Homework #4: Logistic Regression

Probabilistic Learning: Theory and Algorithms
CS 274A, Winter 2019
Due: 11am Monday, February 25th, 2019
Submit scan of plots/written responses to Gradebook; submit your code to HW4 EEE Dropbox

Introduction

Model Definition. Logistic regression is a simple yet powerful and widely used binary classifier. Given a \((1 \times d)\)-dimensional feature vector \(x\), a \(d\)-dimensional vector of real-valued parameters \(\beta\), a real-valued bias parameter \(\beta_0\), and an output variable \(\theta \in (0, 1)\), the logistic regression classifier is written as
\[
\hat{\theta} = f(x\beta + \beta_0) \text{ where } f(z) = \frac{1}{1 + e^{-z}}.
\]

\(f(\cdot)\) is known as the sigmoid or logistic function, which is where logistic regression gets its name. For simplicity, from here forward, we will absorb the bias parameter into the vector by appending a 1 to all feature vectors, which allows us to write \(\hat{\theta} = f(x\beta)\).

Learning. To train a logistic regression model, we of course need labels: an observed class assignment \(y \in \{0, 1\}\) for a given feature vector \(x\). Although logistic regression, at first glance, may seem different than the simple density and distribution models (such as Gaussians, Betas, Gammas, Multinomials, etc), we still learn the parameters \(\beta\) via the maximum likelihood framework. Yet, note, here we are working with what’s called a conditional model of the form \(p(y|x, \theta)\), which assumes access to another data source (the features).

The training objective is derived as follows; we start with just one observation \(\{x, y\}\) for notational simplicity. Because the variable we want to model—the class label \(y\)—is binary, we use the natural distribution for binary values: the Bernoulli model. And since \(\hat{\theta}\) is between zero and one, we treat it as the Bernoulli’s ‘success probability’ parameter—we defined the logistic regression model above with this goal in mind. Then, just as we usually do in the maximum likelihood framework, we start by writing down the log probability:
\[
\log p(y|x, \beta) = \log[\hat{\theta}^y(1 - \hat{\theta})^{1-y}] \text{ (inside the log is the Bernoulli p.m.f.)} \\
= y \log \hat{\theta} + (1 - y) \log(1 - \hat{\theta}) \\
= y \log f(x\beta) + (1 - y) \log(1 - f(x\beta)).
\] (1)

You may have seen this equation before as the cross-entropy or the negative log-loss error function. To arrive at the third line, all we did was substitute \(\hat{\theta} = f(x\beta)\). The intuition behind the equations above is that we are learning a Bernoulli model for the observed class labels, but instead of learning just one fixed Bernoulli parameter, we model the success parameter as function of the features \(x\). Defining the objective for a whole dataset \(D = \{D_x, D_y\} = \{(x_1, \ldots, x_i, \ldots, x_N), (y_1, \ldots, y_i, \ldots, y_N)\}\), and assuming that the observations are conditionally independent given the parameters \(\beta\), we have
\[
\log p(D_y|D_x, \beta) = \log \prod_{i=1}^{N} p(y_i|x_i, \beta) \\
= \sum_{i=1}^{N} y_i \log f(x_i\beta) + (1 - y_i) \log(1 - f(x_i\beta)).
\] (2)

We need to solve Equation 2 for the maximum likelihood estimate \(\hat{\beta}_{\text{MLE}}\). This is where the process is different from what we typically did with estimating maximum likelihood parameters for simple densities/distributions such as Gaussians or multinomials. If we try to set \(\nabla_{\beta} p(D_y|D_x, \beta) = 0\) and solve for \(\beta\), we will quickly find ourselves stuck, unable to find a closed-form solution (we
end up with a coupled set of non-linear equations in the unknowns \(\beta \). One way to solve such problems is to optimize via iterative gradient ascent\(^1\) method. Let \(\nabla_{\beta} p(D_y \mid D_x, \beta) \) be the gradient of the log-likelihood evaluated at the our current guess \(\beta \) for the parameters—this is a vector of partial derivatives, one partial derivative for each component (each parameter) in the vector \(\beta \). The gradient points in the steepest uphill direction (locally) of the log-likelihood—so we can take a small step in this direction to move uphill (the step needs to be small since “steepest” is only true at the current location). In other words, we need to iterate the following equation to gradually send \(\nabla_{\beta} p(D_y \mid D_x, \beta) \rightarrow 0 \), which will indicate we’re at a local maximum:

\[
\hat{\beta}_{t+1} = \hat{\beta}_t + \alpha \nabla_{\beta} \log p(D_y \mid D_x, \hat{\beta}_t)
\]

(3)

where \(\hat{\beta}_t \) is the current estimate of the parameters and \(\alpha \) is known as the learning rate, the size of the steps we take when ascending the function. \(\alpha \) can be fixed, but usually we have a gradually decreasing learning rate (i.e. \(\alpha_t \rightarrow 0 \) as \(t \) increases).

Using Stochastic Gradients. In Part 2 of Problem #2, we will vary what is called the training batch size. This all means is that we will approximate the gradient of the full dataset using only a subset of the data:

\[
\nabla_{\beta} \log p(D_y \mid D_x, \beta) \approx \sum_{k=1}^{K} \nabla_{\beta} \log p(y_k \mid x_k, \beta) \text{ such that } K << N,
\]

(4)

where \(K \) is the batch size parameter. Training using this approximation is known as stochastic gradient ascent/descent, as we are using a stochastic approximation of the gradient. This method is commonly used because the gradient is usually well approximated by only a few instances, and therefore we can make parameter updates much faster than if we were computing the gradient using all \(N \) data points.

Prediction and Evaluation. After the training procedure has converged (i.e. the derivatives are close to zero), we can use our trained logistic regression model on a holdout (test) dataset of features \(D^\text{test}_x \) as follows. For a feature vector \(x_j \in D^\text{test}_x \), we predict it’s label according to

\[
\hat{y}_j = \begin{cases}
1, & \text{if } \hat{\theta}_j \geq 0.5 \\
0, & \text{if } \hat{\theta}_j < 0.5
\end{cases} \text{ where } \hat{\theta}_j = f(x_j \hat{\beta}_T).
\]

(5)

The subscript \(T \) on the parameters denotes that these are the estimates as found on the last update (i.e. \(t \in [0, T-1] \)). Notice that we are generating the prediction by using a point estimate \(\hat{\beta}_T \) of the parameter vector (an alternative Bayesian approach would be to average over the posterior density of the \(\beta \) given the data, but even for a relatively simple model like the logistic regression model, computing this posterior density is in general tractable (there is no conjugate prior and no closed form solution for the posterior).

Assuming that we have labels for the test dataset—call them \(D^\text{test}_y \)—we can use them to evaluate our classifier via the following two metrics. The first one is test-set log likelihood, and it is calculated using the same function we used for training:

\[
\log p(D^\text{test}_y \mid D^\text{test}_x, \hat{\beta}_T) = \log \prod_{j=1}^{M} p(y^\text{test}_j \mid x^\text{test}_j, \hat{\beta}_T)
\]

(6)

\[= \sum_{j=1}^{M} y^\text{test}_j \log \hat{\theta}_j + (1 - y^\text{test}_j) \log (1 - \hat{\theta}_j),\]

where, as above, \(\hat{\theta}_j = f(x^\text{test}_j \hat{\beta}_T) \) and \(M \) is the number of examples in our test set. The second metric calculates classification performance directly. Define the classification accuracy metric as follows:

\[
A = \frac{1}{M} \sum_{j=1}^{M} \mathbb{1}[y^\text{test}_j = \hat{y}_j]
\]

(7)

\(^1\)Gradient descent and gradient ascent are essentially the same procedure. Turning one into the other is just a matter of placing a negative sign in front of the objective and moving the opposite direction (adding or subtracting the gradient term in the update).
where I is the indicator function and takes value 1 if the true test label matches the predicted label and 0 if there is a mis-match. A, then, simply counts the number of correct predictions and divides by the size of the test set, M.

Dataset. In this homework, we will be implementing a logistic regression classifier and therefore need a dataset to train it on. For this we will use a very popular dataset of handwritten digit images called **MNIST**. You will find this dataset in many machine learning publications; it is mostly used for illustrative purposes or as a ‘sanity check’ since it’s easy to train a high accuracy model for it. The full version of MNIST has ten classes, but we’ve reduced the dataset down to only 2’s and 6’s to formulate a binary classification problem. We have already segmented the data into training, validation, and testing splits of 9467 instances, 2367 instances, and 1915 instances respectively. Each image is represented as a vector with 784 dimensions, each dimension corresponding to pixel intensity between zero and one, and therefore the training features, for instance, comprise a matrix of size 9467×784. The data can be downloaded in CSV format here:

(You can also find this link on the class Website). Each data vector in the “x files” corresponds to the input pixel data for a particular image. For example, the ith row in file `trainx.csv` is the ith training example x_i. Each such example is a vector with 784 pixel values, corresponding to a 28 by 28 pixel image of a handwritten “2” or “6”. (Optional: If you wish to see what the data looks like you can write a simple function that plots each vector as a square image—you may need to rotate and flip the image to see what the digits really look like).
CS274A: Probabilistic Learning

Figure 1: Example plot for Problem 2.1. The plot shows the log likelihood during the training of three models, the log likelihood on the validation data for each model, and the log likelihood on the test set for the best model.

Problem #1: Gradient Derivation

We start by filling in the details of gradient descent. You can use the fact that the derivative of the logistic function is known:

\[\frac{\partial}{\partial z} f(z) = f(z)(1 - f(z)) \frac{\partial}{\partial z}. \]

(20 points): Derive the equation for the gradient for this problem: \(\nabla_\beta \log p(D_y|D_x, \hat{\beta}_t) \).

Problem #2: Implementation

Given: Next you will implement a logistic regression classifier. Using the programming language of your choice, write a script that (a) trains a logistic regression model and (b) evaluates a model (with some setting of the parameters) by calculating log likelihood (Equation 6) and accuracy (Equation 7). Some skeleton Python code is provided in the Appendix and on the class Website. You can choose not to use this code at all if you wish. The only requirement is that no logistic regression or auto-differentiation libraries can be used—i.e. a library that implements/trains a logistic regression model as a function call or that calculates gradients automatically. For all parts, take the number of epochs, i.e. passes through the training data, to be 250. The total number of updates will then be \(T = 250 \times \frac{N}{\text{batch size}} \).

Each subproblem below gives three parameter settings for learning rate (part 1) or batch size (problem 2). Train three models, one for each setting, and once training is complete, calculate the accuracy and log likelihood on the validation set. And then, for the model that had the highest classification accuracy on the validation set, calculate the test-set accuracy and log likelihood. Report the log likelihood numbers in a plot similar to Figure 1 where you show the log-likelihood on the training data as a function of the number of epochs and show the log-likelihood (after epoch 250) on the validation set (as a straight line horizontally). Report the classification accuracies numerically in a table (both on validation data, and for the best validation model, on the test data). **Include all code for your implementation.**

Part 1 (20 points): The first task is to train three logistic regression models, one for each of the following learning rates (\(\alpha \) in Equation 3): 0.001, 0.01, 0.1. Report the results as described above. In a few sentences, comment on the results.
Part 2 (20 points): The second task is to train three more logistic regression models, one for each of the following batch sizes (K in Equation 4): 1000, 100, 10. Report the results as described above. In a few sentences, comment on the results. You can use any learning rate here, e.g., 0.01.

PROBLEM #3: ADAPTIVE LEARNING RATES

Given: In Problem #2, we fixed the learning rate across all updates. Here we will look at how to intelligently change the learning rate as training progresses. We will experimentally compare the following three ways to change the step size.

1. Robbins-Monro Schedule: One method is to use a deterministic schedule to decay the learning rate as training progresses. The Robbins-Monro schedule, suggested because of some theoretical properties we won’t discuss here, is written as
 \[\alpha_t = \frac{\alpha_0}{t} \quad \text{for} \quad t \in [1, T-1]. \]
 In other words, we set the learning rate at time t by dividing some fixed, initial learning rate α_0 by the current time counter.

2. AdaM: A second method is called AdaM, for (Ada)ptive (M)oments. The method keeps a geometric mean and variance of the gradients observed so far and updates the parameters according to
 \[\hat{\beta}_{t+1} = \hat{\beta}_t + \alpha_0 \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}, \]
 where α_0 is some fixed constant, \hat{m}_t is the geometric mean of the past gradients, \hat{v}_t the geometric variance, and ϵ is some small value to keep the denominator from being zero.

 Complete Python code for performing AdaM updates is provided in the Appendix.

3. Newton-Raphson: The last method we will consider is Newton-Raphson, also called Newton’s Method. This is somewhat of the gold-standard for adaptively setting the learning rate as there are no parameters to choose ourselves. We simply replace the learning rate by the inverse Hessian matrix (size $d \times d$, which in the case of logistic regression is:
 \[\alpha_t = (X^T A_t X)^{-1} \]
 where α_t is a $d \times d$ matrix, where A_t is a diagonal matrix with $a_{i,i}^t = \hat{\theta}_i (1 - \hat{\theta}_i)$ (i.e. the predicted Bernoulli probability using the parameter estimates at time t) and X is the $N \times d$ matrix of features ($K \times d$ for batch size K when using stochastic gradient methods).

 Note that there are two issues with Newton’s method that limit its usefulness in high-dimensional problems:
 (a) The first significant issue with Newton’s method is that computing the matrix inverse for each update is very costly computationally. It’s around $O(d^3)$, which for MNIST is $O(784^3) = O(481,890,304)$. So, doing a Newton update may be significantly slower than the other methods when you run your code.
 (b) The other significant issue with Newton’s method is that computing the inverse may be numerically unstable (you may get singular matrices). One way to avoid this is to add a small constant to each of the entries on the diagonal of the Hessian matrix, i.e., replace the Hessian H with $H + \epsilon I$ where I is the identity matrix. Your code can automatically start with a small ϵ value of around 0.001 and it can keep increasing it until it doesn’t get a singular matrix when you invert H. (This is somewhat ad hoc, but should work).

 Another option you could experiment with is to use the pseudoinverse of the Hessian.

Part 1 (30 points): Implement Robbins-Monro, AdaM, and Newton-Raphson updates for the logistic regression model you implemented in Problem #2. Python code for AdaM is provided in the Appendix. Set α_0 to 0.1 for Robbins-Monro and set α_0 to 0.001 for Adam. Use a batch size\(^2\) of 200 and 50 epochs (passes through the full training data) for each method. Report the same plot and

\(^2\)Newton’s method will take a few minutes to train for 50 epochs. Use a much bigger batch size to first make sure your Hessian calculation is correct.
accuracies you did for Problem #2. There will be one training curve and validation log likelihood for each method. For accuracy there will be a table with the classification accuracy of each method on the validation data and the accuracy of the best method on the test data. Discuss what you observe in a few sentences. **Include all code for your implementation.**

Part 2 (10 points): Answer the following three questions.

1. What’s the intuition behind Newton’s Method? In other words, what does the Hessian tell us about a given location on the function?

2. What’s the intuition behind the AdaM update? Think about what happens to the step size when the variance of the gradients (\hat{v}_t) is large and when it is small. Is the underlying mechanism similar to Newton’s method’s use of the Hessian?

3. State the runtime and memory complexity (in big O notation) in terms of the feature dimensionality d and the batch size K for each update method.

APPENDIX

STARTER IMPLEMENTATION

```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import copy

### Helper Functions ###

def logistic_fn(z):
    ### TO DO ###

def load_data_pairs(type_str):
    return pd.read_csv("mnist_3s_and_7s/"+type_str+"_x.csv").values, pd.read_csv("mnist_3s_and_7s/"+type_str+"_y.csv").values

def run_log_reg_model(x, beta):
    ### TO DO ###

def calc_log_likelihood(x, y, beta):
    theta_hats = run_log_reg_model(x, beta)
    ### Return an average, not a sum!
    ### TO DO ###

def calc_accuracy(x, y, beta):
    theta_hats = run_log_reg_model(x, beta)
    ### TO DO ###

### Model Training ###

def train_logistic_regression_model(x, y, beta, learning_rate, batch_size, max_epoch):
    beta = copy.deepcopy(beta)
    n_batches = x.shape[0]/batch_size
    train_progress = []

    for epoch_idx in xrange(max_epoch):
        for batch_idx in xrange(n_batches):
            ### TO DO ###

            # perform updates
            beta += learning_rate * beta_grad
```

```python
train_progress.append(calc_log_likelihood(x, y, beta))
    print "Epoch %d. Train Log Likelihood: %f" %(epoch_idx, train_progress[-1])

return beta, train_progress

if __name__ == "__main__":
    ### Load the data
    train_x, train_y = load_data_pairs("train")
    valid_x, valid_y = load_data_pairs("valid")
    test_x, test_y = load_data_pairs("test")

    # add a one for the bias term
    train_x = np.hstack([train_x, np.ones((train_x.shape[0], 1))])
    valid_x = np.hstack([valid_x, np.ones((valid_x.shape[0], 1))])
    test_x = np.hstack([test_x, np.ones((test_x.shape[0], 1))])

    ### Initialize model parameters
    beta = np.random.normal(scale=.001, size=(train_x.shape[1], 1))

    ### Set training parameters
    learning_rates = [1e-3, 1e-2, 1e-1]
    batch_sizes = [train_x.shape[0]]
    max_epochs = 250

    ### Iterate over training parameters, testing all combinations
    valid_ll = []
    valid_acc = []
    all_params = []
    all_train_logs = []

    for lr in learning_rates:
        for bs in batch_sizes:
            ### Train model
            final_params, train_progress =
                train_logistic_regression_model(train_x, train_y, beta, lr, bs, max_epochs)
            all_params.append(final_params)
            all_train_logs.append((train_progress, "Learning rate: %f, Batch size: %d" % (lr, bs)))

            ### Evaluate model on validation data
            valid_ll.append(calc_log_likelihood(valid_x, valid_y, final_params))
            valid_acc.append(calc_accuracy(valid_x, valid_y, final_params))

    ### Get best model
    best_model_idx = np.argmax(valid_acc)
    best_params = all_params[best_model_idx]
    test_ll = calc_log_likelihood(test_x, test_y, best_params)
    test_acc = calc_accuracy(test_x, test_y, best_params)
    print "Validation Accuracies: "%str(valid_acc)
    print "Test Accuracy: %f" %test_acc

    ### Plot
    plt.figure()
    epochs = range(max_epochs)
    for idx, log in enumerate(all_train_logs):
        plt.plot(epochs, log[0], '-^-', linewidth=3, label="Training", +
            log[1])
    plt.plot(epochs, max_epochs*[valid_ll[idx]], '-^', linewidth=5, 
            label="Validation", +log[1])
```

plt.plot(epochs, max_epochs*[test_ll], '*', ms=8, label="Testing, + all_train_logs[best_model_idx][1])

plt.xlabel(r"Epoch (t)")
plt.ylabel("Log Likelihood")
plt.ylim([-8, 0.])
plt.title("MNIST Results for Various Logistic Regression Models")
plt.legend(loc=4)
plt.show()

ADA M UPDATE

def get_AdaM_update(alpha_0, grad, adam_values, b1=.95, b2=.999, e=1e-8):
 adam_values['t'] += 1

 # update mean
 adam_values['mean'] = b1 * adam_values['mean'] + (1-b1) * grad
 m_hat = adam_values['mean'] / (1-b1**adam_values['t'])

 # update variance
 adam_values['var'] = b2 * adam_values['var'] + (1-b2) * grad**2
 v_hat = adam_values['var'] / (1-b2**adam_values['t'])

 return alpha_0 * m_hat / (np.sqrt(v_hat) + e)

Initialize a dictionary that keeps track of the mean, variance, and update counter
alpha_0 = 1e-3
adam_values =
 {'mean': np.zeros(beta_shape), 'var': np.zeros(beta_shape), 't': 0}

Inside the training loop do
beta_grad = # compute gradient w.r.t. the weight vector (beta) as usual
beta_update = get_AdaM_update(alpha_0, beta_grad, adam_values)
beta += beta_update