
ICS 268: Cryptography and Communication Security September 28, 2004

Lecture 1: Crypto Overview, Perfect Secrecy, One-time Pad
Lecturer: Stanislaw Jarecki

(These notes incorporate material from Tal Malkin’s Lecture 1-2 and Yevgeni Dodis’s Lecture 1)

1 LECTURE SUMMARY

We overview the aims and the philosophy of modern cryptography. We exemplify this approach
with the first shot at a definition of encryption scheme security, which we will develop later on in
this class. We then give a classic definition given by Claude Shannon ofperfect secrecyfor an
encryption. We show that various classic ciphers fail to satisfy this definition, but we also show a
cipher calledOne-Time Padwhich does satisfy it. However, this cipher has very limitedapplicability
because the communicating parties must share a pre-agreed key which is as long as the message, i.e.
as all the communication they will be able to secretly exchange between them. We show, moreover,
that this is a fundamental limitation of everyperfectly securecipher. In other words, we show
that no perfectly secure cipher can have keys shorter than the message. This motivates the need
to relax Shannon’s information-theoreticperfect secrecyrequirement on encryption schemes with a
computationalsecrecy property instead. We’ll develop such computational secrecy property in the
next lecture.

2 MODERN CRYPTOGRAPHY: SHORT OVERVIEW

The aim of modern cryptography is to design communication schemes (encryption schemes, iden-
tification schemes, message authentication schemes, etc) whose security properties can beproven,
usually based on some computational hardness assumptions,e.g. an assumption that factoring, or
computing discrete logs, ishard.1

However, to create a scheme whose security is provable, we first need todefine the security
property which we need to prove. The security property will be usually defined as a requirement
that no efficient algorithm canwin in some communication gamewith somesignificantprobability
(again, we postpone the precise definition ofsignificantto the next lecture).

2.1 EXAMPLE : SECRET COMMUNICATION AND SECURE ENCRYPTION

Let’s exemplify the provable security approach with an example of encryption. How to define what
a secure encryption is?

Assume there are three agents, Bob, Alice, and Eve. Alice wants to send Bob a private message
that only Bob can read. Eve, which is an abbreviation for an eavesdropper, is an adversary who

1We’ll see in the next lecture how to define this hardness precisely, but the intuition is that a problem is hard if no
efficient, i.e. polynomial-time, algorithm can solve that problem with probability higher than somenegligiblefactor. (We
postpone the definition ofnegligibleto the next lecture.)
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may intercept Alice’s communication, but reading it shouldnot enable her to reconstruct Alice’s
message to Bob. This is the essence of the problem of secure communication.

To communicate the message secretly, Alice must transform her plaintext message somehow.
We call this transformation anencryption, while the reverse transformation done by the receiver Bob
is calleddecryption. The original message is called aplaintextwhile the output of the encryption
procedure applied to the plaintext is called aciphertext. Thus the above secure communication
problem can be solved by a (private key) encryption scheme. We call an encryption schemeEΣ a
triple of (efficient) algorithms(Kgen,Enc,Dec) and a message spaceM s.t.

KGen is a probabilistic algorithm which picks keyk

(for simplicity assume for now thatk is picked at random in some keyspaceK)

Enc is an encryption algorithm, Enc : K ×M→ C

C is a ciphertext space (defined byEnc,K, andM)

Dec is a decryption algorithm,Dec : K × C →M

Apart from requiring that all these algorithms are efficient, we also require thecompletenessprop-
erty2, which says that:

∀k←K,∀m∈M, if c← Enc(k,m) thenm← Dec(k, c)

Now we are ready for the first attempt at defining what we mean byasecure encryption:

Definition 1 (One-Way Secure Encryption (first draft)) We call a (private key) encryption scheme
EΣ one-way secureif for everyefficientalgorithmE, the following holds:3

Pr[E(c) = m | k ← K,m←M, c← Enc(k,m)] ≤ negl (1)

(where bynegl we denote anegligibleprobability)

In other words, ifk andm are picked at random andc = Enc(k,m) thenE is unlikely to output
back m given the ciphertextc. (We postpone the exact definition of anefficientalgorithm and
negligibleprobability to the next lecture.)

Intuitively, what the “one-way security” property of encryption implies is that it iscomputa-
tionally hard to decrypt the message from a ciphertext of a random message.We call it “one-way”
because it says that encrypting is like a one-way process: Itis easy to encode a message in a cipher-
text (given the key), but it is hard to reverse this encoding and get the message back (without the
key).

Limitations of One-Way Security. While this “one-way security” property must hold for an en-
cryption scheme to be secure in any sense at all, this property is actually pretty weak:

What about a-priori knowledge on messages space?If the message is chosen not at random from
the whole (big) spaceM, but say the message is always some fixedm0 or m1, for example
m0 =”buy IBM stock” andm1 =”sell IBM stock”, then the fact that the encryption is one-
way secure as specified above does not imply that an efficient algorithm E cannot guess the
messagem, if E knows thatm is equal to eitherm0 or tom1.

2“Completeness” properties always say that everything works as it should if the parties use the protocol as it is intended
3With notationPr[A | B] we denote aconditional probabilitythat eventA holdsgiventhat eventB occurs.
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What if all security depends on only few bits ofm? Even if E does not have any a-priori infor-
mation about the messages exchanged byA andB, one-way security is hardly enough. Be-
cause what ifE is interested not in the wholem but only in some particular bits of it? An
encryption scheme can be indeed one-way secure while revealing some bits ofm, and if these
bits are exactly whatE wants most to learn aboutm, the encryption scheme is not satisfactory.

2.2 OTHER SECURITY PROPERTIES ANDOTHER CRYPTOGRAPHICTASKS

One moral from the above is that the above natural-sounding security property of encryption is in
fact pretty weak. The second moral is that it can be strengthened:

Semantic Security Rather than merely requiring thatE cannot decrypt the wholem given c =
Enc(k,m) for randomly chosenk andm, we can pose a stronger requirement, called “se-
mantic security”. We’ll define this notion precisely later on, but at first approximation, we call
an encryption scheme semantically secure if anything that can be computed by some efficient
algorithm E about messagem given the ciphertextc = Enc(k,m), for randomk andm
chosen according to any, potentially very restricted, probability distributionM, can be also
efficiently computedwithoutknowing this ciphertext. In other words, semantic securitycap-
tures the notion that the ciphertext isuselessfor deciphering any information about message
chosen from any a-priori known distribution.4

Active Attacks In both communication games above, the adversaryE is passivein the sense that
E only gets to see one ciphertextc of messagem ∈ M for some probability distribution
M. However, an adversary can be active too, so the security canbe defined in terms of (non-
existence of) an efficient algorithmE whichfirst has access to either the encryption algorithm
of Alice or the decryption algorithm of Bob, for exampleE can ask Alice to see encryptions
of some (test) messagesm1,m2, ... of E’s choice, andonly thenE faces either the one-way
encryption or the semantic-security test.

Another point I want you to draw from the above example is thatthis was just one example
of defining some security property of a cryptographic communication scheme. In the above case
we defined “one-way security” of a private key encryption scheme. But there are other “secure
communication tasks” we will want to achieve in this class:

Public key encryption allows Alice and Bob to have a private conversation without the necessity
of first exchanging a secret key. One party, say Bob, can have apublic and a private key pair.
Alice, knowing Bob’s public key, can encrypt messages so that only Bob, the owner of the
corresponding private key, can decrypt it. Unlike the private-key encryption discussed above,
this way everyone, for example by grabbing Bob’s public key from his webpage, can send
messages secretly to Bob. But also unlike in the case of private-key encryption, when we
define the security property of public-key encryption, the attackerE should also learn Bob’s
public key. Thus the communication game betweenA, B, andC changes quite a bit.

Digital signatures enable Bob to verify that the message he receives is from Alice, and that it has
not been modified by anyone else. HereE’s task will be to create a signatureforgery, i.e. a

4If this sounds too complex, just skip it for now. It’ll be clearer later on.
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message which will convince Bob that it came from Alice, while in fact Alice has never signed
this message. As in the case of encryption, we can and should consider active attackersE
who first ask Alice to sign any number of (test) messagesm1,m2, ... of their choice, and still
are unable to produce a forgery on somem s.t. for alli, m 6= mi.

Identification Schemesenable Alice to authenticate herself to Bob. Eve’s task is tospoof Alice to
Bob, i.e. to convince Bob that she, Eve, is Alice too...

Secure function evaluation allows Alice and Bob (and possibly more parties) to compute some
function of their input without revealing any extra information to other parties or eavesdrop-
pers. One example of a function one would want to compute securely are various database
problems. For example, Alice and Bob each have a database containing a list of some police
suspects. Can they compare the lists securely in the sense that they will identify all suspects
who appear on both lists, but no other information about their databases will be exchanged in
the process of this computation?

2.3 PRINCIPLES OFCRYPTOGRAPHICGAMES

The encryption example exemplifies some basic principles werely on when defining security prop-
erties of cryptographic schemes:

Algorithms are public We preclude the “security by obscurity” approach. We assumethat the
adversary knows what scheme he is attacking, and hence knowswhat Encryption and De-
cryption algorithms Alice and Bob use. This assumption is implicit in definition 1 when we
say “for every” algorithmE, which implies that we include algorithmsE which are aware of
algorithmsKGen, Enc, andDec.

Secrets are secretNote that attackerE does not get to see the keyk. This is almost always the
case. IfE knows everything thatA andB know, it’s hard to think of any notion of a se-
cure communication task thatA and B can perform whileE is somehow precluded from
participation.

Adversary is bounded Usually, the adversaryE has some limitations. In definition 1, he is re-
quired to be an efficient, i.e. probabilistic polynomial-time, algorithm. This limits the amount
of time and space he has to compute. But there are notions of security for unboundedadver-
sary too. This will be theperfect securitynotion we’ll develop below.

Computational hardness assumptionsWe will usually assume that there are some problems which
are computationally hard, like the factoring problem.

2.4 PROVABLE SECURITY, LAYERS OFCRYPTOGRAPHICTOOLS

The security proof is usually an argument which shows that ifthere exists an efficient attackerE,
which, for example, breaks the one-wayness property for some encryption schemeEΣ, i.e. it con-
tradicts equation (1), then one can construct another efficient algorithm, sayE′, which breaks the
underlying hardness assumption, for exampleE′ factors large composite numbers, orE′ computes
discrete logarithms. By taking a counterpositive of the above statement, the statement implies that
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if the underlying hardness assumption holds (i.e. factoring or discrete log problem are indeed com-
putationally hard) then the encryption schemeEΣ is one-way secure.

In fact, the big picture of cryptography is that we can build in the above fashion, from relatively
simple assumptions (like hardness of factoring), to more complicated ones (like one-wayness of en-
cryption). In the process we can identify some cryptographic objects, like one-way functions, pseu-
dorandom number generators, collision-resistant functions, and more, whose security properties are
“natural” in the sense that we can find multiple uses for them,to construct efficient signatures, au-
thentication schemes, encryption schemes, and other secure communication schemes. At the same
time, they are well-defined and therefore we can attempt to construct them using various number-
theoretic assumptions (like hardness of factoring or discrete-log) and we can improve and/or better
understand the efficiency and security of these constructions.

3 PERFECTSECRECY AND ITSL IMITATIONS

We’ll start exploring provable security of encryption by recalling Shannon’s classic definition of
what it means for an encryption to be secure. We’ll see the limitation of Shannon’s approach, and
we’ll how we can overcome this limitation with the modern cryptography paradigm.

3.1 SHANNON’ S SECRECY AND PERFECT SECRECY

In 1950’s, Claude Shannon, the creator of information theory, proposed an information theoretic
definition of what it means for an encryption scheme to be secure. Although Shannon’s original
definition of security (see Appendix A) is not easiest to workwith, it turns out that Shannon’s
secrecy is equivalent to the following notion (also formulated by Shannon):

Definition 2 (Perfect Secrecy)An encryption scheme satisfies perfect secrecy if for all messages
m1,m2 in message spaceM and all ciphertextsc ∈ C, we have

Prob
K←K

[Enc(K,m1) = c] = Prob
K←K

[Enc(K,m2) = c] (2)

where both probabilities are taken over the choice ofK in K and over the coin tosses of the (possi-
bly) probabilistic algorithmEnc.

Note that another way of stating the perfect secrecy requirement is that for anyc ∈ C there exists
a constantpc ∈ [0, 1] s.t. for allm ∈M , we haveProb

K←K
[Enc(K,m) = c] = pc.

In other words, what perfect secrecy requires is that, givena ciphertext, every message in the
message space is exactly as likely to be the underlying plaintext. To put it yet another way, the
plaintext is independent of the ciphertext. Thus the perfect secrecy requirement implies that the
eavesdropper truly learns nothing at all about the underlying plaintext.

Given this strong definition of secrecy, let’s look how some classic ciphers do with regards to it.

3.2 SHIFT CIPHER

M : {A, ..., Z}ℓ, whereℓ is the message length, but we’ll encode each lettermi of m = [m1, ...,mℓ]
as an integer in{0, ..., 25}
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K : {0, ..., 25} defines the shift (Historical note:k = 3 is known as “Caesar’s cipher”)

c = End(k, [m1, ...,mℓ]) = [(m1 + k mod 26), ..., (mℓ + k mod 26)]

Example 1 m =“HELLO”; k = 1; c =“IFMMP”

Weakness of this cipher are easy to see:

• Keyspace is too small, only 26 possible keys; succumbs to brute force (exhaustive search)
attack easily.

• Vulnerable to frequency analysis.

• Very easy to break:

- e.g. Repeats inm are repeats inc.

- e.g. If Eve knows the first word of a message is “HELLO”, it is trivial to derive the key.

However, let’s see how this cipher fails the perfect secrecydefinition.

Claim 3 Shift cipher does not satisfy the perfect secrecy property for ℓ ≥ 2.

Proof: Take m1 = “AB”, m2 = “AZ”, and c = “BC”. Then there exists a keyk ∈ K s.t.
Enc(k,m1) = c, namelyk = 1. However, for allk ∈ K we haveEnc(k,m2) 6= c, and hence
Prob
K←K

[Enc(K,m1) = c] = 1/26, while Prob
K←K

[Enc(K,m2) = c] = 0, and so the perfect secrecy

requirement is violated.

Claim 4 For ℓ = 1, i.e. for one-letter long messages, shift cipher actually does satisfy the perfect
secrecy property.

Proof: Note that for every letterm and everyc ∈ C whereC =M = {A, ..., Z}, there is a unique
key k = c −m mod 26 s.t.Enc(k,m) = (m + k mod 26) = c. And therefore for everym, c we
haveProb

k←K
[Enc(k,m) = c] = 1/26, and so the perfect secrecy requirement is satisfied.

3.3 SUBSTITUTION CIPHER

M : {A, ..., Z}ℓ, whereℓ is the message length

K : permutations on{0, ..., 25}; i.e. eachk∈K is chosen at random and is a 1:1 mapping from
{0, ..., 25} to {0, ..., 25}

c = Enc(k, [m1, ...,mℓ]) = [k(m1), k(m2), ..., k(mℓ)], for m = [m1, ...,mℓ] ∈M andk ∈ K

L1-6



Example 2 Keyk is the mapping from Plaintext Alphabet to Ciphertext Alphabet.
So ifm=”HELLO”; k is mapping in Table 1;c=”JREEM”

a|b|c|d|e| f |g|h| i |j|k| l |m|n|o|p|q|r|s| t |u|v|w|x|y|z|←Plaintext Alphabet
a|b|g|w|r|o|v| j |z|l|s|e| x |q|m|c| t |i |h|k|p|y|u|d| f |n|←Ciphertext Alphabet

Table 1: An Example Permutation

Comments on security:

• Vulnerable to brute force attack: keyspace is 26! (not so badfor a computer).

• Vulnerable to frequency analysis (i.e. language patterns), monographs, bigraphs, trigraphs...

Claim 5 Permutation cipher also is perfectly secure forℓ = 1 but fails to satisfy the perfect secrecy
property forℓ ≥ 2.

(We leave the proof as an exercise.)

3.4 ADDITIVE CIPHER

M : {A, ..., Z}ℓ, whereℓ is the message length.

K : {A, ..., Z}n.

c = Enc(k, [m1, ...,mℓ]) s.t. c = [c1, ..., cℓ] whereci = (mi + ki( mod n)) mod 26 for m =
[m1, ...,mℓ] ∈M andk = [k0, ..., kn−1] ∈ K.

i.e. a keyk can be thought of as the double (n-character keyword, effective key). If n < ℓ,
concatenatek to itself ⌊ℓ/k⌋ times to get the effective key.

Example 3 m =“HELLOBOB”
k =(keyword=“SECRET”,effective key=“SECRETSE”)
Using{A, ..., Z} ≡ {0, ..., 25}, we get
c =[(H+S),(E+E),(L+C),(L+R),(O+E),(B+T),(O+S),(B+E)] mod 26 = “ZINCSUGF”

Comments on security:

• Although this withstands simple frequency analysis, the scheme breaks once you figure the
keyword length (n). Oncen is known (or guessed), one simply does frequency analysis onn
blocks of ciphertext, each block formed by concatenating everynth letter of the originalc.

• A brute force attack requires a search of26n, which leaks information ifn < ℓ.

Claim 6 Additive cipher is perfectly secure forℓ = n but fails to satisfy the perfect secrecy property
for ℓ ≥ n.
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3.5 ONE TIME PAD [OTP] (VERNAM CIPHER)

M : {0, 1}ℓ, whereℓ is the message length.

K : {0, 1}ℓ.

c = Enc(k,m) = m⊕ k, for m ∈M,k ∈ K, where “⊕” stands for a bit-wise xor

m = Dec(k, c) = c⊕ k, for m ∈M,k ∈ K.

Decryption works because(c⊕ k) = ((m⊕ k)⊕ k) = m⊕ (k ⊕ k) = m

Example 4

m = [0011100100010110101101110]

k = [1110100110101000110001111]

c = [1101000010111110011100001]

Remark: Comments on security

• Here an exhaustive search gives no additional information since the keyspace is as large as
the message space, and every ciphertext could correspond toany message. Indeed, this cipher
satisfies perfect security!

• Using the samek of some lengthn < ℓ more than once breaks the scheme because it leaks
some information about the plaintextm = [m1, ...,mℓ]. For example, ifℓ = 2n then note
thatc[1,...,n] = m[1,...,n]⊕k (wherek = k[1,...,n]) and similarlyc[n+1,...,2n] = m[n+1,...,2n]⊕k.
And therefore

m[1,...,n] ⊕m[n+1,...,2n] = c[1,...,n] ⊕ c[n+1,...,2n] (3)

which means thatc = c[1,...,2n] gives some information aboutm[1,...,2n]. This information in
particular precludes some choices ofm ∈M, namely those that violate equation (3).

Theorem 7 OTP encryption satisfies theperfect secrecyrequirement.

Proof: Take anym ∈M andc ∈ C, and letk∗ = m⊕ c. Note that:

Prob
k←K

[Enc(k,m) = c] = Prob
k←K

[(k ⊕m) = c]

= Prob
k←K

[k = c⊕m]

= Prob
k←K

[k = k∗]

=
1

2ℓ

Since the equation holds for everym ∈ M, it follows that for everym1,m2 ∈ M we have
Prob
k←K

[Enc(k,m1) = c] = 1
2ℓ

as well asProb
k←K

[Enc(k,m2) = c] = 1
2ℓ

, which implies that

Prob
k←K

[Enc(k,m1) = c] = Prob
k←K

[Enc(k,m2) = c]

which establishes perfect security of OTP.
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Even though the OTP method is secure, it has a big flaw which makes it impractical: The key
needs to be as long as the total length of all communication that can ever be encrypted using this
key. So if two communication components (computers, cell phones, whatever) establish a shared
key of length, say,ℓ = 1K bytes, and plan to use it to communicate secretly using the OTP cipher,
they can only send at most1K of traffic between each other. There might be some exotic cases
where this is enough, but it usually will not be.

Note also that there does not seem to be a way to bootstrap thisinitial key so that to send some
traffic, say0.5K, using0.5K of the key material, and then have one party create and secretly send
to the other a new1K secret key using the remaining0.5K of the old secret key material.

In fact, we can easily show that no such trick can possibly work and that the above impracticality
of the OTP cipher isinherentto any cipher which satisfies Shannon’s perfect secrecy requirement.

Theorem 8 (Optimality of OTP) For anyencryption schemeEΣ which satisfies Shannon’s perfect
secrecy requirement, it must be that the keyspaceK has the same size as the message spaceM.

If keys and messages are binary string,M = {0, 1}ℓ andK = {0, 1}n, this means that an
encryption scheme can be perfectly secure only ifn = ℓ. Thus the OTP cipher is optimal with
respect to the key length.

Proof: Assume for contradiction that an encryption schemeEΣ has|K| < |M|. Take any ciphertext
cC s.t. there exists somem∗ ∈ M andk∗ ∈ K s.t.Enc(k∗,m∗) = c. Let us count the number of
messagesm that could result from the decryption ofc undersomevalid secret keyk ∈ K. I.e.,
let S ∈ M be the set of messagesS = {m | ∃k∈K Enc(k,m) = c}. Note thatS = {m =
Dec(k, c)}k∈K, and since to everyk ∈ K there corresponds at most one uniquem = Dec(k, c),
the size of setS is at most the size ofK. Therefore, there exists a non-empty setS′ = M \ S of
messages s.t. for eachm ∈ S′ there exists no keykK s.t. c = Enc(k,m). In other words, for all
m ∈ S′ we have

Prob
K←K

[Enc(K,m) = c] = 0

But since there existsm∗, k∗ s.t.c = Enc(k∗,m∗), then in particular

Prob
K←K

[Enc(K,m∗) = c] 6= 0

And this violates the perfect secrecy requirement.

4 WHAT ’ S AHEAD: PRACTICAL andPROVABLY SECURECRYPTO

The above negative result does not mean that secure encryption has no hope of being practical.
What it does show, however, is that Shannon’s notion of perfect secrecy is too strong to be useful
in practice. Fortunately, we can relax this notion from information-theoretic secrecy tocomputa-
tional secrecy, and achieve provably secure encryption schemes secure under this notion. While
information-theoretic secrecy required that every given aciphertext, every plaintexts are exactly as
likely, the computational secrecy notion will ask only thatno efficient algorithmcan tell, given a
ciphertext, and, say, any two messages that could potentially be plaintexts corresponding to this
ciphertext, whether one of these messages is more likely than the other to be the actual plaintext.

This computational notion will be the subject of the next lecture (and indeed the subject of the
rest of this class).
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A Shannon’s Original Definition of Secrecy

Definition 9 (Shannon Secrecy)LetD be any probability distribution on messages. An encryption
scheme satisfies Shannon secrecy w.r.t. the message distributionD if for all messagesm (regardless
of the probability distributionD) and all c ∈ C we have

Prob
M←D,K←K

[M = m | Enc(K,M) = c] = Prob
M←D

[M = m] (4)

where the first probability is taken overM chosen according to distributionD, over random keys
K chosen inK, and over the possible random choices of the (possibly) probabilistic encryption
algorithmEnc, while the second probability is taken overM ← D.

We say that encryption scheme satisfies Shannon secrecy if itsatisfies Shannon secrecy w.r.t. all
probability distributionsD on messages.

What this requirement says is that, for any a-priori distribution of messagesD,5 the probability
that a communicated messageMD is equal to any particular messagem does not changeeven if we
know the ciphertextc = Enc(K,M), for randomly generated keyK ← K. In other words, seeing
a ciphertext does not tell us anymoreabout messageM which the attacker does not already know
from the a-priori message distributionD.

5For example, we might know thatA andB usually communicate in English sentences, in which case thea-priori
probability distributionD would assign an extremely low probability to messagem =”axrqe asdvas”...
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