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ABSTRACT
In this paper we address the problem of building user models that
can predict the rate at which individuals consume items from a
finite set, including items they have consumed in the past and items
that are new. This combination of repeat and new item consumption
is common in applications such as listening to music, visiting web
sites, and purchasing products. We use zero-inflated Poisson (ZIP)
regression models as the basis for our modeling approach, leading
to a general framework for modeling user-item consumption rates
over time. We show that these models are more flexible in capturing
user behavior than alternatives such as well-known latent factor
models based on matrix factorization. We compare the performance
of ZIP regression and latent factor models on three different data
sets involving music, restaurant reviews, and social media. The ZIP
regression models are systematically more accurate across all three
data sets and across different prediction metrics.
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1 INTRODUCTION
In many aspects of our daily lives the way we consume products
and items has evolved from interactions in a physical world to
interactions in digital worlds. We purchase books online instead
of shopping at brick-and-mortar stores, stream music and movies
online instead of purchasing physical copies, and so on. The digital
nature of our consumption provides the opportunity for tailoring of
individual user experiences that can benefit both the consumer and
the provider. As a consequence, the ability to develop predictive
individual-level models for user-item consumption from past obser-
vations is increasingly important across a variety of applications.
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Building accurate models of consumption in a typical digital
environment is challenging for multiple reasons. In particular, as
an individual moves forward through time, the items an individual
consumes are a combination of (a) items that they have consumed
in the past (i.e., repeat consumption), and (b) novel items that they
have not consumed in the past (i.e., new consumption). User models
in this context must balance these two aspects of behavior.

Individual heterogeneity, in the form of significant variability in
behavior across users, further complicates the modeling process.
In particular, when the set of possible items to be consumed is
large, different users may have very different consumption patterns.
Another significant challenge is data sparsity, given that the number
of items a user typically consumes is often a very small fraction of
the total number of available items.

In this paper we focus on the problem of predicting rates of item
consumption per unit time (days, weeks, months) for individual
users. The prediction of rates is broadly useful in a variety of ap-
plications since it allows us to predict not only which items a user
will consume, but also how often those items will be consumed. For
example, prediction of rates of consumption for specific items and
specific sets of users is important in the design and engineering
of proxy-caching systems for online streaming media content [19].
For contexts where items have different costs associated with them,
predictions of the rates at which a user will consume specific items
can be used for estimating the expected value of a customer from
the provider perspective. Rates also can be used to help evaluate
the expected benefit of interventions such as providing incentives
to a user. For example, if some users have a high rate of usage for
a particular app on their mobile phones and other users have low
rates of usage for the same app, the latter group is likely to be a
better target for incentivization than the former [8].

As mentioned above, in many real-world applications consump-
tion behavior is characterized by a combination of repeat and new
consumption. For example, some users’ behaviors may be highly
repetitive in nature, e.g., they tend to visit the same restaurants or
listen to the same music artists, and rarely try new items. Other
users may have behavior at the other extreme, continuously ex-
ploring new items and rarely returning to old items. This trade-off
between exploration and exploitation is well known in computer
science in the context of reinforcement learning, and is also well-
established in cognitive science as a basic trait of how humans
interact with the world around them (e.g., [4, 24]).

These observations suggest that in addition to handling signifi-
cant heterogeneity in terms of individual behavior, the notion that
there is a steady-state behavior for many users may be a fallacy in
the sense that users are continuing over time to both exploit and ex-
plore the choice of items available to them. Rather than having user
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models that are represented as fixed distributions over items, indi-
vidual behavior can be thought as a dynamic process over time that
is driven by feedback from past item consumption, both positive
and negative. To capture these ideas we develop individual-level
Poisson-based regression models where the predicted rate that a
user will consume an item in the next time period is modeled as a
function of an individual’s past behavior. In addition, the models
use global contextual information (such as item popularity) in order
to better generalize to prediction of new items.

The primary contribution of this paper is the development of a
systematic approach formodeling user-item consumption rates over
time using Poisson-based regression models with zero-inflation.
Through a systematic investigation of several user-item consump-
tion data sets from multiple domains, we demonstrate that this
modeling approach can capture individual-level user preferences
for both old and new items as a function of past behavior and
contextual information. We compare the proposed approach to
state-of-the-art alternatives both empirically and qualitatively and
also show that the proposed approach is scalable to large-scale data
sets.

On the surface the problem we address looks very similar to
that of the classic recommendation system problem. However, it is
important to note that the modeling goals and evaluation criteria in
our work are significantly different. Recommender systems focus
only on prediction and ranking of new items that a user has not
consumed in the past, e.g., for items such as movies or books, where
typically an item is only consumed once by a user. In contrast
we specifically focus on problems where consumption is a mix of
repeated and novel item consumption. In this context a natural
approach is to predict the rates at which items are consumed and
to evaluate how well these rates are predicted, rather than just
evaluating the likelihood of whether a user will consume an item
or not.

The remainder of this paper proceeds as follows. In Section 2
we explore different user-item consumption sequence data sets,
and provide motivation for our modeling approach in Section 3. In
Section 4 we describe the proposed ZIP model for understanding
and predicting user-item consumption rates and we show how
this model is learned using user-item consumption observations in
Section 5. Section 6 provides an overview of the existing approaches
for modeling user-item consumption data. In Section 7 we compare
our proposed model to a variety of state-of-the-art alternatives
and interpret the results. Section 8 discusses the scalability of the
approach and we conclude with a brief discussion in Section 9.

2 PROBLEM STATEMENT AND USER-ITEM
CONSUMPTION DATA

In this paper we consider user-item consumption counts mea-
sured in discrete time intervals (by day, week, month, etc.). We
define yt

i j 2 f0; 1; 2; : : :g as the number of consumptions of item
j 2 f1; 2; : : : ; Mg by user i 2 f1; 2; : : : ; N g in time window t 2
f1; 2; : : : ;T g. In this context the goal of our work is to predict the
expected number of items of type j that user i will consume during
time t + 1, E»yt+1

i j j : : :… given the history of all user-item consump-
tion up through time t . It should be relatively straightforward to
extend the approach to continuous time, where each consumption

Dataset N M t T % non-zero
reddit 1000 1000 week 52 2.5
lastfm 931 19997 month 50 0.5
Yelp 2836 203 2 months 12 1.7

Table 1: Summary of the three datasets used in this paper:
number of unique users N , unique items M , time-window
t , number of windows T , and the percentage of data points
that are non-zero.

event has its own time-stamp—here we focus on the discrete-time
case.

Our work is motivated by the challenge of creating a general
framework for consumer behavior data across different domains.
To that end, we investigate multiple publicly available data sets that
represent different types of items and consumption activities. The
3 data sets are summarized and compared in Table 1.

Reddit: reddit is a popular social network with on the order of
1 million topic-focused subgroups (known as subreddits) where
users can post, comment, and vote on content. In this work we
considered data from a sample of N = 1000 users with high activity
and M = 1000 highly active subreddits throughout 2015. The value
ofyt

i j is defined as the number of times user i posted (or commented)
in subreddit j during a given week t .

Lastfm: lastfm is an online music streaming service that allows
users to listen to a selected song or playlist. The particular dataset
we use contains the listening actions over time of nearly N = 1000
users1. We consider artists as items and retain the top M = 20K
artists that are most frequently listened to during the period of time
of February 2005 to June 2009. In the lastfm dataset, yt

i j represents
the number of times that user i listened to a song performed by
artist j during a month t .

Yelp: Yelp is a popular review platform that allows users to share
their experience with different service providers such as restaurants.
The dataset that we use has been widely used as a benchmark across
recommendation system studies2. For our experiments we focused
on the histories of N = 2836 unique users and their reviews of
M = 203 types of restaurants (e.g. fast food, Mexican, sushi, etc.)
in the Scottsdale and Phoenix (Arizona, USA) metropolitan areas
between June 2014 and June 2016. yt

i j is the number of times user i

reviewed a restaurant of type j during every two months t .

3 EXCESS ZEROS AND HETEROGENEITY
Two typical characteristics of sparse user-item data sets are (1) an
excess of zeros and (2) heterogeneity across both users and items.
We discuss both characteristics below in turn and describe our
approach to handling each from a modeling perspective.

3.1 Excess Zeros
A common feature of user-item consumption data sets, particularly
when the number of items is large, is a very high rate of zeros,
i.e., most users do not consume the vast majority of items. This
is certainly true of the 3 data sets we analyze in this paper where
roughly 98% to 99% of the entries are zero across the datasets. This

1http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
2http://www.yelp.com/dataset_challenge
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Figure 1: The distribution of item-consumption rates for a
sample of user-item pairs with similar average rates.

is not surprising: for high-dimensional data sets each user will
only be exposed to or be aware of a relatively small fraction of the
potential items that they could interact with. In addition, there are
practical limits (e.g., from cognitive and economic perspectives) in
terms of how many items a user can realistically interact with.

In statistical modeling an overabundance of zeros is often re-
ferred to as “zero-inflation” [15, 20], to reflect the phenomenon
that the frequency of zeros in the data is significantly higher than
what a typical parametric model for count data (such as a Poisson
model) can handle. This observation has been made in application
contexts as diverse as epidemiology, economics, and manufacturing
(e.g., see [2]), but has seen relatively little application to the type of
high-dimensional user-item consumption data that we investigate
in this pape—exceptions are [9, 16, 18], which we discuss in more
detail later in the paper.

To illustrate the phenomenon of zero-inflation Figure 1 shows a
histogram of the yt

i j values for a sample of user-item pairs from all
datasets with an average consumption rate between 5 and 6 across
time (values of yt

i j = 0 were excluded in computing the average).
The histogram illustrates the variability of yt

i j values across all time
windows. We can see that the consumption rate has a bimodal dis-
tribution with one mode at yt

i j = 0 and additional mode at yt
i j = 6.

We selected the average rate of 5 to 6 for illustration—similar bi-
modal patterns occur for different values of average number of
user-item consumption. The bimodal nature of this data suggests
that user-item rate can be represented as a mixture of two processes:
an exposure process and a rate process.

Exposure Process: The exposure process describes whether or
not a user i has been exposed to item j at time t . The concept of
exposure captures the idea that for large item sets a typical user is
likely to be unaware of (or unexposed to) most items in the “item vo-
cabulary" (see also [9, 16, 18]), e.g., in music-listening many artists
are unknown to many users. We define zt

i j 2 f0; 1g as an indicator
variable to indicate if user i was exposed to item j at time t . We
can model P„zt

i j = 1” via a Bernoulli distribution with parameter
π t

i j , where the Bernoulli parameter will be a function of the past
history of user i and item j.

Rate Process: Conditioned on exposure, i.e., zt
i j = 1, the rate

process accounts for the number of times user i consumes item j at
time t . A natural and simple distribution for the rate process is the
Poisson model, parameterized by the expected consumption rate

Figure 2: Average number of unique consumed items (left)
and total number of consumed items (right) per week for
each user across each of the 3 data sets.

λt
i j :

P„yt
i j = k jλt

i j ” =
λt

i j
ke�λ

t
i j

k!
(1)

where k = 0; 1; 2; : : : is the number of consumptions. There are a
number of other alternatives for defining probability distributions
over count data that we could have used in our modeling approach,
such as the non-negative Binomial distribution (NBD). We chose
to use the Poisson distribution since it is straightforward to inter-
pret the model parameters and is simple to implement. Using an
NBD model, within the same general modeling framework that we
propose here, could in principle lead to more accurate predictive
models than the Poisson.

3.2 Data Heterogeneity
Another common feature of high-dimensional user-item data sets
is heterogeneity. Figure 2 shows boxplots of the average number of
unique items each user consumes (left panel) and the average num-
ber of total consumed items for each user (right panel), per week,
for each of the 3 data sets. The figure clearly indicates (a) significant
variability across users, as well as (b) significant variability across
the different data sets. A plausible explanation for user variability is
that different users can have significantly different budgets, either
monetary or non-monetary (e.g. time), for consuming items. In
addition there can be significant variation in the domain-specific
cost for the consumption of a typical item across different data sets,
leading to significant differences in the scale of user-item consump-
tion across different domains, i.e., domain-specific cost offsets. For
example, the effective cost to a user of listening to a song (lastfm)
is significantly less than the cost of visiting a restaurant for a meal
(Yelp).

Another contribution to data heterogeneity is the natural varia-
tion across users (and datasets) of some users to explore new items
compared to their tendency to exploit known items. For example, a
user who has a low tendency for exploration will naturally tend to
repeat their behavior and the number and identity of unique items
this user consumes is likely to remain relatively small and static
over time. On the other hand a different user could have a tendency
to be easily bored with items (a state that could be detected from
recent activity [12]) and a corresponding tendency to often explore
new items, where the new items are perhaps strongly influenced
by global popularity and trends in the data.
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4 POISSON REGRESSIONWITH
ZERO-INFLATION

Given the prevalence of zero-inflation and heterogeneity in user-
item data sets we propose to model the observations yt

i j for user i ,
item j, at time t , as

(1) a mixture of an exposure process and a rate process, where
π t

i j is the mixture weight and where λt
i j is the expected rate

that user i will consume item j at time t (conditioned on
being exposed to the item), and

(2) regression models for each of π t
i j and λ

t
i j , conditioned on

features xt
i j .

4.1 Zero-Inflated Poisson Models
The exposure and rate processes are modeled via a mixture of two
components: (a) a delta function at zero and (b) a Poisson distri-
bution. The mixture model weights and Poisson rate parameters,
π t

i j and λ
t
i j respectively, are user and item-dependent and are im-

plicit functions of the features xt
i j—we provide more details on the

conditional models for these parameters later in this section.
We can write the probability of Pzip „y

t
i j = k jπ t

i j ; λ
t
i j ” as:

Pzip „y
t
i j = k” =

(
„1 � π t

i j ” + π t
i jPλ„k jλ

t
i j ”; k = 0

π t
i jPλ„k jλ

t
i j ”; k = 1; 2; : : :

(2)

where Pλ„k jλ
t
i j ” is the Poisson probability defined in Equation 1.

The model above is known as the zero-inflated Poisson (ZIP) re-
gression model, where the regression aspect arises through the
conditioning of π t

i j and λ
t
i j on the features [15]. In the ZIP model,

zeros can be generated either by (a) the Bernoulli random variable
π t

i j taking value 0 or (b) π
t
i j taking value 1 and the Poisson model

generating a value k = 0. From a generative perspective these two
“routes" for generating zeros can be interpreted as either (a) the
user i not being exposed to item j, or (b) the user being exposed
but deciding not to consume the item (by drawing a zero from the
Poisson distribution).

An alternative to the ZIPmodel is to use a shifted Poisson process
for the rate that has a minimum value of k = 1 (rather than k = 0).
In the statistical literature this is known as a hurdle model in the
sense that the Poisson model is invoked if the count is greater than
the “hurdle" (where here the hurdle value is 0). We empirically
compared the hurdle and the ZIP model (results not shown) and
found that the ZIP model systematically outperformed the hurdle
variant for our 3 data sets in terms of modeling and predicting
user-item consumption rates. For this reason we focus on the ZIP
model in the rest of the paper.

4.2 Regression Modeling of Mixture
Parameters

We model heterogeneity across users and items via generalized
linear regression models for both π t

i j and λ
t
i j , where the regression

models depend on feature vectors xt
i j that vary by user i , item j and

time t . The regression models use two constant intercepts, globally-
shared and individual-specific, capturing (respectively) the effect of

Covariate Notation Value
Global domain costs x0 1
User-specific Budget xi0 1

Past user-item preference x t̄
i j log

�
1 +

˝t
τ =1 y

τ
i j

t

�
Current user-item activity xt

i j log„1 + yt
i j ”

Historical item popularity x t̄
j log„1 +

˝
i
˝t

τ =1 y
τ
i j

t N ”

Current item popularity xt
j log„1 +

˝
i yt

i j
N ”

Table 2: Definition of features used in our regressionmodels,
based on user and item historical data.

global domain costs and heterogeneity in individual-specific budgets.
In addition, we use four data-driven features, defined in Table 2,
that are computed from each individual user’s historical data and
from contextual information.

The features capture different aspects of user and item histories
and allow the model to capture the balance between explore and
exploit for each individual. Past user-item preference, x t̄

i j , repre-
sents the average rate that user i consumes item j over time and
can capture the behavior of repetitive users who have a high prob-
ability of exploitation. Current user-item activity, xt

i j , captures
(on a log-scale) the recent activity of user i with item j, motivated
by recent studies on the effect of recency and boredom in item
consumption [1, 10–12]. Historical item popularity, x t̄

j , reflects
the overall popularity of an item and is expected to capture the
behavior of users whose exploration preferences are affected by
conformity [23]. Current item popularity, xt

j , captures current
trends in item popularity, allowing the model to reflect the behavior
of users driven by trends such as hype as a result of a sale, or the
“death” of an item.

The use of features based on a user’s past observations to predict
the future behavior of the individual is an instance of an observation-
driven time-series modeling approach (which we discuss further
in the related-work section below). In particular, this allows for
an individual’s behavior to change over time in a non-stationary
fashion. For example some individuals could be permanently in
exploration mode to the extent that their future behavior is always
different to their past (in terms of specific item consumption). More
typical is the case where future behavior is a combination of repeat
and novel item consumption, to varying degrees across different
individuals.

The features used in this paper (in Table 2) are somewhat general
and other features could be used depending on the application. For
example, more specific domain-dependent features could also be
incorporated, such as static features that provide side-information
about users and items [18], or exogenous time-varying features
such as seasonality or calendar effects [21].

Given the regression features we model the exposure and rate
processes parameters in the following way:

Exposure Process: The value of π t
i j is estimated using logistic

regression, conditioned on the globally-shared and the individual-
specific intercept coefficients η0 and ηi0 respectively, as well as the
individual-based feature coefficient vector ηi = fηi1;ηi2;ηi3;ηi4g.
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We denote the data-driven feature vector as xt
i j = fx t̄

i j ;x
t
i j ;x

t̄
j ;xt

j g

and write the logistic function as:

π t
i j =

1

1 + e�„η0x0+ηi0xi0+ηix
t
i j ”

(3)

Rate Process: Similarly, the value of λt
i j is modeled via Poisson

regression with a globally-shared and individual-specific coefficient
β0 and βi0, as well as an individual-specific coefficient vector βi =

fβi1; βi2; βi3; βi4g. In addition, as proposed in [6] and [14], we added
an additional intercept (x j0 = 1) with an item-specific offset βj0 to
accommodate heterogeneity across items.

The resulting Poisson regression model can be written as

log λt
i j = β0x0 + βi0xi0 + βj0x j0 + βix

t
i j (4)

where the feature vector xt
i j is defined in the same way as in Equa-

tion 3.

5 LEARNING ALGORITHMS
Since the ZIP regressionmodel can be expressed as a two-component
mixture model, with Pλ„y

t
i j jλ = 0” as the zero-inflation component,

the model parameters can be estimated via a standard application
of the Expectation-Maximization (EM) algorithm. EM is a general
procedure for iterative optimization of a likelihood function with
missing information. For mixture models the missing information
for each data point yt

i j is the identity of which component gener-
ated that data point. In particular, for ZIP mixtures this information
is missing for all the zeros in the data set, yt

i j = 0, since these data
points could have been generated by either component. For values
yt

i j > 0 the data are unambiguously assigned to the rate component
Pλ„y

t
i j jλ

t
i j ”.

The E-step computes the membership probability (equivalent to
the expected value of the binary membership indicator) for each
data point yt

i j = 0, conditioned on current estimates of the model
parameters. The M-step generates maximum likelihood estimates
of the parameters conditioned on the membership probabilities
provided by the E-step. Under fairly broad conditions, repeated
application of E and M steps is guaranteed to converge to a (local)
maximum of the likelihood function.

E-step: In the E-step, for each of the zero-valued data pointsyt
i j = 0,

we compute the membership probability wt
i j , namely the proba-

bility that this zero was generated by the rate component. These
membership probabilities can be computed by applying Bayes rule
to the definition of the mixture model above, Pzip „y

t
i j = k jπ t

i j ; λ
t
i j ”,

where the parameters π t
i j ; λ

t
i j are the current parameter estimates

(from the most recent M-step or their initial values at the first
iteration).

wt
i j =

π t
i jPλ„y

t
i j jλ

t
i j ”

„1 � π t
i j ”Pλ„y

t
i j jλ = 0” + π t

i jPλ„y
t
i j jλ

t
i j ”

(5)

Data points with membership weights closer to 1 are more likely
(according to the current parameters) to have been generated by the
rate component and, conversely, data with weights closer to 0 are

more likely to have been generated by the zero-inflated component.

M-step: The M-step optimizes the parameters of the model con-
ditioned on the current estimates of the wt

i j membership values.
Our ZIP model has two sets of parameters, the logistic regression
parameters for the mixture weights η = fη0;ηi g, and the rate pa-
rameters for the Poisson rate component in the mixture model,
β = fβ0; β j ; βi g. The logistic regression uses the membership
weights as targets and the Poisson regression uses weighted re-
gression with the weights being the membership weights.

Neither the logistic or Poisson regression can be performed in
closed-form, so we use gradient descent within each M-step to
estimate the coefficients for each model. The gradients in both
cases (logistic and Poisson) involve dense sums over all N �M �T
data values, where N ; M and T are the number of users, items and
time-windows respectively. This is in contrast to sparse estimation
methods such as Poisson matrix factorization that can ignore the
zeros in the data, effectively working with only a tiny fraction
of the full data matrix for highly sparse data. Thus, in order to
achieve a scalable algorithm, we use stochastic gradient descent
(SGD) instead of full gradient methods, inspired by the success of
SGD in training of large-scale deep neural networks on large data
sets. SGD approximates the exact gradient at each gradient update
by estimating the gradient in a stochastic manner using a small
randomly-selected subset of rows (“mini-batches") from the data
matrix. We discuss the convergence of our EM + SGD method in
more detail in Section 8 later in the paper—at this point it is sufficient
to note that our implementation is as fast (or faster) in wall-clock
time when compared to publicly-available implementations of other
competing approaches.

The step size in each SGD step was determined via the ADAM
algorithm [13] which provides a systematic way of conditioning the
step size on the level of confidence in the gradient. We found em-
pirically that ADAM worked well for our SGD-based optimization
problems (and that convergence could be difficult to attain without
it) in agreement with work in deep learning where the combination
of SGD and adaptive step-size (such as ADAM) is essential to the
success of training models on large data sets.

One final note is that rather than maximizing the likelihood we
maximized the likelihood times a prior, i.e., maximum a posteriori
EM estimation. In log-space this corresponds to maximizing (in the
M-step) the log-likelihood plus a regularization term corresponding
to the log prior. In our experiments we found that empirically-
determined MAP priors were particularly effective. To compute
the empirical prior we trained the model using global coefficients
(assuming all data belong to a single user) with L2 regularization.
The learned coefficients were then used as a common prior for all
users.

6 RELATEDWORK
The conceptual basis of our work builds from a rich literature in
statistics on modeling of count data [2]. For example, within the
framework of generalized linear models the Poisson mean is mod-
eled as exp„

˝
βkxk ” where the βk ’s are regression coefficients and

the xk ’s are the inputs to the model. In the context of longitudinal
data (data across multiple individuals) it is common to use fixed
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and random effects to account for individual-level heterogeneity,
e.g., by allowing for individual-specific intercept terms in the mean
such as exp„βi +

˝
βkxk ”where βi is the offset for individual i (e.g.,

[5], ch.7). The incorporation of time-dependence into such models
can typically be categorized into one of two general categories ([2],
ch 7.2): observation-driven models where the counts are modeled
directly as functions of past counts (such as autoregressive mod-
els for count data), or parameter-driven models where the counts
depend on a latent state-space process (such as a hidden Markov
model or a linear-Gaussian filter). The models we propose in this
paper are in the observation-driven category, while the dynamic
matrix factorization methods (discussed below) that we compare
to in our experiments are in the parameter-driven category. The
use of zero-inflation is also well-known in statistical modeling of
count data (e.g., [7, 15]) and can be combined with other modeling
components (as we do in our proposed approach) such as temporal
dependence and fixed effects.

While our approach builds on much of the above prior work in
statistics, a significant difference is that we model high-dimensional
count vectors (i.e., a large number of items). These count vectors
are orders of magnitude larger in dimensionality than the low-
dimensional (often scalar) count data that is often the primary
focus in the statistical literature for modeling of count time-series
[2]. To handle the optimization challenges of parameter estimation
for high-dimensional counts we use techniques from stochastic
gradient optimization, which have not (to date at least) seen much
application in the statistical literature for count modeling.

Another significant line of related work is in matrix factorization
of user-item consumption data. The most well-known approach in
this context over the past decade has been the bilinear Gaussian
model based on an SVD decomposition (e.g., [14]). The expected
target value yi j is usually represented in such models as

E»yi j … = θ 0iϕ j + β0 + βi + βj ; (6)

where θ 0iϕ j is the inner product of low-dimensional latent vector
representations for useru and item i , and β0; βi ; and βj are constant,
user, and item offsets respectively. In this framework the latent
vectors θi and ϕ j and parameters β0; βi ; βj are typically estimated
from the data using least-squares. This is equivalent to maximizing
the likelihood of a Gaussian model for the yi j ’s (e.g., [22]). This is a
useful approach for data that can be approximated by a symmetric
distribution but is not ideal for the types of highly skewed count
data we are focusing on in this paper.

More recent work in matrix factorization has built on ideas from
non-negative matrix factorization to develop models that are more
appropriate for count data, e.g., where the expectation in Equation 6
above represents the mean of a Poisson model for the yi j ’s—known
as Poisson matrix factorization (PMF). A typical approach is to
estimate the parameters within a Bayesian framework (such as
variational inference) and to place priors (such as Gamma priors)
on the parameters θi and ϕ j [6, 17].

Of particular relevance to this paper is the recently-introduced
dynamic Poisson matrix factorization model (DPMF) [3] which
models the expected counts as a function of time t as:

E»yt
i j … = θ 0itϕ jt + : : :

where t is a discrete time index (such as days, weeks, etc). Here
the latent user and item vectors are allowed to evolve dynamically
over time, such that predictions for time t + 1 are a functions of the
latent vectors estimated at time t . This DPMF approach (and matrix
factorization in general) can be viewed as an instantiation of a
parameter-driven latent-space model, in contrast to the observation-
driven model that we pursue here.

Another recent strand of related work (in the non-dynamic PMF
context) is the use of zero-inflated models in probabilistic matrix
factorization. Liang et al. [16] proposed the framework of expo-
sure matrix factorization (ExpoMF) which uses zero-inflation to
explicitly account for exposure effects in matrix factorization of
large binary user-item data sets. Liang et al. found that ExpoMF
systematically outperformed traditional PMF methods that did not
account for exposure. In a similar vein, Jain et al. [9] developed a
probabilistic matrix factorization framework with zero-inflation
to handle exposure effects, for multi-label classification with very
large numbers of labels, also finding that explicit modeling of ex-
posure systematically outperforms methods that do not include it.
Finally, Liu and Blei [18] recently proposed a zero-inflated expo-
nential family embedding approach for sparse binary and count
matrices, which from the perspective of this paper could be effec-
tively viewed as a “cousin" of traditional matrix factorization with
its low-dimensional embedding representation of the data.

Our work differs from the matrix factorization and embedding
approaches described above, in terms of our focus on (a) prediction
of consumption rates rather than ratings or binary data, (b) modeling
both repeat and novel consumption over time, and (c) the use of user-
and item-specific regression models rather than low-dimensional
factorizations or embeddings.

There has also been recent work on continuous-time modeling of
time-stamped user-item data, using Markov approaches [1, 11, 12],
Poisson point processes [8], and neural networks [10]. While these
papers share a common motivation with our work in terms of
analyzing explore/exploit aspects of user consumption, the focus
and methodologies are significantly different to what we pursue
in this paper, with less emphasis on user-item rate prediction and
without the use of zero-inflation or regression models.

7 EXPERIMENTS AND RESULTS
Below we describe the results of comparing the ZIP model to base-
lines and to a number of well-known approaches from the literature
for modeling sparse user-item count data. For all of the experiments
described below the model parameters were estimated using data
up to time t � 2, with hyperparameter tuning via grid search using
data at time t � 1, and then evaluated on holdout test data from
time t . This was repeated for t = T � 4 to t = T and the prediction
metrics for the 5 test sets were then averaged.

7.1 Performance Metrics
We evaluated our models using four different metrics.

Log-Loss: The log-loss is the average of the negative log-probability
(or negative log-likelihood) of each user-item consumption rate in
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the test data:

� log P = �
1

Ntest

Õ
i

Õ
j

log P„yt
i j ”

where P„yt
i j ” is the probability of the observed count yt

i j , under the
model being evaluated, and where Ntest is the total number of test
points. The log-loss metric is bounded below by zero (attainable
only by perfect predictions) and is widely used in the evaluation
of machine learning algorithms that produce probabilistic predic-
tions. A model that assigns higher probability, or lower negative
log-probability, to the observed test data is preferred over a model
that assigns lower probability (or a higher negative log-probability).

Precision, Recall, and F1: Let ŷt
i j denote the expected number of

times (according to a particular model) that user i will consume
item j during time-window t . For the ZIP model, by the linearity of
expectation we have that ŷt

i j = π̂ t
i j λ̂

t
i j where π̂

t
i j and λ̂

t
i j are point

(MAP) parameter estimates learned by the model on the training
data.

For each pair i; j we can compute the precision and recall of a
prediction ŷt

i j , relative to the observed value yt
i j , as follows. Pre-

cision can be defined in the context of count data as
minfyt

i j ,ŷ
t
i j g

ŷt
i j

,

i.e., it is the fraction of user-item consumptions that the model
predicted would occur that actually did occur. Similarly, recall can

be defined as
minfyt

i j ,ŷ
t
i j g

yt
i j

, which is the fraction of observed user-

item consumptions that did occur that the model predicted would
occur. These pairwise user-item precision and recall values can be
averaged over all user-item pairs to obtain overall precision and
recall numbers. Models that systematically underestimate yt

i j (e.g.,
that predict all zeros) will have high precision but low recall, and
vice-versa for models that systematically overestimate yt

i j . For our
experimental results below we report the F1 score, which combines
both precision and recall, in the standard fashion as:

F1 = 2 �
Prec � Rec
Prec + Rec

MAE: Mean absolute error between the expected number of times
that a user i will consume item j during time-window t and the
observed value yT

i j : MAE = 1
Ntest

˝
i
˝

j

���yt
i j � ŷ

t
i j

���
7.2 Poisson Regression with and without

Zero-Inflation
We first compare the ZIP Poisson regression model (ZIP) to a Pois-
son regression model (PR) without a zero-inflation component. We
use the same features for both models. Table 3 shows that the ZIP
model systematically outperforms the PR model on holdout data,
for all three metrics across all three data sets.

To further analyze the contribution of the zero-inflated compo-
nent we evaluated each of the models in terms of their ability to
predict the zeros. We focused on user-item pairs with yt

i j = 0 and
computed the Log-Loss for those pairs under each model. The Log-
Loss values for the PR model are 0:064, 0:035 and 0:042 in the reddit,
lastfm and Yelp data sets respectively. The corresponding values
for the ZIP model are an order of magnitude lower: 0:004, 0:004

Log-Loss F1 MAE
Dataset PR ZIP PR ZIP PR ZIP
reddit 0.30 0.14 0.70 0.82 0.40 0.23
lastfm 0.20 0.08 0.08 0.25 0.08 0.04
Yelp 0.09 0.07 0.09 0.15 0.07 0.04

Table 3: Log-Loss, F1 measure and MAE on the test data for
the PR and ZIP models across different data sets. Lower val-
ues are better for Log-Loss and MAE and higher values are
better for F1. Best performing methods indicated in bold
font.

and 0:017. This significant improvement is directly attributable to
the presence of the zero-inflation component in the ZIP model.

7.3 Comparing ZIP to Baselines and Matrix
Factorization

Below we describe results obtained from comparing the ZIP model
to a set of simple baselines and to several well-known approaches
in the literature based on matrix factorization and embeddings for
count data.

GR (Global Rate): This is defined as the global rate at which each
item is consumed in the training data, computed by averaging
across all users and time-stamps:

λ̂GR
i j = λ̂j =

1
N

1
t

NÕ
i=1

tÕ
τ=1

yτi j 1 � j � M

MPE (Mean Posterior Estimate): This is the mean posterior es-
timate (MPE) of each user-item rate, with a conjugate Bayesian
Gamma„γ0;γ1” prior, based on the counts in the training data:

λ̂MPE
i j =

˝t
τ=1 y

τ
i j + γ0

t + γ1

where γ0 and γ1 are determined via grid search to optimize the
log-loss of the validation data for the MPE model.

PMF (Poisson Matrix Factorization): This is a latent factor ma-
trix factorization model with a Poisson distribution for the observed
counts. In our results we used a state-of-the-art Bayesian PMF ver-
sion implementation by Liang et al. [17]. We fit the model to the
aggregated data across all time windows. At prediction time the
predicted rates from the model were divided by the number of time
windows in the training data set to scale the rate for prediction for
a single time window.

DPMF (Dynamic Poisson Matrix Factorization): This is an ex-
tension of the PMF model that learns latent-space decomposition
from a sequence of user-item consumption counts [3]. The latent-
space vectors for users and items are estimated for each time-
window jointly by modeling the change in θ t

i and ϕt
j between

different time steps t using a Kalman filter.



WWW 2018, April 23–27, 2018, Lyon, France Moshe Lichman and Padhraic Smyth

GR MPE PMF DPMF ZIE ZIP
reddit 2.984 0.248 0.362 0.845 4.214 0.136
lastfm 0.213 0.132 0.145 0.154 0.171 0.075
Yelp 0.078 0.084 0.076 0.076 0.074 0.069

Table 4: Log-Loss on the test data for different algorithms
across different data sets. Lower scores are better. Best-
performing methods indicated in bold font.

GR MPE PMF DPMF ZIE ZIP
reddit 0.07 0.62 0.63 0.57 0.01 0.82
lastfm 0.04 0.21 0.12 0.18 0.02 0.25
Yelp 0.10 0.11 0.13 0.10 0.11 0.15

Table 5: F1-scores on the test data for different algorithms
across different data sets. Higher scores are better. Best-
performing methods indicated in bold font.

GR MPE PMF DPMF ZIE ZIP
reddit 0.996 0.401 0.342 0.473 0.661 0.228
lastfm 0.057 0.049 0.051 0.043 0.136 0.038
Yelp 0.042 0.035 0.040 0.049 0.041 0.035

Table 6: MAE on the test data for different algorithms across
different data sets. Lower scores are better. Best-performing
methods indicated in bold font.

ZIE (Zero-Inflated Exponential Family Embeddings): This is
an exponential family embedding algorithm that uses a zero-inflation
component to model exposure and effectively downweight zero
counts when learning item embeddings from sparse binary or count
data [18]. We fit the model to the aggregated data across all time
windows using Poisson distribution and scaled to a single time
window at prediction time. The exposure covariates in this model
are individual-specific and represent external information (such
as demographic variables). In the absence of additional meta-data
about the individuals for the data sets used in this paper, we used a
single intercept for each item.

Hyperparameters for PMF, DPMF, and ZIE were determined via
grid search on the validation data. One hyperparameter of particu-
lar interest is the number of factors or dimensions used by these
models. We found that the matrix factorization techniques, PMF and
DPMF, had the best predictive performance when using extremely
high numbers of factors, to the point of almost memorizing the
data. Rather than using very high dimensional representations, in
keeping with typical matrix factorization experiments in the litera-
ture, we limited the number of factors for the models to a moderate
range of 200 to 500 dimensions. For the ZIE method, grid search on
the validation resulted in 50 to 100 embedding dimensions being
approximately optimal for prediction across the different data sets,
with little to no improvement above 100.

Tables 4, 5 and 6 show the Log-Loss, F1, and MAE scores on the
test data, for each of the baselines and PMF, DPMF and ZIE models,
compared to the ZIP model. The ZIP model is significantly more
accurate than the other methods for all metrics for all data sets,
except for the MAE score for the MPE model on the Yelp data set.

For both the reddit and lastfm data sets the margins of improve-
ment of the ZIP model over the PMF, DPMF and ZIE models are
quite large. There are two likely reasons for this improvement. The
first is that the zero-inflation component in the ZIP model provides
a more flexible way to handle excess zeros than PMF or DPMF. The
second reason is that the the user-specific features in the regression
approach (such as the history variable of what specific items a user
consumed in the past) allows the regression model to more accu-
rately model individual-level details than the matrix factorization
(MF) or embedding approaches. These approaches are constrained
by the dimensionality of their latent spaces, limiting the level of
detail (e.g., specific combinations of items) available for modeling
individual users. We explore both of these in more detail below.

Figure 3: The ratio of probability for the number of con-
sumptions for selected users from reddit (top) and lastfm
(bottom) at time T assigned by the evaluated models com-
pared to the ground truth (GT). The number of consump-
tions predicted by the ZIE model were all lower than 1. As a
result the ratios of probabilities for the ZIE model are omit-
ted from the plot for clarity. Best viewed in color.

Modeling excess zeros: Modeling the zeros provides the ZIP
model with a principled way of down-weighting the zeros in the
process of learning the rate parameter. As a result the rate-process
coefficients are free to fit a larger range of yt

i j values (in particular,
high numbers of consumptions). In Figure 3 we plot the ratio be-
tween (a) the predicted number of ŷt

i j counts, across different ranges
of y, for the different models, and (b) the ground truth number for
those values in the test data. These plots are for users with high
variance in their yt

i j values, for both the reddit (top) and lastfm
(bottom) data sets. We can see that in order to fit the excess of
zeros, the baselines tend to systematically and significantly overes-
timate the low rates and to underestimate the high rates, relative
to ground truth. In contrast, the proposed ZIP regression model
(green squares) tends to be much more accurate (i.e., much closer
to 1 than the other methods across both data sets).

Balancing Explore-Exploit: By separately modeling the ex-
posure and rate processes, the ZIP model is able to capture the
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heterogeneity across users in terms of their explore/exploit behavior.
In particular, the exposure process coefficient ηi0 corresponds to the
estimated user-specific budget and captures the number of unique
items a user will consume. As ηi0 increases, the probability that a
user will be exposed to an item and consume it is also predicted to
increase, corresponding to a higher predicted tendency for explo-
ration. To illustrate this, in Figure 4 we plot the correlation between
the value of ηi0 and the number of unique items the user consumed
in the lastfm (left) and reddit (right) data sets. The clear positive
correlation between the two (shown as the regression line in red)
demonstrates the ability of our model to achieve an appropriate
balance between exploration and exploitation, resulting in better
individual-level predictive models. In addition, the individual-level
coefficients provide interpretable detail about each specific user,
quantifying their individual tendency for exploration within the
context of a broad rate-prediction model.

Figure 4: Number of unique items each user consumed as a
function of the user-specific budget coefficient (ηi0) in the
lastfm (left) and reddit (right) data sets. The red line indi-
cates the exponential curve fitted to the scatter plot.

8 SCALABILITY
In fitting our regression models our dense data matrix can be
thought of as having N � M � T rows and d columns (for the
features), where d is the number of coefficients in the regression,
N ; M and T are the number of users, items and time-windows re-
spectively. Thus, direct gradient optimization would be O„dNMT ”
per gradient computation. Using SGD, the time complexity of a
single gradient step is O„d � R” where R is the minibatch size (i.e.,

Figure 5: Optimization cost value (negative log-Likelihood)
at each SGD iteration for each dataset. Markers denote the
point in the iterative process where E-steps were performed.
Best viewed in color.

the number of data points selected for computing each stochastic
estimate of the full gradient).

If we think of NMT as the effective total number of rows in the
full data set, then to gain the benefits of SGD we need to select R
such that R << NMT . In typical applications of SGD with dense
data the minibatch size can be quite small, e.g., R = 10; R = 100.
However, with highly skewed data (as in the user-item data sets of
interest here), the minibatch sizes need to be significantly larger
to ensure that there are enough non-zeros in each minibatch. We
found that a minibatch size of R = 50; 000 worked well in terms of
relatively fast and reliable convergence. The time complexity of a
single E-step is O„d�N �M�T ”, i.e., proportional to the number of
rows, making it the most expensive part in the algorithm in terms of
time complexity. It is possible that some efficiency could be gained
here via an approximate E-step but we did not investigate this here
given that we execute far more gradient steps (within the M-step)
than E-steps.

Figure 5 shows convergence plots, where the y-axis is the cost
function (Log-Loss) at each iteration. Each iteration on the x-axis
marks a single stochastic gradient (minibatch) step and the markers
indicate the point in the algorithm where E-steps occurred (each
M-step consists of multiple gradient steps). We see from the con-
vergence plots that the algorithm converges quickly for each of the
three data sets in our experiments. We implemented our algorithm
in Python (with Cython to speed-up)3. Each mini-batch iteration
in our implementation ran in a matter of few milliseconds and the
relatively expensive E-step took 7, 62, and 1 seconds on average for
the reddit, lastfm, and Yelp data sets respectively. Our implementa-
tion used a single core—it is relatively straightforward to distribute
the computation of the gradients and membership weights by using
multiple cores, rendering the algorithm scalable to much larger
data sets than what we used here.

9 CONCLUSIONS
We proposed and investigated a framework using zero-inflated
Poisson regression for prediction of consumption rates in high-
dimensional user-item data sets. The approach is motivated by
applications where user consumption is a mix of repeat (exploita-
tion) and novel (exploration) behavior over time. The regression
component of the model allows for detailed modeling of individual
users based on their histories and provides an alternative to more
widely-used latent variable models such as matrix factorization.
Experimental results indicate that the proposed approach can sys-
tematically outperform existing alternatives such as PMF, DPMF
and ZIE for the problem of predicting the rates at which specific
users consume specific items. There are a number of natural direc-
tions for further explorations of models of this type, including for
example modeling of the dynamic changes between time windows
within the regression framework, potentially further enhancing the
predictive capabilities of the proposed ZIP regression model.
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