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Abstract—As a software system evolves, its architecture tends to decay, leading to the occurrence of architectural elements that

become resistant to maintenance or prone to defects. To address this problem, engineers can significantly benefit from determining

which architectural elements will decay before that decay actually occurs. Forecasting decay allows engineers to take steps to prevent

decay, such as focusing maintenance resources on the architectural elements most likely to decay. To that end, we construct novel

models that predict the quality of an architectural element by utilizing multiple architectural views (both structural and semantic) and

architectural metrics as features for prediction. We conduct an empirical study using our prediction models on 38 versions of five

systems. Our findings show that we can predict low architectural quality, i.e., architectural decay, with high performance—even for

cases of decay that suddenly occur in an architectural module. We further report the factors that best predict architectural quality.

Index Terms—Software architecture, prediction model, architectural smell, architectural decay
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1 INTRODUCTION

IN a software system’s life cycle, software maintenance
tends to dominate other activities in terms of time, effort,

and cost [1], [2], [3], [4]. Throughout that life cycle, a major
artifact that must undergo maintenance in a long-lived soft-
ware system is its architecture, which determines the key
properties of a software system. Such maintenance activities
include determining the system’s current architecture,
refactoring or restructuring it, or assessing its current ability
to achieve its non-functional properties. Architectural ele-
ments abstract away unnecessary complexity (e.g., details
of source-code constructs), allowing engineers to focus on
higher-level design decisions. However, a software system’s
architecture is known to commonly undergo the phenome-
non of architectural decay [5], where design decisions are
added to and may even violate an architecture, leading to
defects and other major architectural problems.

Although decay is typically treated once its detrimental
effects (e.g., highly defective component or one that is
highly resistant to change) are detected in a system, engi-
neers can benefit from stemming architectural decay before
such effects occur. To make such a determination, engineers
would significantly benefit from predicting which architec-
tural elements are most likely to undergo decay so that they
can allocate resources to those elements in the most effective
manner. Previous work has produced models for predicting
only defects for packages or directories [6], [7], [8].

However, defects are not the only forms of architectural
decay [9], [10]. Futhermore, packages represent a structural
view of the architecture [11]. A structural view is an archi-
tectural view drawn from packages, directories, or control-
or data-flow based dependencies among code-level ele-
ments [12], [13], [14], [15]. This structural view is one of sev-
eral architectural views that represent code organization
structure in software architecture, dating back to Kruchten’s
seminal 4+1 view model of software architecture [11], [16],
[17]. For example, Kruchten’s 4+1 view model referred to
this view as the Development view, while Clements et al.
referred to this view as the Module Viewtype.

Although such a view is valuable for determining decay,
a semantic view of the architecture is needed to identify
decay involving the concerns attributed to different archi-
tectural elements (e.g., one component handles job tracking,
while another component handles filesystem management).
A semantic view is an architectural view drawn from the
words and terms in a software system, often obtained using
some form of information retrieval or natural language
processing [12], [13], [14], [15].

To stem architectural decay, engineers can significantly
benefit from predicting a variety of constructs related to
architectural quality—including indicators of architectural
decay, i.e., architectural bad smells [9], [10], and the quality of
an architecture’s modularization [18]. Architectural bad
smells—which are patterns of architectural constructs that
may negatively affect the maintenance of software sys-
tems—reduce the quality of a software system’s architecture
but do not constitute a defect that should be fixed in all
cases. We take a software defect to be a mistake that does
not meet the software system’s specification and can result
in unintended behavior [19]. Smells do not introduce func-
tional bugs or effect software behavior, instead they affect
maintainability. Determining that an architectural module
is decaying, even before it is involved in an architectural
smell or exhibits low modularization quality, can reduce
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maintenance time and effort. By predicting architectural
decay ofmodules, an engineer or architect can proactively use
information about specific decay to prevent its occurrence.
For instance, if the prediction technique indicates that a mod-
ule will soon handle too many concerns or be involved in too
many dependencies, engineers and architects can work
together to ensure that best practices (e.g., use of design pat-
terns that encourage separation of concerns) are followed to
prevent thatmodule frombeing bloated.

To forecast architectural decay, we construct novel mod-
els that predict the quality of an architectural element (i.e.,
architectural module) by utilizing multiple architectural
views (both structural and semantic) and architectural met-
rics as features for prediction. To obtain multiple architec-
tural perspectives, we utilize two module-level views: a
package-level view and a semantic view, obtained by
leveraging an information retrieval-based technique [20],
[21] shown to work accurately based on the latest evalua-
tions of techniques for recovering a software system’s archi-
tecture [21], [22], [23]. Our architectural-quality prediction
models utilize an effective set of prediction metrics (i.e., file-
level metrics, smell-based metrics, and architectural met-
rics) and metrics for representing architectural quality at
the module level (i.e., defects, smell-based metrics, and
modularization quality). Each architectural view provides
an alternative perspective that can be used to prioritize
architectural modules and allocate resources to them for
maintenance purposes.

We conduct our study on 38 versions of 5 open-source
Java systems from the Apache Software Foundation. The
overarching findings of our experiments are as follows:

� Our models can predict low architectural quality,
indicating decay, with high performance. Specifi-
cally, our models can predict defectiveness of mod-
ules with AUC (area under the curve of the receiver
operating characteristic, which is a measure of a pre-
dictive model’s performance) results of 0.76-0.88 and
the occurrence of architectural smells in modules
with AUC of 0.84-1.0. Furthermore, our models can
rank modules with high accuracy based on their
numbers of defects (as represented by Spearman cor-
relation results of 0.48-0.73) and their modularization
quality (as represented by a Spearman correlation of
0.70-0.98). All the Spearman correlations we report
are significant at the 0.01 level.

� Although at most 12 percent of modules exhibit smell
emergence—which represent sudden occurrence of
smells in modules—we are still able to predict these
instances of smell emergence with AUC of 0.79-0.96.

� We investigatewhich factors are important for predict-
ing different aspects of architectural decay. Our find-
ings suggest that to predict each aspect of architectural
decay, different combinations of factors are needed. In
particular, file-level metrics are not enough to compre-
hensively predict architectural quality.

� To facilitate replication of our experiments and reuse
of our tools anddata,wemake both our tools anddata-
set for our experiments publicly available online [24].

The remainder of this paper is organized as follows:
Section 2 introduces the research questions we study.

Section 3 describes our approach for predicting architec-
tural quality. That section is followed by a description of
our experiments’ design and setup (Section 4), the results
of our experiments (Section 5), practical importance of our
findings (Section 6), and the threats to validity (Section 7).
A discussion of related work (Section 8) and conclusions
round out the paper (Section 9).

2 RESEARCH QUESTIONS

For our study, we seek to answer research questions that
assess the effectiveness of our architectural-quality predic-
tion models. To that end, we study different regression
models, the extent of change of each architectural-smell
metric, the ability of our models to predict the emergence
of an architectural smell, and the metrics that work best
for each of our models. Architectural-quality metrics mea-
sure a software system’s architecture in terms of its non-
functional properties, especially those related to maintain-
ability. Smells metrics are a type of architectural-quality
metric. We focus on smells because they give specific
instances of low architectural quality with concrete mecha-
nisms for repairing them (e.g., specific architectural
restructurings or refactorings).

We produce a different prediction model for each archi-
tectural-quality metric. To ensure high performance of these
prediction models, we intend to determine the most effec-
tive regression models for making these predictions. Note
that performance in this context means the correctness of a
prediction model—i.e., performance in the sense used in
prediction-model literature. Consequently, we study the fol-
lowing research question:

RQ1: What is the performance of each prediction model for the
different architectural-quality metrics?

To better understand the applicability of our models for
predicting architectural smells, the architectural-smell met-
rics we predict should exhibit change. Each architectural-
smell metric measures whether a module has a particular
architectural smell. To that end, we must determine the
extent of change for each architectural-smell metric in our
study. As a result, we study the following research question:

RQ2: What is the amount of change across releases for each
architectural-smell metric?

Potentially, predicting architectural smells is most
important in the case of smell emergence, i.e., the addition of
smells to a software system. For example, if a module has
not had a type of smell in the current release but will have
that smell in the next release, our models should predict
this occurrence, allowing an engineer to take preventive
measures to stem that decay. To that end, we aim to answer
the following research question:

RQ3: Can we effectively predict architectural-smell emergence?
Although we select prediction metrics that intuitively

determine architectural quality, the exact combinations of
metrics that best predict architectural quality must be
assessed empirically. For our study, we select combinations
of metrics that are (1) obtained at the file level and aggre-
gated to modules, and (2) are architectural in nature. Thus,
we investigate the following final research question:

RQ4: What are the important metrics for predicting each
architectural quality metric?
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3 PREDICTION MODEL CONSTRUCTION

Fig. 1 overviews our approach for predicting architectural
quality. Our approach begins with a set of source files, a ver-
sion control repository, and architectural modules identified by
an Architectural Module Extractor from the source files. Given
those three artifacts, four Metrics Extractors—Lifted File-Level
Extractor, Architectural Co-Change Extractor, Architectural
Smell Extractor, and Architectural Dependency Extractor—com-
pute 19 metrics that are used as independent variables for a
stepwise regression analysis. A user selects a metric among 6
architectural-quality metrics to be predicted, which serves
as the dependent variable inputted to the stepwise regression
analysis. The result of regression analysis is a prediction
model for the selected quality metric. Each prediction model
produced by our approach utilizes independent variables of
release k of system s and predicts the selected architectural-
quality metric for kþ 1 of system s.

In the remainder of this section, we describe the major
parts of our approach: the techniques we leveraged to
obtain architectural modules, our selected regression mod-
els, the six quality metrics to be predicted, and the metrics
extracted and used as independent variables.

3.1 Obtaining Architectural Modules

We consider two different techniques for recovering archi-
tectural modules, which are used by Architectural Module
Extractor. As a result, we obtain multiple architectural views
[25], allowing an engineer to obtain architectural-quality
metrics from different perspectives. This maximizes the
possibility of identifying architectural-quality problems
throughout a software system. Note that an architecture-
recovery technique can be substituted for a ground-truth
architecture verified as correct by a software system’s archi-
tects. In such a situation, our prediction models would
likely achieve better performance, since they would not
need to correct for improperly recovered modules.

The package structure of a system can be treated as a
proxy for the decomposition of the system into architectur-
ally significant elements, as packages are created by the
developers of the system. In fact, package structuring has

been used as a decomposition reference in prior research
[26], [27], [28].

Packages and their sub-packages can be represented in a
tree structure corresponding to the packaging hierarchy.
Each leaf of the tree is a Java class contained in a package,
which itself may belong to a higher level package. The root
of the tree is the top-level package. In addition to packages,
we include a semantic view of modules obtained using an
architecture-recovery technique called Architectural Recovery
using Concerns (ARC) [15], [20], [21], which utilizes hierar-
chical clustering and information retrieval to produce mod-
ules. ARC leverages a statistical language model, Latent
Dirichlet Allocation (LDA) [29], to represent each source file
of a system as textual documents consisting of concerns,
which are extracted from the identifiers and comments of
each file. A concern could be a role, concept, or responsibil-
ity of a system. The number of modules recovered by ARC
is selectable by an engineer, enabling the consideration of
recovered modules at a high level and low level, just as in
the case of packages. For ARC’s implementation, every
entity in a module is a Java source file. Note that for both
recovery techniques, the entirety of a file is mapped to a sin-
gle module.

Once modules have been identified or recovered, we
must be able to determine which module mk in release k is
the same module mkþ1 in release kþ 1. This determination
allows us to make predictions formkþ1 based on our metrics
for mk. We leverage a technique described in prior work
that traces modules across releases based on the degree of
overlap among them [15].

3.2 Regression Analysis Selection

We constructed the prediction models in this study using
the releases of each project. We use three well-known
regression models in this study and compare the results:
linear regression (LR), negative binomial regression (NBR),
and random forest (RF). We used the MASS library in R
[30] for building LR and NBR and the randomForest library
for RF [31].

Although LR is popular and widely used in the litera-
ture, some have argued that NBR is a more appropriate
regression model for defect prediction [32]. Unlike LR, NBR
makes no assumptions about the linearity of the relation-
ship between the variables, or the normality of the variable
distributions. NBR is applicable to non-negative integers
and, more importantly, can be used for over-dispersed
count data (i.e., when the conditional variance of the data
exceeds the conditional mean) [33]. We also chose RF since
it has been shown to perform best for software defect pre-
diction [34], making RF potentially suitable for predicting
architectural quality.

For NBR, we use the log2 transformation of our metrics to
reduce the influence of extreme values, similar to prior
work [33].

We do not want our prediction metrics to exhibit multi-
collinearity, a phenomenon where prediction metrics are
correlated, since this can cause our prediction models to
become unstable [35]. To avoid the multicollinearity prob-
lem, we use stepwise regression to build the models. We
leverage the stepAIC function in the MASS library of R for
this purpose. Akaike Information Criteria (AIC) is a commonly

Fig. 1. Overview of our approach for architectural-quality metric
prediction.
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used static measure for goodness of fit. Models can be built
in two ways: forward and backward. Forward stepwise
regression begins with no variable in the model. The vari-
able that improves the model the most is identified and
added to the model. The process continues until none of the
remaining variables can improve the model. Backward step-
wise regression starts with the full model, improves the
model by deleting variables, and repeats this deletion until
no further improvement is possible. To determine the opti-
mal model, we ran both forward and backward stepwise
regression. We used stepwise regression when building
models with LR and NBR. We utilized all of the metrics
when building models using RF because it works well with
a large number of independent variables [36], where our
model includes only 19 such variables.

3.3 Dependent Variables

We selected the following six metrics that serve as represen-
tations of architectural decay: the number of defects in a
module; four architectural-smell metrics, where each metric
indicates whether a module has a specific type of smell; and
a metric that indicates a module’s quality in terms of cou-
pling and cohesion. Each of these metrics is a dependent
variable for a single architectural-quality prediction model.

The number of defects per module, shown as DEF in
Fig. 1, are determined by summing up the defects in each
file contained within an architectural module.

The coupling and cohesion of a module is a strong indi-
cator of the module’s quality. To that end, we included Clus-
ter Factor (CF) [18], a metric used widely in previous
architectural studies [18], [21], [37], [38] that represents the
coupling and cohesion of a module. We calculate CF for a
modulem as follows:

CFi ¼ mi

miþ0:5�
P

j
�ijþ�ji

, where mi is the number of depen-

dencies between entities within a module, �ij is the number
of dependencies from module i to module j, and �ji is the
number of dependencies from module j to module i.

The presence or absence of architectural bad smells in a
module may inform our prediction models as to the future
occurrence of architectural decay. To that end, we select
four architectural smells for our study that represent struc-
tural or semantic maintainability problems of a module.
Each smell falls into one of two categories: concern-based
smells or dependency-based smells. Concern-based smells are
caused by inappropriate or inadequate separation of con-
cerns; dependency-based smells arise due to module inter-
actions resulting from code relationships among entities
within a module.

We identify the following smells that a module may suf-
fer from, which have been studied in previous work [9],
[10], [39].

� Scattered Functionality (SF) is a concern-based archi-
tectural smell that describes a system in which multi-
ple modules are responsible for realizing the same
high-level concern, while some of those modules are
also responsible for additional, orthogonal concerns.

� Concern Overload (CO) is a concern-based architec-
tural smell that occurs for a module when it imple-
ments an excessive number of concerns. For
practical identification of such a smell, a given

number of concerns is excessive if that number
exceeds the mean plus standard deviation of the
number of concerns across the modules of the soft-
ware system in question. This selection of a thresh-
old representing “excessiveness” minimizes the bias
of making such a determination [39].

� Dependency Cycle (DC) is a dependency-based archi-
tectural smell that occurs when a set of modules are
linked in such a way that they form a cycle, causing
changes to one module to possibly affect all other
modules involved in the cycle.

� Link Overload (LO) is a dependency-based smell that
occurs when a module is involved in an excessive
number of dependencies to other modules. A mod-
ule can have an excessive number of incoming
links, outgoing links, or both. Similar to CO, a given
number of links is excessive if that number exceeds
the mean plus standard deviation of the number of
links across the modules of the software system in
question.

To represent each of these smells as an architectural-
quality metric to be predicted, we create a binary metric for
each smell: ssf , sco, sdc, and slo. If a module m has a smell s,
then s ¼ 1. Otherwise, s ¼ 0. For example, if a module m1

has CO, then sco ¼ 1 form1.

3.4 Independent Variables

We use four types of metrics extractors to obtain a combina-
tion of file-level and architectural-level metrics for predicting
architectural quality. Many prediction models from existing
literature have focused on predicting software defects [32],
[40], [41], [42]. We chose a subset of metrics from the prior
literature, particularly at the file level, as independent varia-
bles for prediction, since they may be indicators of architec-
tural problems.

Lifted File-Level Extractor obtains the following file-level
metrics:

� The lines of code (LOC) of a file is a measure of the size
of a file determined by counting the number of non-
empty non-comment lines.

� Sum cyclomatic complexity (SCC) of any structured
program with only one entry point and one exit
point is equal to the number of decision points con-
tained in that program plus one.

� The depth of inheritance tree (DIT) is the depth of a
class within an inheritance hierarchy calculated as
the maximum number of nodes from the class node
to the root of the inheritance tree.

� Coupling between objects (CBO) for a class is the num-
ber of other classes to which it is coupled. Class A is
coupled to class B if class A uses a type, data, or
member from class B.

� Lack of cohesion in methods (LCM) is calculated as
100 percent minus average cohesion for class data
members. Average cohesion is calculated as the per-
centage of pairs ofmethods in a class that have at least
one field in common. A lower percentage means
higher cohesion between class data andmethods.

� Number of changes (NC) is the number of times that a
file is committed to a repository.
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� Number of co-changed files (NCL) is the number of
other files that a given file is changed with [43].

To represent file-level metrics at the module-level, we lift
them up to the architectural level by summing up the values of
each file-level metric across all files inside each module. The
resulting sum is thenused as a representation of eachfile-level
metric for a module. For example, in the case of SCC, a mod-
ule m with four files can have the following SCC values, one
for each file: 2, 5, 6, and 9. The SCC formodulem is the sum of
all SCCs of its constituent files, i.e., 22. This approach has been
used for predicting defects for packages [6], [7].

Among our architectural metrics, we include metrics
involving co-changes between modules that are extracted by
Architectural Co-Change Extractor. Co-changes are process
metrics that represent modifications that occur simulta-
neously within or across modules. Prior work has demon-
strated that architectural co-changes correlate with defects
[44], [45]. Consequently, architectural co-change metrics
may potentially improve our prediction models. We select
the following architectural co-change metrics:

� Cross-module co-changes (CMC) is the number of co-
changes for a file, where the co-changes are made
across more than one architectural module.

� Inner-module co-changes (IMC) is the number of co-
changes for a file, where there is at least another co-
changed file in the same architectural module.

A number of our selected architectural-quality metrics
are based on dependencies between modules, which are
code relationships among source-level entities within a
module (e.g., method invocations, field accesses, import
statements, etc.). To predict architectural quality based on
such dependencies, Architectural Dependency Extractor
obtains module-dependency metrics.

We consider two methods for measuring the dependen-
cies between modules. The first method models the depen-
dencies as a binary variable, meaning that we only measure
whether a module has a dependency on another module.
The second method is to count all of the dependencies
between the modules, which considers the number of
dependencies between the files inside each of the modules.
Using these two methods, we select the following depen-
dency-based metrics:

� Incoming module dependency (CMD) is a binary metric
for a module m1 with a value of 1 if there is at least
one dependency from another module m2 to m1, and
0 otherwise.

� Outgoing module dependency (OMD) is a binary metric
for a module m1 with a value of 1 if there is at least
one dependency from m1 to another module m2, and
0 otherwise.

� Total incoming module dependencies (TCMD) is the
total number of dependencies to a module m1 and
originating from other modules in a software system.

� Total outgoing module dependencies (TOMD) is the total
number of dependencies from a module m1 to other
modules in a system.

� Internal module dependencies (IMD) is the total number
of dependencies among all files within a module.

� External module dependencies (XMD) is the total num-
ber of incoming and outgoing dependencies of a
module.

The existence of architectural smells in a module may
indicate further architectural decay in the future for that
module. For example, a module with CO may be more
likely to exhibit LO in the future. As another example, LO
may be an indicator of future reductions in a module’s CF.
To that end, Architectural Smell Extractor identifies the four
architectural smells described in Section 3.3 and computes
the corresponding metrics.

Note that CF and DEF are not used as independent varia-
bles because the process we describe to select independent
variables (i.e., stepwise regression as discussed in Sec-
tion 3.2) demonstrated that these variables did not contrib-
ute to the regression models.

4 EXPERIMENTAL SETUP

To evaluate our prediction models, this section discusses
the experimental setup we use to answer our research
questions.

4.1 Projects Studied

Table 1 depicts the five projects used in our experiments,
including the number of releases, size of the projects, num-
bers of modules, numbers of defects, and numbers of
smells. We selected projects that (1) are written in Java; (2)
are maintained by Apache Software Foundation (ASF)
because they maintain links between issues and code—
allowing us to link defects with specific modules; and (3)
vary across application domains and size. Further statistical
information about the five studied projects are provided in
the following paragraphs.

Fig. 2 shows the number of modules across different
releases and projects for both ARC (a semantic or concern-

TABLE 1
Studied Projects and Release Information

Project Description # Rel KSLOC # Mod # Def # Smells

HBase (Hb) Distributed Database 11 39-246 12-118 29-267 3-86

Hive (Hi) Data Warehouse 6 6-226 32-204 15-115 19-84
Facilities

OpenJPA (Op) Java Persistence 6 153-407 63-257 24-157 23-99
Framework

Camel (Cam) Message-Oriented 9 99-390 187-545 178-457 33-212
Middleware

Cassandra (Cas) Distributed DBMS 6 50-90 18-75 17-259 13-86 Fig. 2. Number of modules across projects.
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based view) and packages (a structural view). We set ARC
to produce a number of modules equivalent to 20 percent of
the classes in a version of a project, which is the number of
modules for which ARC obtained accurate results in a com-
parative analysis of recovery techniques [21]. Across the
five projects, we obtained 29-391 modules for ARC and 12-
545 modules for packages. Except for Camel, most of the
projects contained more ARC modules than packages.

Fig. 3 illustrates the number of defects across releases
and projects, and for both architectural views. The figure
indicates that the number of defects tends to be greater for
packages than for ARC modules across projects and
releases. Specifically, the ARC view contains 15-378
defects, while the package view has 23-457 defects, due to
the number of packages being fewer than the number of
ARC modules.

Fig. 4 depicts the number of architectural smells obtained
from the ARC and package views across releases and proj-
ects. The number of smells are greater in the ARC view—
containing 16-212 smells—than the package view—which
has 3-78 smells. This result is unsurprising since concern-
based smells (i.e., CO and SF) are not obtainable from the
package view, as that view does not represent a software
system’s concerns (recall Section 3.1).

4.2 Data Collection and Metric Measurement

To enable prediction of architectural quality, we collect data
about bug fixes and metrics at both the code and architec-
tural levels. We utilize different tools for that purpose.

We obtain code-level metrics per file and for each release.
The first five file-level metrics (LOC, SCC, DIT, CBO and
LCM) are measured using UNDERSTAND from Scitools1.

The change metrics (NC, NCL, CMC and IMC) are calcu-
lated by processing the developer commits from an SVN
repository and extracting the groups of files in the same
commit transaction that have been modified together (i.e.,
co-changes). We use SVNKit, a Java toolkit providing APIs
to subversion repositories.

To obtain architectural metrics, we leverage Architecture
Recovery, Change, And Decay Evaluator (ARCADE) [15], [39],
a workbench containing tools for addressing architectural
decay. Specifically, ARCADE consists of algorithms for
detecting architectural smells and computing architectural
dependency information, enabling the extraction of our
four selected architectural smell metrics (SF, CO, DC, and
LO) and six architectural dependency-based metrics (CMD,

OMD, TCMD, TOMD, IMD, and XMD). To parameterize
ARC for this experiment, we simply used the default
parameters provided by ARC, which is part of ARCADE,
and used in prior studies [15], [20], [22], [39].

In the ASF software repositories and, by extension, the
projects studied in this paper, the commits that are bug fixes
are identifiable since bugs are referred to by a project name
and bug number in SVN commit logs. For example, all of
the bug fixes in HBASE begin with HBASE-<bug number>
(e.g., HBASE-3172). This enabled us to find all bug fixes by
just parsing the log of commits in SVN and finding the key-
word HBASE-<bug number>. To determine the number of
defects for each module, we sum up the number of bug fixes
in all files within each module.

We chose releases so that the period of time between
each release is 3 to 4 months. Choosing releases with near-
equal time intervals reduces the effects of wide disparities
between releases. For example, if one pair of releases in
our study are weeks apart, while another pair are years
apart, our prediction models may be affected by the large
difference in time between the pairs of releases. As a result,
we control for time to an extent. Our chosen approach for
dealing with time intervals between releases is consistent
with previous literature on prediction models for software
engineering [46] and empirical studies on architectural co-
change [45]. Additionally, this release interval resulted in
obtaining the most number of releases as possible while
still trying to account for time in a balanced manner for
this study.

4.3 Data Splitting and Evaluation Metrics

We first discuss the splitting strategy we select for training
our models and testing them. We then cover the two criteria
we chose to evaluate the performance of our prediction
models: predictive power and ranking.

Data Splitting. In order to evaluate the performance of
the models, we use data splitting, a commonly used evalua-
tion technique, where a data set is divided into subsets for
building and evaluating the model. For evaluating the per-
formance of our prediction models on release k, we use the
data of all releases up to but not including that release to
train the models, and then we use the data of release k as
test data. We assess the performance of our prediction
models for multiple releases depending on the number of
releases for a project. For HBase and Camel, we evaluate
our prediction models for the last three releases. For the
remaining projects, we test the models on the last two
releases.

Fig. 3. Number of defects per module across projects and releases. Fig. 4. Number of smells across projects and releases.

1. http://www.scitools.com/
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Predictive Power. We assess the predictive power of a
model by selecting an appropriate performance measure.
We considered a variety of measures often utilized to evalu-
ate the performance of predictive models for software-engi-
neering purposes. We will briefly discuss some commonly
used measures—accuracy, precision, and recall—and why
they are undesirable for our study. We then follow that dis-
cussion with an introduction and justification of our chosen
measure for predictive performance: area under the curve
(AUC) of the receiver operating characteristic (ROC).

Precision and recall are pairs of performance measures
commonly used together for prediction models. Precision is
a measure of a model’s ability to predict modules without
falsely marking them as having low architectural quality.
Recall is a measure of a model’s ability to correctly predict
all modules with low architectural quality. A prediction
model should have a high precision and recall; however,
increasing one often decreases the other.

Accuracy is the proportion of correct predictions, which
can be a bad performance measure for imbalanced data
[47]. For example, if we only have a few defective modules
in our data set, a model that considers all modules as clean
would have a high accuracy.

Precision, recall, and accuracy all require the arbitrary
setting of discrimination thresholds to declare a module as
having low architectural quality. To avoid arbitrary setting
of thresholds in our experiments, we utilize AUC of ROC as
the performance measure for comparing prediction models,
as suggested by [34], and further described below.

The Receiver operating characteristic (ROC) is a curve that
plots true positive rates (y-axis) against false positive rates
(x-axis) for all possible thresholds between 0 and 1 that are
used to convert a prediction model score to a class label—
precluding the need to arbitrarily set thresholds. AUC is a
scalar performance measure derived from ROC and is the
area enclosed by the curve and the x-axis. AUC separates
predictive performance from class and cost distributions,
which are based on characteristics of projects. A class distri-
bution represents the balance of class instances in the data-
set (e.g., they can be uniform or imbalanced). A cost

distribution represents the tradeoff between the true posi-
tive rate and false positive rate of a prediction model. In
other words, AUC computes a predictive performance that
is independent of the balance of class instances in the data-
set or the tradeoffs between the false positive rate and true
positive rate. The best possible model is a curve close to y ¼
1with AUC of 1.0; a random classifier would obtain AUC of
0.5. In code-level defect prediction literature, an AUC of 0.7
or above is considered a high level of performance for a pre-
diction model [34], [41]. Given the similarity of architectural
decay and defects, we also consider AUC of 0.7 and above
as a high level of performance for architectural-quality
prediction.

For illustration, Fig. 5 shows an ROC curve correspond-
ing to one of our models for predicting defects in architec-
tural modules of the OpenJPA project. Every point on a
ROC curve represents a threshold tradeoff between the true
positive rate and false positive rate. For example, at the top-
right end of the curve we identify all modules as defective,
resulting in also a 100 percent false positive rate. Ideally,
even on the left end of the curve, where we select thresholds
that push the false positive rate to zero, we obtain high true
positive rates. As a result, the ROC curve shows all the dif-
ferent tradeoffs between the rates that can act as discrimina-
tion thresholds. By choosing a different discrimination
threshold for declaring a module defective, the prediction
model would produce a different performance, as shown in
this curve. Rather than reporting the results using an arbi-
trary threshold, we use AUC to holistically compare the
classification performance of different prediction models
under all possible thresholds.

Our approach for evaluating the prediction models is
orthogonal to how the engineers would use the models in
software projects. In practice, the engineer can choose a
discrimination threshold that achieves the desired balance
of precision and recall based on the characteristics of a
project. For instance, if a project is understaffed and there
are insufficient resources to thoroughly review the sys-
tem’s architecture/code, the engineer may choose a thresh-
old that achieves a higher precision and a lower recall,
meaning less wasted effort investigating false positives, at
the expense of not fixing all architectural issues in time.
On the other hand, if a project has the necessary staff and
resources to thoroughly review the system’s architecture/
code, the engineer may choose a threshold that achieves a
lower precision and a higher recall, meaning more wasted
effort of investigating false positives, but increased likeli-
hood of fixing all architectural concerns. For example, in a
safety-critical software project, the engineers may choose
to use thresholds that maximize the recall to reduce archi-
tectural decay factors, and thereby improve the quality of
software, as much as possible.

Ranking. Determining the modules with the lowest archi-
tectural quality allows engineers to prioritize their efforts to
those modules first. To that end, we assess if a model can
correctly predict the order of modules according to their
architectural-quality metrics. Ranking is not applicable to
architectural smells since they are binary variables. How-
ever, we can obtain ranking results for defects and CF. In
defect ranking, we build the prediction models using data
splitting, predict the number of faults for each module, and

Fig. 5. ROC curve for defect prediction.
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compare the ordering of the predicted defect numbers with
actual defect numbers using Spearman correlation. Simi-
larly, we predict CF values for each module and compare
the ranking of predicted CF values with the ranking of
actual CF values.

We consider a Spearman correlation greater than 0.4 that
is statistically significant at the 0.01 level to be a reliable
ranking of modules. A correlation of 1.0 denotes a perfect
ranking. Previous work on code-level defect prediction has
considered Spearman correlation values greater than 0.4 to
be sufficiently strong [6], [48]. Given the similarity of pre-
dicting code-level defects and architectural decay, this con-
sideration is sensible for our prediction models. Note that
all the Spearman correlations that we report are significant
at the 0.01 level.

5 EXPERIMENTAL RESULTS

Given our approach and the experimental design described
in the previous sections, we now discuss the results
obtained for each of our research questions. We begin by
assessing the overall performance of our prediction models
for each architectural-quality metric. We follow that study
by assessing the degree of change for each architectural-
smell metric. Afterwards, we focus on prediction results
for smell emergence. Lastly, we determine the metrics that
best predict architectural quality. For readers interested in
extra details of results, we have provided an online appen-
dix, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TSE.2021.3060068 2 that shows 58 additional box plots for
each project displaying results for six predicted architec-
tural metrics (cluster factor, defects, and smells)—associ-
ated with the different research questions we studied.

5.1 RQ1: Performance for Architectural-Quality
Metrics

Defects. We first assess our model’s ability to predict
whether a module has at least one defect, which we refer to
as defect existence prediction. Fig. 6a shows AUC results for
defect existence prediction for RF (F), LR (L), and NBR (N),
using both ARC and packages. Every box plot for a particu-
lar regression model (i.e., random forest, linear regression,
or negative binomial regression) and architecture-recovery

technique (i.e., ARC or Packages) represents a variety of sta-
tistics (e.g., minimum and maximum AUC values, different
quartiles, and the median). Hence, we simply compute
these different statistics and visualize them as those box
plots. The results show that the prediction performance of
NBR is higher than LR and RF. Particularly in the case of
NBR, our models predict module defectiveness with AUC
of at least 0.76.

Only predicting which modules have defects in future
releases does not help in prioritizing modules for defect
analysis and removal. Particularly, roughly 50 percent of
modules in our study tend to have defects, which provides
engineers with little information as to which modules
should be allocated more maintenance resources. To
address this issue, our models can predict the amount of
defects a module may have. Predicting the magnitude of a
module’s defectiveness allows an engineer to prioritize
modules for defect analysis and removal.

We assess our model’s ability to predict a module’s
defectiveness by using Spearman correlation to compare the
actual ranking of defective modules with our model’s pre-
dicted rankings. Fig. 6b shows these results. As before, NBR
outperforms LR and RF: Prediction for ARC modules
obtains a Spearman correlation of 0.48-0.69; for packages,
our models obtain a Spearman correlation of 0.62-0.73.

Smell Prediction. We determine whether our models can
predict the occurrence of different types of smells by utiliz-
ing AUC as our performancemeasure. Fig. 7 shows the AUC
results for predicting smells in ARC. We have the results
of all four smells from ARC; however, two of the smells are
concern-based and only applicable to ARC. The recovered
architectures obtained by using packages as modules do not
provide a representation of the system concerns needed to
identify concern-based smells. Thus, for packages, we have
results for DC and LO only.

Recall from Section 3.1 that ARC represents each source
file as containing a set of concerns. These concerns are
needed to identify SF and CO in a software system’s archi-
tecture, precluding these types of smells from being deter-
mined from the package view. As shown in Fig. 7, we can
predict the occurrences of smells in modules with a high
AUC of 0.84 or above. Furthermore, LR, NBR, and RF obtain
similar prediction results, in terms of AUC, for smells.

Cluster Factor. The overwhelming majority of modules
in projects have low architectural quality as measured
by CF. We consider a module m as having a low CF

Fig. 6. Defect prediction performance

Fig. 7. AUC performance architectural smells. CO stands for concern
overload; SF stands for scattered functionality; DC stands for depen-
dency cycle; and LO stands for link overload.

2. http://tiny.cc/arch-prediction-appendix
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when CF < 0.2 for m. This CF value indicates that the
vast majority of m’s dependencies are with entities out-
side of m, as opposed to within m, indicating high cou-
pling and low cohesion. Using the threshold of CF <
0.2, we created a binary, independent variable that we
used to assess the CF prediction performance in terms of
AUC. We need to make the continuous variable CF into
a discrete variable because AUC is applicable to classifi-
cation problems. We achieve this by converting CF to a
binary variable representing low and high CF.

Fig. 8a shows AUC results for predicting the CF values of
modules. Similar to our previous results, RF and NBR outper-
form LR. Both RF and NBR obtain AUC values for CF of at
least 0.71, demonstrating high effectiveness for predicting CF.

Given that modules mostly have low CF values, it is par-
ticularly important that engineers identify the modules
with the worst CF. With such information, engineers can
allocate maintenance resources to those modules first. To
that end, we further assess the ranking results of CF.

Fig. 8b depicts the ranking results for CF values com-
pared using Spearman correlation. For both ARC and pack-
ages, NBR and RF perform similarly, achieving more than
0.7 correlation, with RF performing slightly better than
NBR. Both models outperform LR.

To illustrate how the results of this research might be
used by the engineers, we describe one of the prediction
models from Fig. 8b in more detail. We show the CF predic-
tion results for a subset of packages in HBase version 0.92.

Table 2 shows the actual values of CF for packages, the
predicted value of CF, and also the corresponding ranking.
As shown, the predicted values of CF are very close to the
actual values of CF. Out of 15 modules, 12 modules are
ranked correctly by the prediction model, while for the 3
remaining modules (i.e., handler, executor, and replication)
the actual and predicted rankings are quite close. Engi-
neers could use such information to identify architectural
problems (e.g., identify the modules with low CF) and pri-
oritize their effort (e.g., refactor the modules with lowest
CF). For instance, the top-3 most decayed packages in
Table 2 (i.e., .thrift.generated, .client.copro-

cessor, and .io) should be refactored to reduce cou-
pling and increase cohesion.

RQ1 Summary. Overall, the results show that our models
can effectively predict the different architectural-quality
metrics. For most cases, NBR provides superior results and
is the best overall model for predicting architectural quality.

5.2 RQ2: Changes for Architectural Smells

Fig. 9a shows the percentages of changes across all releases
and systems for each architectural smell. We compute smell
change sD for release r, which represents the ratio of smell
emergence or removal of modules in release rþ 1 to all
modules with smells in r, using the following equation:

sDðMr; r; rþ 1Þ ¼ jfma 2 Mr : sdðma; r; rþ 1Þgj
jfmb 2 Mr : hassðmbÞgj � 100

sdðm; r; rþ 1Þ ¼ semðm; r; rþ 1Þ _ sreðm; r; rþ 1Þ;

Mr is the set of modules for release r. sem is true when
modulem has no smell in release r but has a smell in release
rþ 1, and false otherwise—representing a smell emergence.
sre is true when a module m has a smell in release r but
does not have that same smell in release rþ 1, and is false
otherwise—representing a smell being removed or changed
to another smell. hassðmÞ returns true if module m has any
smell, and false otherwise. Intuitively, the denominator cal-
culates the number of modules for a release that have any
smells; the numerator calculates the number of modules in
the current release that will change in the next release.

Although all types of architectural smells change across
releases, the amount of change varies: SF, DC, and CO

Fig. 8. Cluster factor prediction performance.

TABLE 2
Prediction of Cluster Factor (CF) for Packages in HBase (version 0.92)
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exhibit relatively little change; LO changes drastically across
all releases of our systems. The amount of change under-
gone by smells SF, DC, and CO is relatively small ranging
from about 5 to 35 percent. However, LO change is highly
substantial ranging from about 60 to 99 percent.

Overall, we find that architectural smells do exhibit sig-
nificant change worth predicting. However, we would like
to determine if our prediction models can forecast a partic-
ular type of architectural-quality change, i.e., smell emer-
gence, so that engineers can possibly take action before a
smell occurs—resulting in possible savings of future time
and effort.

5.3 RQ3: Predicting Architectural-Smell Emergence

For this research question, we first assess the frequency of
smell emergence. Fig. 9b shows the percentages of smell
emergence in architectural modules across all systems and
releases. We compute the percentage of smell emergence
sem
D for release r using the following equation:

sem
D ðMr; r; rþ 1Þ ¼ jfma 2 Mr : semðma; r; rþ 1Þgj

jfmb 2 Mr : hassðmbÞgj � 100

This equation is highly similar to sD; however, sem
D does

not utilize sre and, thus, only accounts for smell emergence.
Intuitively, sem

D computes the ratio of modules that experi-
ence smell emergence in release rþ 1 to all modules with
smells for release r.

LO is the most frequent type of smell emergence with a
median of 9 percent occurring for modules. SF and DC
smell emergence occurs less than 5 percent in ARC; DC smell
emergence does not occur in most projects. Although smell
emergence occurs infrequently, this phenomenon is intui-
tively difficult to predict and preventing its occurrence may
reduce futuremaintenance issues.

To build a model for predicting smell emergence cases,
we created new binary variables for each smell: seco, sedc,
selo, sesf . se variables are equal to 1 whenever the value of
the corresponding smell is 0 in the current release and 1
in the next release—meaning that the smell does not exist in
the previous release, but it emerges in the next release. We
created models for predicting smell emergence using these
new dependent variables.

Fig. 10 shows the AUC prediction results for smell
emergence for all systems and releases. Despite the

number of smell-emergence instances being low, NBR pre-
dicts those instances with AUC of 0.83 on average. The
performance of RF drops considerably for smell-emergence
prediction compared to LR and NBR. This occurs because
RF can lose significant performance when a dataset is
extremely imbalanced [49]; however, stepwise regression
with LR and NBR are less susceptible to imbalanced data.

In summary, our models can predict smell emergence—
and architectural-quality metrics in general—with high
performance.

5.4 RQ4: Factors Enabling Architectural Prediction

To obtain our prediction models, it is important to identify
the metrics that best improve our prediction models. Our
previous results show that prediction models using NBR
tend to perform as well or outperform LR and RF in the
majority of cases. Consequently, to answer RQ4 we focus
on identifying the best metrics, obtained through stepwise
regression, for NBR. We produced 50 prediction models
for architectural quality using NBR. These were obtained
from the combination of five systems, two architectural
views (ARC and packages), and six dependent variables
(defects, SF, CO, DC, LO and CF), where SF and CO are
only applicable for ARC. Similarly, we constructed several
prediction models for smell emergence. Due to the number
of prediction models, we do not report the coefficient val-
ues and significance level of all of the independent varia-
bles in each model.3

Table 3 showcases the factors, i.e., independent variables,
that contribute to prediction models for each quality metric:
Each column represents an independent variable; each row
represents a dependent variable. Factors for smell-emer-
gence models are denoted by -SE. Values in the table depict
the number of times each independent variable contributes
to a prediction model. The maximum value in each cell is 10
(the combination of two architectural views and five sys-
tems). However, for concern-based smells (SF, CO, SF-SE
and CO-SE), 5 is the maximum value, because the package
view does not include such smells (denoted by highlighted
row headers in Table 3). For example, LOC contributes to

Fig. 9. Percentages of changes for architectural smells. CO stands for
concern overload; DC stands for dependency cycle; LO stands for link
overload; and SF stands for scattered functionality. Fig. 10. AUC performance for architectural smell emergence. CO stands

for concern overload; SF stands for scattered functionality; DC stands
for dependency cycle; and LO stands for link overload.

3. Readers may find the study artifacts, including the prediction
models and results, at: https://sites.google.com/view/forecasting-
arch-decay
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all models for predicting defects and, thus, is included in all
10 models.

A wide variety of metric types, from all categories, are
important factors–with values of at least 5—for predicting
defects: lifted file-level metrics (LOC, CBO, andNC), architec-
tural co-changes (CMC and IMC), architectural smells (DC),
and architectural-dependencymetrics (OMDandXMD).

In general, for three of the four types of architectural
smells (SF, CO, and DC), the important factor for predicting
those smells is if the smell exists for a module in the current
release. For example, if a module has CO, it is likely to con-
tinue having CO in the next release. However, a wider vari-
ety of metrics are important factors for predicting LO.

Overall, these smell results indicate that architectural
smells are rarely restructured, meaning that smell-oriented
decay tends to remain in a system once it emerges. This
result further motivates the need to predict smell emergence
and prevent smell occurrence.

The important factors for predicting smell emergence are
starkly different from predicting the general case of archi-
tectural quality: A wide variety of metrics predicted each
type of smell emergence. This result indicates that smell
emergence originates from a complex set of factors that war-
rants further research.

Overall, our results indicate that all categories of inde-
pendent variables are important for predicting architectural
quality. Unlike previous work for predicting defects in
packages [8], [50], which only used lifted file-level metrics,
we show that both lifted file-level metrics and architectural
metrics are important for predicting architectural quality.
Futhermore, stepwise regression using NBR provides the
best results for such prediction.

6 EXAMPLE CASE

In the previous section, we relied on statistical criteria to
empirically assess the performance of our prediction mod-
els. To determine the usefulness of these predictions from
a practical perspective, we also manually studied some of
the results produced by our models. Without being
exhaustive, here we describe some of our findings in the
case of the Camel project, providing concrete evidence as
to how the prediction models can be useful in practice for
identifying the architectural problems. We focus on Camel

as a case study for two key reasons. First, Camel is a popu-
lar project with many commits and users, making it partic-
ularly interesting as a case study. Second, Camel is one of
the larger projects in our study, with a higher number of
LOC and versions.

We manually investigated whether architectural quality
metrics, such as architectural smells, used in the construc-
tion of our prediction models, are indeed architectural prob-
lems the developers care about and aim to resolve. We
conducted this investigation by reading through commit
logs. We only report architectural problems described in the
commit history by the developers. We found cases corrobo-
rating the validity of our quality metrics through the devel-
opers’ commit logs and changes that involved restructuring
of the system’s architecture. For instance, our metrics identi-
fied the following four packages to have DC on 2/17/09:
component.cxf, component.cxf.util, converter.stream and con-
verter. Two months later, those packages no longer had a
DC. To confirm our DC metric is properly capturing an
issue in the architecture of the system, we looked at the log
commits of Camel, filtered the changes that include those
packages, and found the following messages:

� revision: 749227, date: 3/2/2009, log

message: CAMEL-588: LoggingLevel moved

from model to root pacakge to improve API

package.

� revision: 749236, date: 3/2/2009, log

message: CAMEL-588: Fixed bad package

tangle.

� revision: 749561, date: 3/3/2009, log

message: CAMEL-588: Removed package

dependency and using the type converter

API to find the right converter instead of

direct usage.

We also looked at CAMEL-588 in Jira; the description of
issue starts as follows: “Currently there is a bad

dependency cycle between camel, spi and mod-

el...”. These comments clearly describe the same phe-
nomenon intended to be measured by the DC metric (recall
Section 3.3). Experiences such as this provide concrete evi-
dence that architectural smell metrics can be effective in
practice with helping the practitioners identify architectural
problems and decaying elements.

TABLE 3
Factors Contributing to Each Model
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We also found cases in which our smell emergence pre-
dictions were found to be issues that the developers had
acknowledged in their commit logs and had attempted to
resolve. A concrete example of this situation occurred with
the language.simple package, which did not have DC for mul-
tiple releases, but our model predicted that it will start to
have DC from version 2.5 (10/31/2010). When we manually
investigated the commit logs, excerpts of which are shown
below, not only did we find evidence of DC emergence, but
also attempts by the developers to fix the problem
afterwards:

� revision: 1150991, date: 7/26/2011, log

message: CAMEL-3961: Polished and reduced

some package tangling

� revision: 1171490, date: 9/16/2011, log

message: CAMEl-4457 Move types of the sim-

ple language to a new package simple.types

to avoid dependency cycle

The description of CAMEL-4457 in Jira summarizes the
issue: “Currently we have a big dependency cycle

between language.simple and language.simple.

ast”.
We believe using our smell-emergence prediction mod-

els, Camel developers could have identified and refactored
the decaying architectural modules earlier.

These phenomena were not limited to DC. For example,
we were able to predict component.log will not have the LO
smell in a future release, even though it had that smell in
previous releases. We found evidence in commit logs that
the architecture of the system had been refactored in
between the releases:

� revision: 749193, date: 3/2/2009, log

message: CAMEL-588: Package tangle fixes.

Tokenizer in spring renamed to Tokenize.

And fixed a CamelCase.

� revision: 749212, date: 3/2/2009, log

message: CAMEL-588: Moved LoggingLevel

from model to core package, to fix bad

tangle.

In summary, our analysis suggests that we can accurately
predict many architectural quality concerns and that such
concerns are indeed taken seriously by the developers of
open-source software, as evidenced by commit logs show-
casing their attempts to fix degraded architectural modules.
We believe our prediction models could help developers
detect architectural decay in a systematic fashion, possibly
prior to its full manifestation in code.

7 THREATS TO VALIDITY

We now describe the main threats to validity of our
findings.

Construct validity is concerned with whether we are actu-
ally or accurately measuring the constructs we are inter-
ested in studying. One such threat involves the correctness
of our linking of modules and their constituent files with
defects. However, recall from Section 4.1 that the process
used by engineers in ASF to link bug-fixing commits and
issues significantly mitigates this threat. We chose fixed
bugs instead of reported bugs because fixed bugs are

verified to be legitimate by developers while reported bugs
may not be verified by developers.

Another threat to construct validity involves the accu-
racy of the architectural modules we obtain. We address
this threat in several ways: We selected a technique, ARC,
that has exhibited high accuracy when compared to other
techniques in previous work [21] and used the settings for
ARC that worked well in previous work [15], [21] We fur-
ther complement the semantic view provided by ARC
with a structural view obtained through packages. The
package-based view is often considered architectural [6],
[7], [8], [26], [27], [28], [51], [52]. Both of these techniques
obtained highly accurate architecture recoveries in previ-
ous work [15], [21] —even when the recovered architec-
tures were compared to manually recovered architectures
obtained with the actual architects of widely used software
systems (e.g., Hadoop and the Bourne-again shell or Bash,
for short) [53]. We choose these two different views
because they are strikingly different views, resulting in
highly different modules. Any inaccuracies in the identifi-
cation of architectural modules would degrade the results
of our predictions, reducing the possibility of accurately
relating similar modules across releases. However, our
models still achieve high performance.

The final threat to construct validity involves whether
our selected metrics actually represent architectural decay
or the factors that predict architectural quality. To ensure
that we have a comprehensive set of metrics that represent
architectural decay, we included three types of architec-
tural-quality metrics: architectural defects, architectural
smells, and CF. For the factors that may indicate architec-
tural decay, i.e., the independent variables of our models,
we selected a wide variety of metrics that do not overlap, in
order to avoid the multicollinearity problem.

Threats to external validity involve the generalizability of
our findings. One such threat is that all our projects are
from ASF and are implemented in Java. To mitigate this
threat, we selected projects from different application
domains that vary in their sizes. Furthermore, Java is a
widely used language, making our results more generaliz-
able. Specifically, our results become particularly generaliz-
able to the many software projects worldwide that are
implemented in Java, or similar languages.

Another threat to external validity relates to the architec-
tural views this paper utilizes for recovery. This paper uses a
structural view corresponding the Development view in
Kruchten’s 4+1 viewmodel [11], [17] or the Module view [16]
from Clements et al. An architecture recovery for this view
does not generalize to the execution-oriented views such as
the Component-and-Connector view of Clements et al. or the
Process view of Kruchten’s model. Nevertheless, there is cur-
rently no architectural decay prediction technique based on
the Development view or Module view which already has
well-established and widely used and studied techniques
(e.g., ACDC or ARC). As a result, this paper contributes a
novel and important first step toward performing architec-
tural decay prediction for other views, such as the Process
viewor the Component-and-Connector view.

Threats to conclusion validity are concerned with the cor-
rectness of relationships among variables. One potential
threat to conclusion validity is the correctness of using an
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architectural smell in an older version to help predict the
introduction of or change to an architectural smell in a later
version. Essentially, architectural smells can be both depen-
dent and independent variables in our models. To mitigate
this potential threat, we carefully construct prediction mod-
els using three regression models and show that, in fact,
architectural smells do contribute to the ability to predict
such smells in later versions (see Table 3).

Another threat to validity involves our choice of regres-
sion models and their parameterization. To ensure validity
of these selections, we chose widely-used and well-estab-
lished prediction models (i.e., LR, RF, and NBR). These
models were parameterized using standard or widely-used
parameter values or determined using standard algorithms
(e.g., Akaike Information Criteria for stepwise regression).

8 RELATED WORK

We overview prior work covering three areas: defect predic-
tion; studies focused on architectural evolution or architec-
tural decay; and studies concerned with architectural-
quality metrics.

8.1 Defect Prediction

Several studies have shown that metrics mined from code
change history can be effective in locating defect-prone
code [40], [43], [54], [55], [56], [57], [58], [59], [60], [61], [62].
A number of studies use different statistical methods in
order to predict the location or number of faults in a soft-
ware system [42]. Ostrand et al. [32] developed a model
based on NBR to predict the number of faults in files. Men-
zies et al. [41] demonstrated that the method for building
prediction models is significantly more important than the
attributes selected for those models. Similarly, prior work
has demonstrated that architectural co-changes correlate
with defects [44], [45].

While most of the bug prediction studies are at the file-
level, some studies focus on the subsystem level. Mockus
and Weiss [55] found that in a large switching software sys-
tem, the number of subsystems modified by a change can
be a predictor of whether the change results in a fault.
Nagappan et al. [50] used post-release defect history of five
Microsoft software systems and found that failure-prone
software entities are statistically correlated with code com-
plexity measures.

Zimmermann and Nagappan [63] investigated the archi-
tecture and dependencies in Windows Server 2003, demon-
strating how the complexity of a subsystem’s dependency
graph can be used to predict the number of failures.

Several studies used packages as modules. Martin and
Martin [64] introduced the Common Closure Principle
(CCP) as a design principle about package cohesion. This
principle implies that a change to a component may affect
all the classes in that component, but should not affect other
components. Although the authors introduce CCP as a
guideline for good decomposition of architecture, they do
not investigate its impact on software defects. Zimmermann
et al. [6] showed that complexity metrics are indicators of
defects in Eclipse using files and packages. Kamei et al. [7]
showed that package-level predictions do not outperform
file-level predictions when the effort needed to review or

test the code is considered. Schroter et al. [8] showed that
import dependencies can predict defects using both files
and packages. Bouwers et al. [65] investigated twelve archi-
tecture metrics for their ability to quantify the encapsulation
of an implemented architecture and used packages for
evaluation.

While the majority of existing studies on defect predic-
tion are at the file level, our study is at the architectural
level. We further examine indicators of architectural decay
and quality other than defects (i.e., architectural smells and
modularization quality). Furthermore, existing studies of
prediction models at the subsystem level used either pack-
ages as architectural modules or other pre-defined modules
(e.g., studies on Windows that used binaries as architectural
modules). In this work, we use packages and a recovery
technique for identifying modules from source code. These
recovered architectural views enable us to build architec-
tural prediction models for any system.

8.2 Architectural Evolution and Decay

A wide variety of studies are concerned with architectural
decay across multiple versions of a software system. None
of the following studies aim to predict architectural quality
or decay.

Two studies have examined architectural decay by using
the reflexion method [66], a technique for comparing descrip-
tive architectures (i.e., architectures as designed by its archi-
tects) and recovered architectures (i.e., architectures as
represented by implementation-level artifacts). Brunet et al.
[67] studied the evolution of architectural violations from four
subject systems. Rosik et al. [68] conducted a case study using
the reflexionmethod to assess whether architectural drift, i.e.,
unintended design decisions, occurred in their subject system
andwhether instances of drift remain unsolved.

A number of studies investigate architectural decay with-
out using the reflexion method. In terms of novel techniques
for investigating architectural decay, Hassaine et al. [69]
present a recovery technique, which they use to study decay
in three systems. van Gurp et al. [70] conduct two qualitative
studies of software systems to better understand the nature
of architectural decay and how to prevent it. D’Ambros
et al. [71] present an approach for studying software evolu-
tion that focuses on the storage and visualization of evolu-
tion information at the code and architectural levels.

Other studies of architectural decay are more exploratory
or descriptive in nature. Two studies [45], [51] examine the
effects of code changes on architectural modules and archi-
tectural decay. Ernst et al. [72] surveyed 1,831 participants,
mostly software engineers and architects, on technical debt,
finding that architectural decisions are the most important
form of technical debt.

Two studies focus on patterns that represent architec-
tural decay. Mo et al. [73] study patterns of recurring archi-
tectural problems at the file and package level, finding
evidence of proneness to errors and changes for such enti-
ties involved in such patterns. Le et al. [74] investigate the
nature and impact of architectural smells.

Three other studies [75], [76], [77] focus on the impact of
code anomalies, their relations, and co-occurrences on the
possibility of architecture degradation.
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8.3 Architectural-Quality Metrics

A variety of metrics have been established in the software-
engineering literature that quantify architectural quality
and are applicable to architectural modules. Most of the
metrics focus on representing coupling and cohesion
between architectural entities. Other metrics consider the
concerns (i.e., concepts, roles, or responsibilities) of the soft-
ware system. Furthermore, some metrics have been applied
to studies of architectural evolution.

Several studies focus on coupling and cohesion metrics
for architectural modules. Allen and Khoshgoftaar [78]
define coupling and cohesion metrics based on information
theory. Briand et al. [79] present coupling and cohesion met-
rics based on object-oriented design princples. Sarkar et al.
[80], [81] defined a series of metrics concerned with quality
at the module and object-oriented levels. Most of these met-
rics highly overlap with previous metrics and are based on
coupling and cohesion. Many of these metrics overlap with
constructs measured by our selected metrics, while others
are dependent on specific technologies or are not fully auto-
matable—precluding their inclusion in our study.

Sant’Anna et al. [82] present architectural metrics based
on concerns. These metrics are highly similar to concern-
based architectural smells and focus on aspect-oriented sys-
tems. They do not provide mechanisms for identifying con-
cerns that are not aspect-oriented, precluding the use of
these metrics for our study.

Wermelinger et al. [83] apply architectural-decay metrics
across multiple releases of Eclipse, with a focus on coupling,
cohesion, and stability metrics. Sangwan et al. [84] apply
architectural complexity metrics to multiple versions of
Hibernate. Finally, Zimmerman et al. [85] propose that true
coupling is determined by studying revision histories and
code-level entities rather than the decomposition of mod-
ules or files. None of this previous work aims to predict
architectural quality, which is the focus of our research.

9 CONCLUSION

Architectural decay is a phenomenon of software systems that
leads to defects and increasesmaintenance time and effort. To
address this issue, we constructedmodels for predicting three
types of architectural decay: architectural defects, architec-
tural smells, and modularization quality. For 38 versions of
five software systems, we can predict architectural decaywith
high performance across two architectural views—one
semantic view and another structural view. Even when archi-
tectural smells suddenly emerge in a module, we can predict
these rare cases with high performance (AUC of 0.79-0.96).
We further discovered that architectural smells tend to remain
in modules once they emerge. Lastly, we discovered that a
wide variety of metrics—of which file-level metrics are only a
subset—are needed to predict architectural decay.

To enable replication of our results and improvement over
our approach for architectural-quality prediction, we make
our prediction models and results available online [24].
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