ICS6B Assignment 6

Due: Tuesday, 29th May, 2018 by 7am on Gradescope

1 Transitivity

1. Let S be the set $\{\text{monkey, horse, cow, piglet, lamb}\}$ and R be a relation defined on S containing the pairs: $(\text{monkey, cow}), (\text{horse, piglet}), (\text{cow, lamb}), (\text{cow, monkey}), (\text{lamb, horse}), (\text{lamb, piglet}), (\text{lamb, monkey})$

Find R^* and show your steps.

2. Suppose R is a relation on a set S. Prove the following:
 (a) If R is symmetric, then R^* is symmetric.
 (b) If R is reflexive, then R^* is reflexive.

3. Let S be the set defined in Question 1. Use Warshall’s algorithm to find the transitive closures of the following relations on S:
 (a) $\{(\text{horse, cow}), (\text{horse, lamb}), (\text{lamb, cow}), (\text{lamb, horse}), (\text{piglet, monkey}), (\text{cow, lamb})\}$
 (b) $\{(\text{monkey, horse}), (\text{monkey, cow}), (\text{horse, cow}), (\text{monkey, lamb}), (\text{horse, monkey}), (\text{cow, horse}), (\text{piglet, monkey}), (\text{lamb, piglet}), (\text{cow, monkey})\}$

4. Consider the relation given in Question 1.
 (a) What is the zero-one matrix M_R of the relation?
 (b) What is $M_R^3 \cdot M_R^4$? Show your work.
 (c) What is the zero-one matrix of the transitive closure of R^*? Show your work.