search question, we use the size of the reduced test suite and the
satisfaction of the minimization criteria to characterize effective-
ness of each approach. For performance, we measure the time it
takes to solve each approach’s formulation of the problem.
RQ2. How does NF_LS compare against NF_NS with respect
to effectiveness and performance?Given that Nemo is the first
approach to model general test-suite minimization in a nonlinear
manner, we assess which nonlinear formulation is superior, or
whether there are empirical tradeoffs between the two versions
of Nemo.
RQ3. How does NF_LS scale in relation to the size of sub-
ject apps and test suites? NF_LS solves the nonlinear problem
optimally, which is a computationally expensive process. We in-
vestigate how the introduction of auxiliary variables impacts the
scalability of NF_LS.

5.1 Experimental Setup
Subject programs: Our experimental subjects include the follow-
ing five open-source C projects: Grep, Flex, Sed, Make, and Gzip,
collected from a publicly available dataset [21]. These programs are
well-known GNU software and widely used in software testing and

debugging research [6, 11, 21, 27, 38]. Each subject program in the
original dataset has five versions; we selected the latest version of
each program for our experiments. Table 2 depicts the following
detailed pieces of information about our subject programs: the se-
lected version, a description of the program, its size (LOC), and the
number of tests and faults available with each version.

Test suites: Each subject program in [21] comes with a test
suite and a set of faults. We augmented available test suites with
additional tests, since their coverage of the subject apps’ core func-
tions were low (i.e., average coverage was below 48%), and can
result in test suites that do not comprehensively test the subject
programs. To that end, we used KLEE [8] to ensure that subject test
suites achieve a coverage higher than 60% on average for the core
functions. To measure statement coverage of test suites, we used
gcov [17].

Faults: The original dataset [21] includes a set of faults for each
test suite. These faults are generated by injecting mutants and
purified by removing equivalent and duplicatemutants using Trivial
Compiler Equivalence [37] (TCE), a scalable and effective approach
to find equivalent and duplicate mutants that compares the machine
code of compiled mutants. We followed the same technique to
generate additional unique mutants for the newly generated tests
added to the dataset.

Minimization problems: We compare the minimization tech-
niques using the following three minimization problems: classic
bi-criteria, variant bi-criteria, and tri-criteria. A classical bi-criteria
test-suite minimization problem minimizes the test suite such that
statement coverage of the original test suite is maintained, while
maximizing its fault-detection ability. The variant bi-criteria prob-
lem is a classic bi-criteria problem whose segments of code (e.g.,
specific API calls, methods, or classes) are more important than
others, and thereby need to be covered multiple times. Examples of
scenarios where covering the same code segment multiple times are
important include energy testing [24], performance testing, or field-
failure reproduction [27]. The tri-criteria problem is a multi-criteria
minimization problem where the minimized test suite needs to sat-
isfy a budget constraint, while maximizing the statement coverage
and fault-detection ability of the test suite. Since available time
for regression testing is often an important constraint [35, 46, 51],
we consider execution time as the budget in our evaluation. Note
that for these two optimization criteria, i.e., statement coverage
and fault detection, NF_NS and NF_LS model dependencies among
test cases, while LF_LS does not. The weights for both optimization
criteria are the same in our experiments.

Solvers: We used CPLEX [13] and Couenne [12] as linear and
nonlinear solvers, respectively. For a fair performance comparison
of different solvers, we used these solvers on NEOS [14], a free web
service for solving numerical optimization problems.

5.2 RQ1: NF_LS vs. LF_LS
We assess the effectiveness and performance of each approach in
terms of the three MCTSM problems described in Section 5.1.

Effectiveness. We measured the effectiveness of each minimiza-
tion technique in terms of the size of reduced suites (#T) and corre-
sponding fault-detection ability, i.e., the number of faults detected
(#F). For our experiments, the same set of faults for each subject pro-
gram is used to evaluate the fault-detection ability of the reduced
suites, because the main objective of our evaluation is to show that
the non-linear formulation of the MCTSM problem can produce

6

Nemo: Multi-Criteria Test-Suite Minimization
with Integer Nonlinear Programming ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 2: Subject programs used in the empirical evaluation.
Program Version Description LOC # Tests # Faults
Grep 2.7 Pattern search and matching utility 58,344 746 54
Flex 2.5.4 Lexical analyzer 12,366 605 37
Sed 4.2 Command-line text editor 26,466 324 25
Make 3.80 Executables builder and generator 23,400 158 15
Gzip 1.3 Data compressor 5,682 397 56

Table 3: Effectiveness of different methods modeling the classic bi-criteria problem. %: the percentage improved by NF_LS
compared to LF_LS and NF_NS

Methods
Programs Grep Flex Sed Make Gzip

#T #F #T #F #T #F #T #F #T #F
(Original) 746 54 605 37 324 25 158 15 397 56
LF_LS 59 29 44 28 12 21 14 12 45 50
NF_LS 59 36 44 32 12 25 14 13 45 50
NF_NS n/a n/a 44 32 12 25 14 13 45 49

% NF_LS over LF_LS 0% 24.14% 0% 14.29% 0% 19.05% 0% 8.33% 0% 0%
% NF_LS over NF_NS n/a n/a 0% 0% 0% 0% 0% 0% 0% 2.04%

* n/a: the solver timed out after eight hours

a solution that is superior to its linear formulation. By comparing
the solutions produced from approaches using the same exact ver-
sion of software, faults, and coverage information, we are able to
unequivocally show the superiority of non-linear formulation to
linear formulation in a controlled setting.

Table3 shows the effectiveness of different minimization tech-
niques for solving the classic bi-criteria problem. These results
demonstrate that NF_LS achieves an equal or greater fault-detection
ability compared to LF_LS and the same test-suite size. More specif-
ically, the minimized suites of NF_LS detected 13% more faults on
average than those of LF_LS without compromising test-suite size.

We observed that the improvements achieved by NF_LS vary
among different subject programs. Intuitively, for an MCTSM prob-
lem, NF_LS works better than LF_LS if test cases for the same
constraint criterion (e.g., covering the same statement) satisfy an
optimization criterion in a different way (e.g., revealing different
faults). For instance, in the example of Table 1, t1 and t3 both cover
stmt1, but reveal different faults (f4 for t1; f1, f2, and f3 for t3). As a
result, this difference in fault-revealing ability can be identified by
the nonlinear formulation when it selects a test case for covering
stmt1 in the minimization process.

To investigate the aforementioned property in our experimental
dataset, we clustered test cases by the statements they covered for
each subject program. Then, we calculated average similarity of
faults revealed among the tests in the same cluster, using the Jaccard
similarity metric [25]. Jaccard formulates the similarity between
two sets, A and B, as follows:

J (A,B) =
|A ∩ B |

|A ∪ B |

In our experiments, A and B are two sets of faults covered by
two tests within the same cluster. For example, suppose tests t1
and t2 cover the same set of statements, causing the tests to be
clustered together. If execution of t1 reveals A = { f1, f2}, and t2
reveals B = { f2, f3}, the Jaccard similarity for these two tests are
computed as J (A,B) = 1

3 .
For a given a program, effectiveness of the nonlinear formula-

tion will degrade as the average similarity among all clusters in

Table 4: Average Jaccard Similarity of the fault sets revealed
by the test cases covering the same set of statements

Program Grep Flex Sed Make Gzip
Similarity 0.8394 0.9762 0.9804 0.9219 1.0000

that program approaches 1. This effect occurs since tests cover-
ing the same statements also cover increasingly similar faults. As
that average similarity approaches 0, the nonlinear formulation
performs more effectively, i.e., tests covering the same statements
cover increasingly different faults.

Table 4 shows the Jaccard similarity calculated for each subject
program. To obtain these results, we first calculated the similarity
between each pair of test cases in the same cluster. We then com-
puted the average similarity among all pairs within a cluster. For
Gzip, the similarity is 1, and the nonlinear formulations obtains no
improvement in the number of faults revealed, as shown in Table 3.
However, in the case of Grep, the average similarity among all clus-
ters is 0.8394, the lowest similarity among all programs, and also
obtains the greatest improvement in the number of faults revealed,
as shown in Table 3. Note that the effectiveness of the nonlinear
formulation is also influenced by other factors (e.g., total number
of faults) and hence cannot be solely predicted by fault similarity.

For the variant bi-criteria problem, the goal is to maximize the
fault-detection ability of the reduced suite, while maintaining the
same statement coverage. Additionally, we selected the top 10%
of statements executed most frequently to identify the potentially
most important statements to execute. For each of these statements,
we forced them to be executed at least 10% of the number of times
they were executed by the entire test suite. Table 5 shows the ef-
fectiveness of different minimization techniques on the variant
bi-criteria problem. These results demonstrate that NF_LS’s test
suites have a superior fault-detection ability than LF_LS’s test suites
for all subject programs. Specifically, the reduced suites of NF_LS de-
tected 17% more faults on average than the suites of LF_LS without
increasing the size of the test suite.

For the tri-criteria problem, we formulated the problem to con-
strain the sizes of the reduced suites to 5%, 10%, 15%, and 20%, and to
maximize the statement coverage and fault-detection effectiveness
with the same weights. Given that even test suites of only 20KLOC

7

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek

Table 5: Effectiveness of different methods modeling the variant bi-criteria problem. %: the percentage improved by NF_LS
compared to LF_LS and NF_NS

Methods
Programs Grep Flex Sed Make Gzip

#T #F #T #F #T #F #T #F #T #F
(Original) 746 54 605 37 324 25 158 15 397 56
LF_LS 80 38 66 33 32 22 17 13 58 51
NF_LS 80 54 66 37 32 25 17 15 58 52
NF_NS n/a n/a n/a n/a n/a n/a 17 15 n/a n/a

% NF_LS over LF_LS 0% 42.11% 0% 12.12% 0% 13.64% 0% 15.38% 0% 1.96%
% NF_LS over NF_NS n/a n/a n/a n/a n/a n/a 0% 0% n/a n/a

* n/a: the solver timed out after eight hours

Table 6: Effectiveness of different methods modeling the tri-criteria problem. %: the percentage improved by NF_LS compared
to LF_LS

Size
constraint Methods

Programs Grep Flex Sed Make Gzip
#T #Stmt #F #T #Stmt #F #T #Stmt #F #T #Stmt #F #T #Stmt #F

(Original) 746 1695 54 605 3143 37 324 945 25 158 3803 15 397 1409 56

5%
LF_LS 37 1302 29 30 2093 14 16 847 18 8 3665 10 20 540 25
NF_LS 37 1635 54 30 3094 37 16 945 25 8 3779 15 20 1343 56

% NF_LS over LF_LS 0% 25.58% 86.21% 0% 47.83% 164.29% 0% 11.57% 38.89% 0% 3.11% 50.00% 0% 148.70% 124.00%

10%
LF_LS 75 1302 29 61 2469 18 32 860 18 16 3676 10 40 540 25
NF_LS 75 1695 54 61 3143 37 32 945 25 16 3803 15 40 1400 56

% NF_LS over LF_LS 0% 30.18% 86.21% 0% 27.30% 105.56% 0% 9.88% 38.89% 0% 3.45% 50.00% 0% 159.26% 124.00%

15%
LF_LS 112 1325 33 91 2603 23 49 905 19 24 3703 12 60 541 25
NF_LS 112 1695 54 91 3143 37 49 945 25 24 3803 15 60 1409 56

% NF_LS over LF_LS 0% 27.92% 63.64% 0% 20.75% 60.87% 0% 4.42% 31.58% 0% 2.70% 25.00% 0% 160.44% 124.00%

20%
LF_LS 149 1330 34 121 2695 24 65 906 19 32 3703 12 79 541 25
NF_LS 149 1695 54 121 3143 37 65 945 25 32 3803 15 79 1409 56

% NF_LS over LF_LS 0% 27.44% 58.82% 0% 16.62% 54.17% 0% 4.30% 31.58% 0% 2.70% 25.00% 0% 160.44% 124.00%

can take weeks to run [40], selecting test suites that are a fraction of
the total number of existing test cases is a sensible testing strategy.

The results for this experiment are depicted in Table 6. Our
results demonstrate that NF_LS consistently outperforms LF_LS for
all subject apps and size constraints. Particularly, test suites reduced
by NF_LS executed 45% more statements and 73% more faults than
the suites by LF_LS on average. We can see that the improvement
achieved by NF_LS in this problem is larger than the previous two
problems. This could be attributed to the looser constraints in this
problem and hence the larger solution space for all the techniques.
For instance, given that the constraint is to reduce the test suite
of Grep to 5%, the size of the solution space for this problem is(746

37
)
≈ 5.73 × 1062. If there are more constraints, e.g., constraints

for statements such as those included in the previous problems, the
solution space would be further limited, because some solutions in
it do not satisfy the additional constraints. As the solution space
grows larger, the effectiveness gap between the solutions returned
by NF_LS and LF_LS is expected to increase.

Performance. Tables 7 and 8 showcase the execution times that
solvers of different approaches took to solve the classic bi-criteria
and the variant bi-criteria problems, respectively. We retrieved the
results from reports generated by NEOS [14]. These results demon-
strate that NF_LS can solve these two problems as efficiently as
LF_LS does, and the solutions for all subject apps were found within
a second.

For the tri-criteria problem, we were not able to submit the model
files to NEOS due to its size limitations for uploaded files. We thus
ran the solver locally, and report the execution times in Table 9.
These results indicate that NF_LS takes a longer time than LF_LS
to solve the problem. The difference between the performance

Table 7: Performance of different methods modeling the
classic bi-criteria problem

Methods
Programs Solving Time in Seconds

Grep Flex Sed Make Gzip
LF_LS 1 1 1 1 1
NF_LS 1 1 1 1 1
NF_NS n/a 1708 21854 20 2813

* n/a: the solver timed out after eight hours
Table 8: Performance of different methods modeling the
weighted bi-criteria problem

Methods
Programs Solving Time in Seconds

Grep Flex Sed Make Gzip
LF_LS 1 1 1 1 1
NF_LS 1 1 1 1 1
NF_NS n/a n/a n/a 530 n/a

* n/a: the solver timed out after eight hours
Table 9: Performance of different methods modeling the tri-
criteria problem with a 10% size constraint

Methods
Programs Solving Time in Seconds

Grep Flex Sed Make Gzip
LF_LS 1 1 1 1 1
NF_LS 14099 43608 2976 2673 1565

of NF_LS and LF_LS for the tri-criteria problem comes from the
higher complexity of the problem compared with the first two
minimization problems. While those two problems have a single
optimization criterion (i.e., maximizing fault-detection ability), the
tri-criteria problem has an additional optimization criterion (i.e.,
maximizing statement coverage). To solve this significantly more
complex problem, auxiliary variables in the range of hundreds of
thousands were introduced in NF_LS because there are thousands of

8

Nemo: Multi-Criteria Test-Suite Minimization
with Integer Nonlinear Programming ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

statements for the subject apps. Nevertheless, the optimal solution
found by NF_LS for this tri-criteria problem, as shown in Table 6,
vastly outperforms the solution found by LF_LS. For Gzip under
a 10% size constraint, LF_LS solved the problem within a second,
while NF_LS took about 26 minutes. However, the suite reduced by
NF_LS executed 159% more statements and 124% more faults than
the suite reduced by LF_LS.

Although NF_LS takes longer to produce a solution, the approach
produces immensely improved solutions. For instance, testers may
run NF_LS for a few minutes to hours rather than a few seconds
in the case of LF_LS, but they obtain a solution that reveals much
more faults with fewer tests which, in turn, can save engineers’
time and effort from having to examine and run more tests.

5.3 RQ2: NF_LS vs. NF_NS
Similar to the previous RQ, we compared NF_LS and NF_NS in
terms of effectiveness and performance. We further discuss the
advantages or disadvantages of selecting among the two nonlinear
approaches, based on our empirical results.

Effectiveness. Table 3 shows that, for the classic bi-criteria prob-
lem, NF_NS was able to find the optimal solutions for only three
subject programs—Flex, Sed, and Make. The solver timed out af-
ter eight hours for Grep, and returned a suboptimal solution for
Gzip. Table 5 further shows that, for the variant bi-criteria problem,
NF_NS only found the optimal solution for Make, and the solver
timed out after eight hours for other subject programs. We do not
report the effectiveness of NF_NS for the tri-criteria problem, be-
cause we were not able to use NEOS to solve it due to the size
limitation of NEOS for uploaded files. The reported results indicate
that, as expected, the nonlinear solver is not guaranteed to find
an optimal solution for the nonlinear formulation if the objective
function is non-convex [48]. However, NF_LS can optimally solve
MCTSM problems formulated nonlinearly.

Performance. For the classic bi-criteria problem, Table 7 shows
NF_NS takes much longer time to solve the problem than NF_LS.
While NF_LS solved the problem within a second for all subject
apps, the solver used by NF_NS timed out for Grep, and took from
20 seconds to six hours to finish. For the variant bi-criteria problem,
Table 8 indicates that NF_NS was able to finish only for Make, and
the solver timed out for other subjects. The results indicate that,
off-the-shelf nonlinear solvers cannot solve MCTSM problems in a
timely manner, which confirms the need to transform the nonlinear
problem formulation to a linear one. Overall, NF_LS is superior to
NF_NS in terms of both effectiveness and performance.

5.4 RQ3: Scalability
Given NF_LS’s superior performance over NF_NS, we focus on
studying the scalability of NF_LS. Specifically, we investigate the
manner in which NF_LS scales with respect to the size of subject
programs and test suites. Intuitively, the time NF_LS takes to solve a
minimization problem depends on the complexity of the formulated
model, in terms of the number of decision variables and constraints.
This complexity is determined by the characteristics of the problem
(e.g., number of test cases, requirements, and criterion entities).

We conducted a sensitivity analysis of NF_LS on the tri-criteria
problem, i.e., the most complicated problem in our evaluation. For
each program, starting from the size of 20% of the test suite, we
gradually increased the size of test suites to 100%, and reported (1)
the number of variables in the formulation, and (2) the execution

Figure 2: Sensitivity of the test-suite size to number of vari-
ables for Nemo on the tri-criteria problem

Figure 3: Sensitivity of the test-suite size to solving time for
Nemo on the tri-criteria problem

time for solving the problem. We repeated the experiments 30 times
and reported the average with a 95% confidence interval.

Figure 2 depicts the relation between the size of a test suite and
the number of variables used in the problem formulation. While
the number of variables range in the hundreds of thousands for
each problem, the number grows linearly, as does the size of the
test suite.

Figure 3 depicts the relation between the size of a test suite and
solver execution time. As the size of a test suite grows linearly, the
time required to find an optimal solution increases exponentially.
Nevertheless, NF_LS is optimal, and can be adopted to compute op-
timal solutions as efficiently as LF_LS for simpler MCTSM problems,
such as the classic bi-criteria and variant bi-criteria problems, and
optimally solves practical, complex problems, such as the tri-criteria
problem, in a reasonable amount of time.

6 RELATEDWORK
Single-criterion test-suite minimization problem. A signifi-
cant number of previous studies have examined obtaining the min-
imal subset of the original test suite that satisfies the original test
requirements [9, 10, 20, 28, 32, 36, 45]. Chvatal [10] proposes a clas-
sical greedy heuristic that iteratively selects test cases covering
most unsatisfied requirements until all requirements are covered.
Harrold et al. [20] present a greedy heuristic that considers the test-
ing sets that satisfy each test requirement, and repeatedly selects
test cases from the testing sets with minimal cardinality. Chen and
Lau [9] propose another heuristic that identifies two special kinds
of test cases from the original suite: essential and 1-to-1 redundant.
The approach iteratively picks essential, removes 1-to-1 redundant,

9

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Jun-Wei Lin, Reyhaneh Jabbarvand, Joshua Garcia, and Sam Malek

and greedily selects test cases covering a maximal number of unsat-
isfied requirements. Offutt et al. [36] propose a heuristic combining
different test execution orderings, i.e., forward, reverse, and inside-
out, to reduce the size of test suites while maintaining the mutation
score or statement coverage achieved by the original suites. An-
other heuristic by Tallam and Gupta, called Delayed-Greedy [45],
is based on Formal Concept Analysis and combines both perspec-
tives of test cases and requirements. Their experiments show that
Delayed-Greedy can achieve equal or better size reduction than pre-
vious heuristics. By formulating the problem as finding a spanning
set over a graph, Marre and Bertolino [32] propose a technique to
reduce the number of test cases required to satisfy the requirements.
Leitner et al. [28] propose a technique combining program slicing
and delta debugging to minimize failing test cases in randomized
unit test generation, which is focused on reducing individual test
cases rather than the sizes of test suites. All of these approaches
focus on a single criterion and generate approximate solutions.

Multi-criteria test-suite minimization problem.While pre-
vious approaches can be adopted to efficiently find a solution, a
major concern of single-criterion minimization is that minimizing
a test suite could severely compromise its ability to reveal faults
[39, 49]. To account for additional criteria, such as fault-detection
capability, several approaches have been developed that consider
additional information including hybrid combinations of different
coverage criteria [41] in the minimization process and generating a
reduced suite which has better effectiveness with respect to various
criteria, such as fault detection [4, 5, 15, 18, 19, 26, 31, 33, 34, 42–44]
and energy consumption [24, 30].

With respect to improving fault-detection effectiveness of the
reduced suite, a few techniques are heuristics-based. Jeffery and
Gupta [26] propose a heuristic that selectively picks redundant test
cases for the reduced suite by using additional coverage informa-
tion. A heuristic by Lin and Huang [31] uses an additional testing
criterion to break ties in the minimization process.

In addition to the heuristics, ILP is adopted to compute solutions
for the problem. Black et al. [5] formulate the problem as a binary
ILP model. They directly take the fault-revealing ability of test cases
into account, encode it into the objective function, and compute a
solution for the problem using an ILP solver. Hao et al. [19] collect
statistics on fault-detection loss at the statement level, and encode
the information into the constraints of the formulated ILP model
to control the fault-detection loss of the reduced suite.

Another set of previous work considers other aspects of minimiz-
ing a test suite while maximizing its fault-detection capability. This
work includes using different coverage criteria such as call-stack
coverage [33], adopting different reduction algorithms [42, 44]—or
applying techniques such as delta-debugging [18], non-adequate
reduction [4] (i.e., only a certain percentage of the original cover-
age is retained), or a combination of test reduction and selection
[43]. Other work also addresses the trade-offs specific for reused
software [34] and an industrial system [15].

With respect to criteria other than fault-revealing capability, Li
et al. [30] take energy consumption of test cases into consideration,
and adopt an integer programming approach to generate minimized
test suites which are energy-efficient for post-deployment testing
on embedded systems. Similarly, Jabbarvand et al. [24] propose an
integer programming approach as well as a greedy algorithm to
minimize test suites while trying to maintain the capability of the
reduced suites to reveal energy bugs.

Unlike Nemo, all of these MCTSM approaches focus on specific
bi-criteria problems and do not allow testers to specify a wide range
of MCTSM problems, cannot compute optimal solutions for them,
and cannot deal with dependencies between test cases over any
testing criteria.

Hsu and Orso [23] proposed MINTS, a framework for MCTSM,
that is able to accommodate an arbitrary number of objectives and
provides flexibility for testers to combine, weight, and prioritize
their objectives. Recall that LF_LS is a re-implementation of MINTS,
since the original implementation uses outdated solvers and does
not scale to our experimental dataset (see Section 5). Their approach
formulates the problem as one or more ILP problems, in which the
test requirements are encoded as constraints, and the objectives can
be either associated as weights in objective functions, or prioritized
as invocation orders of ILP problems. While their work focuses on
a generalized approach for MCTSM, their problem formulation is
linear, which, as shown both in theory (Section 2) and empirically
(Section 5) in this paper, produces sub-optimal solutions, due to the
inability to model dependencies among test cases over specified
criteria, which must be modeled nonlinearly.

7 CONCLUSION AND FUTUREWORK
Multi-criteria test-suite minimization techniques help reduce the
cost of regression testing by removing redundant tests based on
some criteria, while trying to optimally keep the capability of the re-
duced suite in terms of other criteria. All of the existing approaches
suffer from at least one of the two shortcomings discussed in this
paper: (1) they either use heuristic algorithms or ignore test-case
dependencies among minimization criteria, and hence generate
approximate or suboptimal solutions; and (2) they handle minimiza-
tion problems involving only limited and pre-specified criteria.

In this paper, we proposed a general framework for the multi-
criteria test-suite minimization problem. Our approach takes into
account the inherent nonlinearity of the problem, and models it
using integer nonlinear programming. To solve the nonlinear formu-
lation optimally, we developed a technique that programmatically
transforms it to a linear form, so that modern ILP solvers can be
leveraged. We have implemented our approach as a tool, called
Nemo, and empirically evaluated it. Our experimental results show
that Nemo can be used to find optimal solutions for several min-
imization problems within a reasonable time. Nemo was able to
produce reduced test suites that could execute up to 159% more
statements and detect 124% more faults than those produced using
prior work.

An interesting direction for future work is to investigate appli-
cability of our approach in other test maintenance activities, such
as test selection and prioritization. We also plan to conduct experi-
ments involving more complex criteria, such as MC/DC, to assess
the effectiveness of a nonlinear approach in satisfying such criteria
in test-suite minimization. Finally, we plan to empirically evaluate
the fault-detection ability of the reduced test suites when executed
on previously unseen faults.

ACKNOWLEDGEMENT
This work was supported in part by awards CCF-1252644, CNS-
1629771 and CCF-1618132 from the National Science Foundation,
HSHQDC-14-C-B0040 from the Department of Homeland Security,
and FA95501610030 from the Air Force Office of Scientific Research.

10

Nemo: Multi-Criteria Test-Suite Minimization
with Integer Nonlinear Programming ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

REFERENCES
[1] http://lpsolve.sourceforge.net/5.5/
[2] https://dropsolve-oaas.docloud.ibmcloud.com/
[3] http://www.ics.uci.edu/~seal/projects/nemo/index.html
[4] Mohammad Amin Alipour, August Shi, Rahul Gopinath, DarkoMarinov, and Alex

Groce. 2016. Evaluating Non-adequate Test-case Reduction. In Proceedings of the
31st IEEE/ACM International Conference on Automated Software Engineering (ASE
2016). ACM, New York, NY, USA, 16–26. https://doi.org/10.1145/2970276.2970361

[5] J. Black, E. Melachrinoudis, and D. Kaeli. 2004. Bi-criteria models for all-uses
test suite reduction. In Proceedings. 26th International Conference on Software
Engineering. 106–115. https://doi.org/10.1109/ICSE.2004.1317433

[6] Marcel Böhme andAbhik Roychoudhury. 2014. CoREBench: Studying Complexity
of Regression Errors. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis (ISSTA 2014). ACM, New York, NY, USA, 105–115.
https://doi.org/10.1145/2610384.2628058

[7] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge
university press.

[8] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 209–224.
http://dl.acm.org/citation.cfm?id=1855741.1855756

[9] Tsong Yueh Chen andMan Fai Lau. 1996. Dividing Strategies for the Optimization
of a Test Suite. Inf. Process. Lett. 60, 3 (Nov. 1996), 135–141. https://doi.org/10.
1016/S0020-0190(96)00135-4

[10] V. Chvatal. 1979. A Greedy Heuristic for the Set-Covering Problem. Math. Oper.
Res. 4, 3 (Aug. 1979), 233–235. https://doi.org/10.1287/moor.4.3.233

[11] Domenico Cotroneo, Roberto Pietrantuono, and Stefano Russo. 2013. A Learning-
based Method for Combining Testing Techniques. In Proceedings of the 2013
International Conference on Software Engineering (ICSE ’13). IEEE Press, Piscat-
away, NJ, USA, 142–151. http://dl.acm.org/citation.cfm?id=2486788.2486808

[12] Couenne. Retrieved July 27, 2017 from https://projects.coin-or.org/Couenne/
[13] IBM ILOG CPLEX. Retrieved July 27, 2017 from https://www-01.ibm.com/

software/commerce/optimization/cplex-optimizer/
[14] J. Czyzyk, M. P. Mesnier, and J. J. More. 1998. The NEOS Server. IEEE Computa-

tional Science and Engineering 5, 3 (Jul 1998), 68–75. https://doi.org/10.1109/99.
714603

[15] Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. 2015.
Coverage-based regression test case selection, minimization and prioritization: a
case study on an industrial system. Software Testing, Verification and Reliability
25, 4 (2015), 371–396.

[16] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co.

[17] Gcov. Retrieved July 27, 2017 from https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
[18] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen, and John

Regehr. 2016. Cause Reduction: Delta Debugging, Even Without Bugs. Softw.
Test. Verif. Reliab. 26, 1 (Jan. 2016), 40–68. https://doi.org/10.1002/stvr.1574

[19] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and G. Rothermel. 2012. On-demand
test suite reduction. In 2012 34th International Conference on Software Engineering
(ICSE). 738–748. https://doi.org/10.1109/ICSE.2012.6227144

[20] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993. A Methodology for
Controlling the Size of a Test Suite. ACM Trans. Softw. Eng. Methodol. 2, 3 (Jul
1993), 270–285. https://doi.org/10.1145/152388.152391

[21] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing White-box and Black-box Test Prioritization. In Proceedings
of the 38th International Conference on Software Engineering (ICSE ’16). ACM,
523–534. https://doi.org/10.1145/2884781.2884791

[22] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. 2015.
The Art of Testing Less Without Sacrificing Quality. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press,
483–493. http://dl.acm.org/citation.cfm?id=2818754.2818815

[23] H. Y. Hsu and A. Orso. 2009. MINTS: A general framework and tool for supporting
test-suite minimization. In 2009 IEEE 31st International Conference on Software
Engineering. 419–429. https://doi.org/10.1109/ICSE.2009.5070541

[24] Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam Malek. 2016.
Energy-aware Test-suite Minimization for Android Apps. In Proceedings of the
25th International Symposium on Software Testing and Analysis (ISSTA 2016). ACM,
425–436. https://doi.org/10.1145/2931037.2931067

[25] P. Jaccard. 1901. Distribution de la flore alpine dans le bassin des Dranses et dans
quelques régions voisines. Bulletin de la Société Vaudoise des Sciences Naturelles
37 (1901), 241–272.

[26] Dennis Jeffrey and Neelam Gupta. 2007. Improving Fault Detection Capability by
Selectively Retaining Test Cases During Test Suite Reduction. IEEE Trans. Softw.
Eng. 33, 2 (Feb 2007), 108–123. https://doi.org/10.1109/TSE.2007.18

[27] Wei Jin and Alessandro Orso. 2012. BugRedux: Reproducing Field Failures for In-
house Debugging. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 474–484. http://dl.acm.
org/citation.cfm?id=2337223.2337279

[28] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand Meyer.
2007. Efficient Unit Test Case Minimization. In Proceedings of the Twenty-second

IEEE/ACM International Conference on Automated Software Engineering (ASE ’07).
ACM, New York, NY, USA, 417–420. https://doi.org/10.1145/1321631.1321698

[29] H. K. N. Leung and L. White. 1991. A cost model to compare regression test
strategies. In Proceedings. Conference on Software Maintenance 1991. 201–208.
https://doi.org/10.1109/ICSM.1991.160330

[30] Ding Li, Yuchen Jin, Cagri Sahin, James Clause, and William G. J. Halfond. 2014.
Integrated Energy-directed Test Suite Optimization. In Proceedings of the 2014
International Symposium on Software Testing and Analysis (ISSTA 2014). ACM,
339–350. https://doi.org/10.1145/2610384.2610414

[31] Jun-Wei Lin and Chin-Yu Huang. 2009. Analysis of test suite reduction with
enhanced tie-breaking techniques. Information and Software Technology 51, 4
(Apr 2009), 679–690. https://doi.org/10.1016/j.infsof.2008.11.004

[32] M. Marre and A. Bertolino. 2003. Using spanning sets for coverage testing.
IEEE Transactions on Software Engineering 29, 11 (Nov 2003), 974–984. https:
//doi.org/10.1109/TSE.2003.1245299

[33] Scott McMaster and Atif M. Memon. 2008. Call-Stack Coverage for GUI Test-Suite
Reduction. IEEE Trans. Softw. Eng. (2008).

[34] Breno Miranda and Antonia Bertolino. 2017. Scope-aided test prioritization,
selection and minimization for software reuse. Journal of Systems and Software
131 (2017), 528 – 549. https://doi.org/10.1016/j.jss.2016.06.058

[35] S. Mirarab, S. Akhlaghi, and L. Tahvildari. 2012. Size-Constrained Regression Test
Case Selection Using Multicriteria Optimization. IEEE Transactions on Software
Engineering 38, 4 (Jul 2012), 936–956. https://doi.org/10.1109/TSE.2011.56

[36] A Jefferson Offutt, Jie Pan, and Jeffrey M Voas. 1995. Procedures for reducing the
size of coverage-based test sets. In In Proc. Twelfth Int’l. Conf. Testing Computer
Softw.

[37] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial Com-
piler Equivalence: A Large Scale Empirical Study of a Simple, Fast and Effective
Equivalent Mutant Detection Technique. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE ’15). IEEE Press, Piscataway,
NJ, USA, 936–946. http://dl.acm.org/citation.cfm?id=2818754.2818867

[38] Justyna Petke, Shin Yoo, Myra B. Cohen, and Mark Harman. 2013. Efficiency and
Early Fault Detection with Lower and Higher Strength Combinatorial Interaction
Testing. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE 2013). ACM, New York, NY, USA, 26–36. https://doi.org/
10.1145/2491411.2491436

[39] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong. 1998. An empirical study
of the effects of minimization on the fault detection capabilities of test suites.
In Proceedings. International Conference on Software Maintenance. 34–43. https:
//doi.org/10.1109/ICSM.1998.738487

[40] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. 2001. Prioritizing
test cases for regression testing. IEEE Transactions on Software Engineering 27, 10
(Oct 2001), 929–948. https://doi.org/10.1109/32.962562

[41] S. Sampath, R. Bryce, and A. M. Memon. 2013. A Uniform Representation of
Hybrid Criteria for Regression Testing. IEEE Transactions on Software Engineering
39, 10 (Oct 2013), 1326–1344. https://doi.org/10.1109/TSE.2013.16

[42] August Shi, Alex Gyori, Milos Gligoric, Andrey Zaytsev, and Darko Marinov.
2014. Balancing Trade-offs in Test-suite Reduction. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
(FSE 2014). ACM, New York, NY, USA, 246–256. https://doi.org/10.1145/2635868.
2635921

[43] August Shi, Tifany Yung, Alex Gyori, and Darko Marinov. 2015. Comparing and
Combining Test-suite Reduction and Regression Test Selection. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015).
ACM, New York, NY, USA, 237–247. https://doi.org/10.1145/2786805.2786878

[44] S. Sprenkle, Sreedevi Sampath, E. Gibson, L. Pollock, and A. Souter. 2005. An
empirical comparison of test suite reduction techniques for user-session-based
testing of Web applications. In 21st IEEE International Conference on Software
Maintenance (ICSM’05). 587–596. https://doi.org/10.1109/ICSM.2005.18

[45] Sriraman Tallam and Neelam Gupta. 2005. A Concept Analysis Inspired Greedy
Algorithm for Test Suite Minimization. In Proceedings of the 6th ACM SIGPLAN-
SIGSOFTWorkshop on Program Analysis for Software Tools and Engineering (PASTE
’05). ACM, New York, NY, USA, 35–42. https://doi.org/10.1145/1108792.1108802

[46] Kristen R. Walcott, Mary Lou Soffa, Gregory M. Kapfhammer, and Robert S. Roos.
2006. TimeAware Test Suite Prioritization. In Proceedings of the 2006 International
Symposium on Software Testing and Analysis (ISSTA ’06). ACM, New York, NY,
USA, 1–12. https://doi.org/10.1145/1146238.1146240

[47] H Paul Williams. 2013. Model building in mathematical programming. John Wiley
& Sons.

[48] L. A. Wolsey. 1998. Integer programming. Wiley-Interscience, New York, NY,
USA.

[49] W. Eric Wong, Joseph R. Horgan, Saul London, and Aditya P. Mathur. 1995. Effect
of Test Set Minimization on Fault Detection Effectiveness. In Proceedings of the
17th International Conference on Software Engineering (ICSE ’95). ACM, 41–50.
https://doi.org/10.1145/225014.225018

[50] S. Yoo and M. Harman. 2012. Regression Testing Minimization, Selection and
Prioritization: A Survey. Softw. Test. Verif. Reliab. 22, 2 (Mar 2012), 67–120.
https://doi.org/10.1002/stv.430

[51] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei. 2009. Time-Aware
Test-Case Prioritization using Integer Linear Programming. In Proc. International
Conference on Software Testing and Analysis (ISSTA 2009).

11

