CS 274A Homework 1

Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2026

Due: Noon Tuesday January 13th, submit via Gradescope

Instructions and Guidelines for Homeworks

» Please answer all of the questions and submit your solutions to Gradescope (either hand-written or
typed are fine as long as the writing is legible).

* All problems are worth equal points (10 points) unless otherwise stated. All homeworks will get equal
weight in computation of the final grade for the class (with lowest-scoring homework being dropped).

* Please be sure to read the academic integrity policy on the course Web page, including in particular
the policies on restrictions for use of generative Al for homework assignments.

* The homeworks are intended to help you better understand the concepts we discuss in class. It is
important that you solve the problems yourself to help you learn and reinforce the material from
class. If you don’t do the homeworks you may have difficulty in the exams later in the quarter.

* In problems that ask you to derive or prove a result you should submit a complete mathematical proof
(i.e., each line must follow logically from the preceding one, without “hand-waving”). Be as clear as
possible in explaining your notation and in stating your reasoning as you go from line to line.

* If you can’t solve a problem, you can discuss the high-level concepts verbally with another student
(e.g., what concepts from the lectures or notes or text are relevant to a problem). However, you should
not discuss any of the details of a solution with another student. In particular, do not look at (or show
to any other student) any written material directly related to the homeworks, including other students’
solutions or drafts of solutions, solutions from previous versions of this class, etc. The work you
submit should be your own original work.

* If you need to you can look up standard results/definition/identities from textbooks, class notes, text-
books, other reference material (e.g., from the Web). If you base any part of your solution on material
that we did not discuss in class, or is not in the class notes, or is not a standard known result, then you
should provide a reference in terms of where the result is from, e.g., “based on material in Section 2.2
in....” or a URL (e.g., Wikipedia).

* Please read each problem carefully. If you believe there is a typo, or some information is missing, or
the problem is unclear, please post a question on the Ed discussion board.
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Suggested Reading for Homework 1

* Note Sets 1 and 2 from the class Web page, for a review of basic concepts in probability, conditional
independence, Gaussian models, etc.

* Appendices A, B, and C in Understanding Deep Learning (MIT Press, Simon Prince) are well worth
reading as general background on probability, linear algebra, and other relevant topics. These ap-
pendices may be especially helpful if you are a little out of practice with these topics. This text is
available online at http://udlbook.com.

* Chapter 6.1 to 6.5 and Chapter 8.5 in Mathematics for Machine Learning (MML) go beyond what is
covered in the Note Sets and may be useful for some of the problems.

Problem 1: Properties of Poisson Distribution

Let Y be an integer-valued random variable taking values y = 0,1, 2,...,. For example, Y could be the
number of purchases that a user makes during a visit to a particular Web site. A well-known simple model
for this type of “count data” is the Poisson distribution, with

AN
e N

y=20,1,2,...
where A > 0 is the parameter for the distribution.

1. Prove that -2, P(y) =1
2. Prove that E[Y] = A

3. Prove that the variance var[Y] is also equal to A

Problem 2: Central Limit Theorem

Let X1,..., X, be aset of independent and identically distributed real-valued random variables each with
the same density p(x) where each X; has mean y and variance 0. (Note that the density p(z) could be any
probability density function, it need not be Gaussian).

1. State precisely the central limit theorem as it applies to X7, ..., X,, (if you don’t know or remember
what the central limit theorem is you will need to look it up)

2. LetY = 157" | X, where each X; has a uniform distribution U(a, b) with a = 0,b = 1. Simulate
1000 values of Y (using any language such as Python, R, Matlab, C, etc) for each of the following
values of n: n = 102%,103,10% 10%. You should end up with 4 sets, each with 1000 simulated
values for Y. Generate histogram plots of the 4 sets (one histogram for each value of n, producing
4 histograms). Please plot all 4 histograms on a single page (makes it easier for grading). Use
30 = 4/1000 bins for each histogram. No need to submit your code.


http://udlbook.com
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3. From the definition of the properties of a uniform random variable (e.g., its mean and variance as a
function of a and b—you can look up the definitions if you don’t know them) and the definition of the
central limit theorem, state what the mean and variance of Y should be as a function of n.

4. Evaluate how well your empirically simulated distributions from Part 2 match what the theory predicts
from Part 3, e.g., show 1 or 2 tables, with different values of n for the rows, and where (in the columns)
you compare the mean and variance of the simulated data with the values that theory predicts.

Problem 3: Finite Mixture Models

Finite mixture models show up in a wide variety of contexts in machine learning and statistics (we will
discuss them in more detail in lectures later in the quarter). In this problem consider a real-valued random
variable X taking values x (in general we can define mixtures on vectors, but here we will just consider the
1-dimensional scalar case).

The basic idea is of a mixture model is to define a density (or distribution) p(x) that is a weighted mixture
of K component probability density functions pi(x|Z = k), where the weights «, are non-negative and

sumto 1, i.e.,
K

px) = pr(@]Z = k)ay,
k=1
where

» Zisadiscrete indicator random variable taking values from 1 to K, indicating which of the K mixture
components generated data point x.

* The mixture weights oy = P(Z = k) are the marginal probabilities of data point x being generated
by component k, with Z,I::l ap=1, 0<a;, <1.

* for each value of k, pi(x|Z = k) is itself a probability density function with its own parameters 0.
For example, if a component k is Gaussian then 0y, = {pu, 0'1%}-

The full set of parameters for a mixture model consists of both (a) the K weights, and (b) the K sets of
component parameters 0, for each of the K mixture components.

(Note that the “finite” aspect of finite mixture models comes from the fact that K is finite. There are
also infinite mixture models where K is unbounded, but we will not consider those here).

1. Given the definition above for a finite mixture model, prove that a finite mixture p(x) is a valid
probability density function, i.e., it obeys all the necessary properties needed to be a density function.

2. Derive general expressions for the (a) mean  of p(z), and (b) the variance o2 of p(z), as a function
of the component weights, means and variances ay, i, a,?, 1<k<K.
For each of y and o2, also provide an intuitive interpretation in words of your interpretation of the
equations you derived for each of the mean and the variance.
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3. Now assume that K = 2 and that both components are Gaussian densities with ;3 = 0 and pg = 5.
Plot p(x) as a function of x for each of the following cases:

(@) a1 =0.5,00 =3,00=3
(b)) a1 =0.5,01 =2,090 =2
() a1 =0.5,01 =2,09 =1
(d) a1 =0.1,00 =2,09 =2

Let x range from -5 to 10 in your plots. Its fine to write some code to generate the plots (in fact this
is preferred since generating these plots accurately by hand would be tricky to do). If possible please
put all 4 plots on a single page in your submission, e.g., using a 2 x 2 grid (this will make it easier for
grading).

No need to submit your code.

Problem 4: High-dimensional Data
Answer the following problems:

1. Consider a d-dimensional discrete random (vector) variable X = (X, X»,...,Xy), where each
component random variable X;,1 < ¢ < d can take one of M values. Let P(x) be a probability
distribution for X where = (x1, ..., x4) represents a d-dimensional vector of possible values of X.

Assume we have a data set consisting of N random (independent) samples from P(z). This dataset
can be represented as counts in a d-dimensional table consisting of M¢ cells, with one cell for every
possible combination of x1, ..., x4 values. (In practice, for large values of M and d, we would likely
use a sparse matrix/array representation to list the non-zero counts, rather than storing everything with
a full array).

Let j be an index over the M@ cells and let the probability of any particular cell j be Pj =o;/M 4 o j =
Oand ) jo =M 4 If all the a;’s are equal to 1 we get a uniform distribution over all if the possible
M outcomes. How far a; is from a value of 1 provides an indication of how much more (or less)
likely outcome j is relative to a uniform distribution.

(a) For any particular cell j, and with N independent random samples from P(z), derive an ex-
pression involving «;, M, d, N for the probability that at least 1 of the N samples lies in cell

-

(b) Let 3; = %. Prove that if §; < 1 then the probability that cell j has no samples will be
approximately equal to 1 — 3;. (Hint: a Taylor series approximation using the result from part
1 would be one possible approach here).

(c) Comment briefly (1 or 2 sentences) on the implications of this result for estimation of distribu-
tions as M and/or d grow. For example, for modeling the probabilities of word-level trigrams
in a language model we would have d = 3 and we could have on the order of M = 10° words.
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2. Consider a d-dimensional hypercube whose edges are of length 2r. Now consider a d-dimensional
hypersphere which has radius 7 and is inscribed within the hypercube. The hypercube and hypersphere
have their centers in the same location.

(a) Derive a general expression for the ratio of the volume of the hypersphere to the volume of
the hypercube. (You don’t need to derive the equation for the volume of a hypersphere in d
dimensions, you can just look it up).

(b) Compute numerically (e.g., using a calculator or computer) the value of this ratio for d =
1,2,...,10. You won’t need to know the value of r to do this.

(c) Comment briefly on what the numbers in the table tell you about where “data lives” (at least
under a uniform distribution) in high-dimensional spaces.

Problem 5: Logistic Function

Let X be a d-dimensional real-valued (vector) random variable taking values x and let Y be a binary random
variable taking values 0 or 1. Say we would like to model the conditional probability P(Y = 1|z) as a
function of z. One well-known approach is to assume that P(Y = 1|z) is defined as a logistic function (this
is the basis of the logistic regression classifier in machine learning and statistics):

1
1+ exp(—ap — al'x)

PY =1Jz) =
where ag is a real-valued scalar and o is the transpose of a d x 1 vector of real-valued coefficients
a1, .. .,aq. Inthis setup Y is typically referred to as the “class”: its the variable we want to predict given z.

1. Prove that the definition of the logistic function above implies that the log-odds log % is an
affine function of z, i.e., that the log-odds can be written as o'z + b for some vector a and scalar b.
State clearly what a and b are in your solution.

2. Say we know that P(z|Y" = 1) = N(g,,%) and P(z]Y = 0) = N(g,X) (i.e., we know that the
densities for each class are multivariate Gaussian), where Hy and M, are the d-dimensional means for
each class and X is a common covariance matrix. Prove that, under these assumptions, P(Y = 1|z)
is in the form of a logistic function. See Section 4 in Note Set 2 for information about the multivariate
Gaussian density.

* Hint 1: one way to prove this is to make use of the result from part 1 of this problem).

* Hint 2: it may be helpful in your solution to use the fact that /X 71'z = 27871y = ¢,

where c is some scalar value. This is true as long as X! is symmetric (which it is, given that by
definition a covariance matrix X is symmetric, and given the fact that the inverse of a symmetric
matrix is also symmetric).
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Problem 6: (Naive Bayes Classification Model)

The naive Bayes model is a very simple classification model. We have a class variable Y taking K possible
values {1,..., K} and we wish to predict Y as a function of d features X1, ..., Xy, where Y and X’s are
all random variables. The key assumption of a naive Bayes model is that each feature X; is assumed to be
conditionally independent of all the other features given Y.

For example, Y might represent different possible states of a patient in a medical diagnosis problem and
the X’s could be symptoms or features that could be measured for a patient.

Initially below we will assume that each of the X; variables are discrete and each takes M possible
values z; € {1,...,M}.

1. Write down an expression for the joint distribution P(Y, X1, ..., Xy) for the naive Bayes classifica-
tion model and draw a picture of the graphical model for the case of d = 3. (No need to use plate
diagrams or data here, just show how the Y and X variable related given the information provided).

2. Specify exactly how many parameters are needed for this model in the general case, as a function of
M, K, and d. A parameter in this context is any probability value or conditional probability value
that is needed to specify the model.

3. Now say that each of the d features X1, . .., X are real-valued and that we assume that the conditional
density for each feature given the class, p(X;|y = k) is a univariate Gaussian. Specify precisely how
many parameters are needed for this Gaussian version of a naive Bayes, in the general case as a
function of M, K, and d.

4. Say we are given a naive Bayes model where the parameters are known. Say we observe a set of
values x1, ..., x4 for the features, but the value class variable Y is unknown. Using the structure of
the model, show clearly and precisely (with equations) how one can use the model to compute the
conditional distribution P(y = k

Z1,...,24),1 < m < M. Note that the solution to this problem is
general in the sense that it doesn’t depend on whether the x’s are discrete or real-valued, or whether
they are Gaussian or some other distribution if they are real-valued.
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Problem 7: Inference in Graphical Models

Consider the directed graphical model in the figure below. All variables are discrete and all take M > 2
values.

o e

Answer the following questions:

1. Write an equation for P(a, b, c,d, e, f, g) that factorizes the joint probability in a manner that reflects
the conditional independence assumptions in this graphical model.

2. List all of the different conditional and marginal probability distributions in this graphical model and
define precisely how many parameters in total are required to specify the model. Take into account the
fact that all distributions must sum to 1. “Parameter” here means a marginal or conditional probability
in a probability table. Express your final answer in the form of a polynomial in M.

3. Consider computing the probability P(g*|a*), where ¢* and a* are some specific values of G and
A respectively. Describe (step by step, for all steps) the most efficient way to compute this con-
ditional probability, using only the marginal and conditional probability tables that are specified in
the graphical model. You can interpret “most efficient” to mean a method that requires the low-
est time complexity in M as a function of the number of summations. For example, to compute
P(cla*) = >, P(c|b)p(bla*) requires O(M) summations for each value of ¢, and thus requires
O(M) of these summations to compute the distribution P(c|a*) for all M values of C, for a time
complexity of O(M?) in general.

4. Now consider computing the probability P(e*|g*), where e* and g* are some specific values of E
and GG. As in the last question, describe the most efficient way to compute this conditional probability
using the lowest complexity in terms of M. One way to do this is to first compute the joint probability
P(e*, g) for each possible value of g; and to then compute the conditional probability of interest,
P(e*|g*) via Bayes rule.

In the last 2 problems above you will want to start by using the law of total probability (LTP) and introducing
variables that lie on the path between the nodes in the expression you are trying to compute. For example,
in part 3 it may be helpful to first write P(g*|a*) as a sum over F”s values using LTP, and then proceed by
seeing what needs to be computed next, and so on.



