Goal: Minimizing the communication cost in a MapReduce job

1. **Communication Cost**
 - The total amount of data to transfer from the map phase to the reduce phase.
 - Dominates the performance of a MapReduce algorithm.

2. **Reducer Capacity, q**
 - Reducers do not have an unbounded memory.
 - An upper bound on the sum of the sizes of the inputs that are assigned to the reducer.

3. **Mapping Schema**
 - An assignment of the set of inputs to some given reducers such that
 - A reducer is assigned inputs whose sum of the sizes is less than or equal to the reducer capacity.
 - For each output, must assign the corresponding inputs to at least one reducer in common.

4. **All-to-All Mapping Schema Problem**
 - **Inputs**: A list of inputs
 - **Outputs**: Each pair of inputs corresponds to one output
 - **Example**: Similarity-join
 Inputs \(w_1 = w_2 = w_3 = 0.20q, w_4 = w_5 = 0.19q, w_6 = w_7 = 0.18q \)

5. **X-to-Y Mapping Schema Problem**
 - **Inputs**: Two sets X and Y
 - **Outputs**: Each pair of inputs \((x_i, y_j), \forall x_i \in X, \forall y_j \in Y\)
 - **Example**: Skewjoin
 - Set \(X: w_1 = w_2 = w_3 = w_4 = 0.25q \)
 - Set \(Y: w'_1 = w'_2 = 0.25q, w'_3 = w'_4 = 0.24q, w'_5 = w'_6 = 0.23q \)

6. **Tradeoffs**
 - The reducer capacity v/s the total number of reducers
 - The reducer capacity v/s the parallelism at the reduce phase
 - The reducer capacity v/s the communication cost

7. **Reference**