
CS 274A Homework 4

Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2024

Due: 12 noon, Monday February 26th, submit via Gradescope

Instructions and Guidelines for Homeworks

• Please answer all of the questions and submit your solutions to Gradescope (either hand-written or
typed are fine as long as the writing is legible).

• All problems are worth equal points (10 points) unless otherwise stated. All homeworks will get equal
weight in computation of the final grade for the class (with lowest-scoring homework being dropped).

• The homeworks are intended to help you better understand the concepts we discuss in class. It is
important that you solve the problems yourself to help you learn and reinforce the material from
class. If you don’t do the homeworks you will likely have difficulty in the exams later in the quarter.

• In problems that ask you to derive or prove a result you should submit a complete mathematical proof
(i.e., each line must follow logically from the preceding one, without “hand-waving”). Be as clear as
possible in explaining your notation and in stating your reasoning as you go from line to line.

• If you can’t solve a problem, you can discuss the high-level concepts verbally with another student
(e.g., what concepts from the lectures or notes or text are relevant to a problem). However, you should
not discuss any of the details of a solution with another student. In particular, do not look at (or show
to any other student) any written material directly related to the homeworks, including other students’
solutions or drafts of solutions, solutions from previous versions of this class, etc. The work you hand
in should be your own original work.

• If you need to you can look up standard results/definition/identities from textbooks, class notes, text-
books, other reference material (e.g., from the Web). If you base any part of your solution on material
that we did not discuss in class, or is not in the class notes, or is not a standard known result, then
you may want to rovide a reference in terms of where the result is from, e.g., “based on material in
Section 2.2 in .....” or a URL (e.g., Wikipedia).
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Required Reading for Homework 4: For this homework it is important to go through the MML readings
below, as well as NoteSet 5, since they will cover concepts required for some of the homework problems.
Its fine to build on any results from the MML text without citing them (but please cite any other sources you
use in your solutions).

1. Class Notes on Regression (Noteset 5 on class Website), Sections 1 to 5 and 7 and 8 (you can skip
Section 6 if you wish).

2. Chapter 7 on Continuous Optimization in the Mathematics for Machine Learning (MML) text, https:
//mml-book.github.io/book/mml-book.pdf, where page numbers refer to the current
(Feb 2024) online version:

(a) Section 7.1, pages 225-233

(b) Section 7.3 up to start of 7.3.1, pages 236-239

3. Chapter 8, sections 8.1 and 8.2

4. Chapter 9 on Linear Regression, Sections 9.1 and 9.2

Feel free to optionally read the other sections of the Chapters above, but reading of the sections above is
required. Also the notation will differ in places to the notation we are using in class, but will be broadly
similar. Also be aware that may need to look up certain terms (e.g., in a textbook or Wikipedia), such as
positive semi-definite if you don’t recall what it is or have not seen it before.

Problem 1: Normal Equations for Least Squares (MSE) Regression

Assume we have training data in the form D = {(xi, yi)}, i = 1, . . . , N , where each xi is a d-dimensional
real-valued vector (with one component set to the constant 1 to allow for an intercept term) and where each yi
is a real-valued scalar. Assume we wish to fit a linear model of the form θTx where θ is a d-dimensional pa-
rameter vector, where by “fit” we mean here that we want to find θ̂ that minimizes MSE(θ) = 1

N

∑N
i=1

(
yi−

θTxi
)2.

1. Prove that the solution to this problem can be written as the solution of a system of d linear equations
(often referred to as the “normal equations”) that can be written in the form Aθ = b where θ has
dimension d× 1, A is a d× d matrix, and b is a d× 1 vector. Starting from the definition of MSE(θ)

above, carefully write out all steps in your proof, and clearly show how A and b are defined. If you
need to assume as part of your solution that a particular matrix is full rank then assume so and state
that you have assumed this.

2. Define the time complexity of minimizing MSE(θ) using the normal equations, given a dataset D =

{(xi, yi)}, i = 1, . . . , N . Time complexity is defined as being “on the order of” (i.e., “big O”) of
some function of d and N , e.g., computing a sum of N terms has time complexity O(N), multiplying
a 1×N vector by a N × d matrix has time complexity O(Nd), etc.

https://mml-book.github.io/book/mml-book.pdf
https://mml-book.github.io/book/mml-book.pdf
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Problem 2: Computational Complexity for Fitting Linear Models using MSE

Consider the optimization problem in Problem 2: fitting a linear model by minimizing MSE, with d param-
eters and a d-dimensional input x, with N IID data points. Answer the following questions below:

1. Assume we are using gradient descent algorithm (Section 7.1 in MML) to solve this problem. Define
the time complexity of doing one gradient update (using all N data points) as a function of d and N .

2. Assume that instead of the full gradient method, we use instead the stochastic gradient method (see
Section 7.1.3 in MML) for this problem, where we use M randomly selected datapoints as the mini-
batch size for each stochastic gradient update. Define the time complexity of doing one such stochastic
gradient update, as a function of d,M,N . You can assume the order of datapoints is already random-
ized, i.e., no time needs to be spent selecting M random examples.

3. In the context of this problem (i.e., linear model, MSE loss, IID data) provide (a) one significant
strength and (b) one significant weakness of each of the following optimization methods, relative to
at least one of the other methods:

(a) Normal equations

(b) Gradient descent

(c) Stochastic gradient descent

Your strengths and weaknesses can comment on the relative computational complexity and numerical
stability of each method, for example as a function of d relative to fixed N and fixed M ; or could
comment on whether a method might be sensitive to hyperparameters. For the iterative methods you
can treat the number of iterations as some unknown constant for each method.

Problem 3: Convex Risk Functions

A risk function such as R(θ), where θ is a d-dimensional vector of parameters, is said to be convex as a
function of θ if the d × d matrix of partial second derivatives (the Hessian) of R(θ) can be shown to be
positive semi-definite. In the problems below assume that D = {(xi, yi)}, 1 . . . , i, . . . , N where xi are
real-valued d-dimensional vectors.

1. Let yi ∈ R, i.e., a regression problem. Prove that if the loss is defined as mean-squared error and our
prediction model is f(x; θ) = θTx, then the risk R(θ) is convex as a function of θ.

2. Now let f(x; θ) be a logistic regression model where

f(x; θ) =
1

1 + exp(−θTx)
.
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and where yi ∈ {0, 1}. The y’s correspond to binary class labels and the logistic model maps from x

to P (y = 1|x; θ). Let the empirical risk be defined as

R(θ) = − 1

N

N∑
i=1

yi log f(xi; θ) + (1− yi) log
(
1− f(xi; θ)

)
,

i.e., the standard log-loss or cross-entropy. Prove that R(θ) is convex as a function of θ.

Problem 4: Estimating a Linear Model using Maximum Likelihood

Assume we have IID training data in the form D = {(xi, yi)}, i = 1, . . . , N , where xi and yi are both one-
dimensional and real-valued. Say we assume that y given x is a conditional Gaussian density with mean
E[y|x] = ax + b and with variance σ2 (see example 8.4 in the MML text). Assume that a, b, and σ2 are
unknown.

Show from first principles that the maximum likelihood estimates for each of a, b, and σ2 can be written
as:

â =
xy − x̄ȳ

x2 − (x)2

b̂ = y − âx

σ̂2 =
1

N

∑
i

(
yi − [âxi + b̂]

)2
where terms such as x̄, ȳ represent empirical averages over the N datapoints, and terms like â represent
maximum likelihood estimates.

Note that what is referred to likelihood above (and in the remaining problems in this homework) is
actually the conditional likelihood, P (Dy|Dx, θ): see Sections 7 and 8 of NoteSet 5 on Regression.

Problem 5: L1 or Lasso Regression

Consider a squared error loss function MSE(θ) = 1
N

∑N
i=1(yi−f(xi; θ)

2 with training data D = {(xi, yi)}, i =
1, . . . , N and where f is some prediction model with unknown parameters θ = (θ1, . . . , θp). A popular
regularization method takes the form r(θ) =

∑p
j=1 |θj |, resulting in an optimization problem where we

minimize MSE(θ) + λr(θ) as a function of θ, rather than just minimizing MSE(θ). Here λ is the relative
weight of the regularization term (this is known as L1 or Lasso regularization).

Clearly show how we can interpret L1 regularization in terms of a prior on θ (by viewing this optimiza-
tion problem from a Bayesian MAP perspective). Be sure to state clearly what distributional form this prior
is, i.e., what name it has.
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Problem 6: Poisson Regression

Consider a problem where we have a data set D = {(xi, yi)}, i = 1, . . . , N where xi are real-valued d-
dimensional vectors and yi ∈ {0, 1, 2, . . . , }, i.e., the yi’s are non-negative integers, e.g., a count of the
number of purchases an individual i makes in an online store per visit. In a Poisson regression model we
build a model where the conditional distribution of y, P (y|x; θ), is assumed to be a Poisson distribution with
mean E[y|x] = λ(x) = f(x; θ) where the mean varies as a function of x, for some fixed value of parameters
θ, rather than being having a fixed mean value λ. To ensure that λ(x) > 0, a common parametrization is
λ(x) = exp(θTx), which is what we will use in this problem.

1. Derive the log-likelihood for this problem

2. Derive an equation for the gradient of the log-likelihood with respect to θ for this problem


