ICS 268: Cryptography and Communication Security September 28, 2004

Lecture 1. Crypto Overview, Perfect Secrecy, One-time Pad
Lecturer: Stanislaw Jarecki

(These notes incorporate material from Tal Malkin’s Leetli¥2 and Yevgeni Dodis’s Lecture 1)

1 LECTURESUMMARY

We overview the aims and the philosophy of modern cryptdogyapWe exemplify this approach
with the first shot at a definition of encryption scheme sdguwhich we will develop later on in
this class. We then give a classic definition given by Claudan8on ofperfect secrecyor an
encryption. We show that various classic ciphers fail tisgathis definition, but we also show a
cipher calledOne-Time Padavhich does satisfy it. However, this cipher has very limiagglicability
because the communicating parties must share a pre-agrg&¢hich is as long as the message, i.e.
as all the communication they will be able to secretly exdgedmetween them. We show, moreover,
that this is a fundamental limitation of eveperfectly secureipher. In other words, we show
that no perfectly secure cipher can have keys shorter trmmt#ssage. This motivates the need
to relax Shannon’s information-theoreperfect secrecyequirement on encryption schemes with a
computationakecrecy property instead. We'll develop such computatiseerecy property in the
next lecture.

2 MODERNCRYPTOGRAPHY. SHORT OVERVIEW

The aim of modern cryptography is to design communicatidreses (encryption schemes, iden-
tification schemes, message authentication schemes, letsSevsecurity properties can prven,
usually based on some computational hardness assumpigngn assumption that factoring, or
computing discrete logs, fsard.!

However, to create a scheme whose security is provable, stenfied todefine the security
property which we need to prove. The security property wallusually defined as a requirement
that no efficient algorithm cawin in some communication gaméth somesignificantprobability
(again, we postpone the precise definitiorsigiificantto the next lecture).

2.1 EXAMPLE: SECRET COMMUNICATION AND SECURE ENCRYPTION

Let's exemplify the provable security approach with an egkmof encryption. How to define what
a secure encryption is?

Assume there are three agents, Bob, Alice, and Eve. Alicéstarsend Bob a private message
that only Bob can read. Eve, which is an abbreviation for aregdropper, is an adversary who

We'll see in the next lecture how to define this hardness pedygibut the intuition is that a problem is hard if no
efficient i.e. polynomial-time, algorithm can solve that problenthnprobability higher than someegligiblefactor. (We
postpone the definition afegligibleto the next lecture.)
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may intercept Alice’s communication, but reading it shontat enable her to reconstruct Alice’s
message to Bob. This is the essence of the problem of secomawaoication.

To communicate the message secretly, Alice must transfanplaintext message somehow.
We call this transformation ancryption while the reverse transformation done by the receiver Bob
is calleddecryption The original message is callecplaintextwhile the output of the encryption
procedure applied to the plaintext is callectiphertext Thus the above secure communication
problem can be solved by a (private key) encryption scheme c&ll an encryption schen#: a
triple of (efficient) algorithmg K gen, Enc, Dec) and a message spagé s.t.

KGen is a probabilistic algorithm which picks key
(for simplicity assume for now that is picked at random in some keysp&cg
Enc is an encryption algorithopEne : K x M — C
C is a ciphertext space (defined By.c, X, and M)
Dec  is adecryption algorithpDec : K x C — M

Apart from requiring that all these algorithms are efficjemé also require theompletenesprop-
erty?, which says that:

Viics Vmem, if ¢ — Enc(k,m) thenm «— Dec(k, c)
Now we are ready for the first attempt at defining what we meaad®cure encryptian

Definition 1 (One-Way Secure Encryption (first draft)) We call a (private key) encryption scheme
£Y one-way securd for everyefficientalgorithm E, the following holds®

PriE(c)=m |k — K,m — M,c «— Enc(k,m)| < negl (1)
(where bynegl we denote anegligible probability)

In other words, ifk andm are picked at random and= Enc(k,m) thenE is unlikely to output
back m given the ciphertext. (We postpone the exact definition of afficientalgorithm and
negligibleprobability to the next lecture.)

Intuitively, what the “one-way security” property of enption implies is that it iscomputa-
tionally hardto decrypt the message from a ciphertext of a random mesgégeall it “one-way”
because it says that encrypting is like a one-way procegsedtsy to encode a message in a cipher-
text (given the key), but it is hard to reverse this encoding get the message back (without the

key).

Limitations of One-Way Security. While this “one-way security” property must hold for an en-
cryption scheme to be secure in any sense at all, this pyoiseactually pretty weak:

What about a-priori knowledge on messages spacel? the message is chosen not at random from
the whole (big) spacé, but say the message is always some fixgdor m1, for example
mg ="buy IBM stock” andmy ="sell IBM stock”, then the fact that the encryption is one-
way secure as specified above does not imply that an effidigotitam £ cannot guess the
messagen, if E knows thatm is equal to eithefng or tom;.

2«Completeness” properties always say that everything saskt should if the parties use the protocol as it is intended
3with notationPr[A | B] we denote @onditional probabilitythat event4 holdsgiventhat eventB occurs.

L1-2



What if all security depends on only few bits ofm? Even if E does not have any a-priori infor-
mation about the messages exchangeditand B, one-way security is hardly enough. Be-
cause what ifE is interested not in the whole: but only in some particular bits of it? An
encryption scheme can be indeed one-way secure while regesaime bits ofn, and if these
bits are exactly whak wants most to learn about, the encryption scheme is not satisfactory.

2.2 OTHER SECURITY PROPERTIES ANDOTHER CRYPTOGRAPHICTASKS

One moral from the above is that the above natural-soundingrgy property of encryption is in
fact pretty weak. The second moral is that it can be strengte

Semantic Security Rather than merely requiring thé cannot decrypt the whole: givenc =
Enc(k,m) for randomly chosert: andm, we can pose a stronger requirement, called “se-
mantic security”. We'll define this notion precisely later, dut at first approximation, we call
an encryption scheme semantically secure if anything tiabe computed by some efficient
algorithm E about message: given the ciphertext = Enc(k,m), for randomk andm
chosen according to any, potentially very restricted, pbilidy distribution M, can be also
efficiently computedvithoutknowing this ciphertext. In other words, semantic secwép-
tures the notion that the ciphertextuselesdor deciphering any information about message
chosen from any a-priori known distributidn.

Active Attacks In both communication games above, the adverdaiy passivein the sense that
E only gets to see one ciphertextof messagen € M for some probability distribution
M. However, an adversary can be active too, so the securitpeaefined in terms of (hon-
existence of) an efficient algorithidi whichfirst has access to either the encryption algorithm
of Alice or the decryption algorithm of Bob, for exampl&can ask Alice to see encryptions
of some (test) messages,, ms, ... of E’s choice, andnly thenFE faces either the one-way
encryption or the semantic-security test.

Another point | want you to draw from the above example is tha was just one example
of defining some security property of a cryptographic comication scheme. In the above case
we defined “one-way security” of a private key encryptionesole. But there are other “secure
communication tasks” we will want to achieve in this class:

Public key encryption allows Alice and Bob to have a private conversation withdet hecessity
of first exchanging a secret key. One party, say Bob, can hpublic and a private key pair.
Alice, knowing Bob’s public key, can encrypt messages sbo @hdy Bob, the owner of the
corresponding private key, can decrypt it. Unlike the gavieey encryption discussed above,
this way everyone, for example by grabbing Bob’s public keyrf his webpage, can send
messages secretly to Bob. But also unlike in the case oftprkey encryption, when we
define the security property of public-key encryption, titacker E/ should also learn Bob's
public key. Thus the communication game betweerB, andC changes quite a bit.

Digital signatures enable Bob to verify that the message he receives is froneAdind that it has
not been modified by anyone else. Héfis task will be to create a signatufergery, i.e. a

“If this sounds too complex, just skip it for now. It'll be ckea later on.
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message which will convince Bob that it came from Alice, eliil fact Alice has never signed
this message. As in the case of encryption, we can and shounklder active attackers
who first ask Alice to sign any number of (test) messagesms, ... of their choice, and still
are unable to produce a forgery on somes.t. for alli, m # m;.

Identification Schemesenable Alice to authenticate herself to Bob. Eve’s task &ptmof Alice to
Bob, i.e. to convince Bob that she, Eve, is Alice too...

Secure function evaluation allows Alice and Bob (and possibly more parties) to compui@es
function of their input without revealing any extra infortizen to other parties or eavesdrop-
pers. One example of a function one would want to computerecare various database
problems. For example, Alice and Bob each have a databasgimiog a list of some police
suspects. Can they compare the lists securely in the seastndly will identify all suspects
who appear on both lists, but no other information about thh&iabases will be exchanged in
the process of this computation?

2.3 PRINCIPLES OFCRYPTOGRAPHICGAMES

The encryption example exemplifies some basic principlesalyeon when defining security prop-
erties of cryptographic schemes:

Algorithms are public We preclude the “security by obscurity” approach. We asstimé the
adversary knows what scheme he is attacking, and hence kmbatsEncryption and De-
cryption algorithms Alice and Bob use. This assumption ipliait in definition 1 when we
say “for every” algorithmE, which implies that we include algorithnis which are aware of
algorithmsK Gen, Enc, andDec.

Secrets are secretNote that attackeF does not get to see the kéy This is almost always the
case. IfE knows everything thatl and B know, it's hard to think of any notion of a se-
cure communication task that and B can perform whileE is somehow precluded from
participation.

Adversary is bounded Usually, the adversarf has some limitations. In definition 1, he is re-
quired to be an efficient, i.e. probabilistic polynomiaté, algorithm. This limits the amount
of time and space he has to compute. But there are notiongwafityefor unboundechdver-
sary too. This will be th@erfect securityhotion we’ll develop below.

Computational hardness assumptionsWe will usually assume that there are some problems which
are computationally hard, like the factoring problem.

2.4 PROVABLE SECURITY, LAYERS OFCRYPTOGRAPHICTOOLS

The security proof is usually an argument which shows thdtefe exists an efficient attackér,
which, for example, breaks the one-wayness property foreseneryption schemé&y:, i.e. it con-
tradicts equation (1), then one can construct another @fficlgorithm, say=’, which breaks the
underlying hardness assumption, for examldactors large composite numbers, 6t computes
discrete logarithms. By taking a counterpositive of thevabstatement, the statement implies that
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if the underlying hardness assumption holds (i.e. factpoindiscrete log problem are indeed com-
putationally hard) then the encryption schefite is one-way secure.

In fact, the big picture of cryptography is that we can buildhie above fashion, from relatively
simple assumptions (like hardness of factoring), to morepliwated ones (like one-wayness of en-
cryption). In the process we can identify some cryptographiects, like one-way functions, pseu-
dorandom number generators, collision-resistant funstiand more, whose security properties are
“natural” in the sense that we can find multiple uses for thentonstruct efficient signatures, au-
thentication schemes, encryption schemes, and otheresecormunication schemes. At the same
time, they are well-defined and therefore we can attempt nstcact them using various number-
theoretic assumptions (like hardness of factoring or diselog) and we can improve and/or better
understand the efficiency and security of these constngtio

3 PERFECTSECRECY AND ITSLIMITATIONS

We'll start exploring provable security of encryption bycalling Shannon’s classic definition of
what it means for an encryption to be secure. We'll see thidtion of Shannon’s approach, and
we’ll how we can overcome this limitation with the moderngtiggraphy paradigm.

3.1 SHANNON’S SECRECY AND PERFECT SECRECY

In 1950’s, Claude Shannon, the creator of information theproposed an information theoretic
definition of what it means for an encryption scheme to be reecAlthough Shannon’s original
definition of security (see Appendix A) is not easiest to wauikh, it turns out that Shannon’s
secrecy is equivalent to the following notion (also forntethby Shannon):

Definition 2 (Perfect Secrecy)An encryption scheme satisfies perfect secrecy if for alsages
m1, meo iNn Message spac®t and all ciphertexts: € C, we have

lft(’?;o’é)[Enc(K, my) =c] = {;’I;OIQ[ETLC(K, may) = ¢ 2

where both probabilities are taken over the choicdsin K and over the coin tosses of the (possi-
bly) probabilistic algorithmEnc.

Note that another way of stating the perfect secrecy reoning is that for any € C there exists
a constanp, € [0, 1] s.t. forallm € M , we have}l-;’v;olg[Enc(K, m) = c] = pe.

In other words, what perfect secrecy requires is that, giveiphertext, every message in the
message space is exactly as likely to be the underlying tpktin To put it yet another way, the
plaintext is independent of the ciphertext. Thus the pérdecrecy requirement implies that the
eavesdropper truly learns nothing at all about the undeglpiaintext.

Given this strong definition of secrecy, let's look how sortassic ciphers do with regards to it.

3.2 SHIFT CIPHER

M :{A, ..., Z}*, wherel is the message length, but we'll encode each lettenf m = [my, ..., m,]
as an integer if0, ..., 25}

L1-5



K :{0,...,25} defines the shift (Historical noté: = 3 is known as “Caesar’s cipher”)

¢ = End(k,[m1,...,mg]) = [(m1 + k mod 26), ..., (my + k mod 26)]
Example 1 m ="HELLO"; k =1; ¢ ="IFMMP”

Weakness of this cipher are easy to see:

e Keyspace is too small, only 26 possible keys; succumbs tte ance (exhaustive search)
attack easily.

e Vulnerable to frequency analysis.

e \ery easy to break:
- e.g. Repeats im are repeats in.
- e.g. If Eve knows the first word of a message is “HELLO?", itrigial to derive the key.

However, let's see how this cipher fails the perfect secdfinition.

Claim 3 Shift cipher does not satisfy the perfect secrecy property £ 2.

Proof: Takem; = "AB”, my = “AZ", and ¢ = “BC". Then there exists a ke € K s.t.
Enc(k,m1) = ¢, namelyk = 1. However, for allk € K we haveEnc(k, mq) # ¢, and hence
]I?rolé)[Enc(K, m1) = ¢|] = 1/26, while ]I?rolg[Enc(K, mg) = ¢] = 0, and so the perfect secrecy

requirement is violated. 0

Claim 4 For ¢ = 1, i.e. for one-letter long messages, shift cipher actuatiggisatisfy the perfect
secrecy property.

Proof: Note that for every lettem and every € C whereC = M = {A, ..., Z}, there is a unique
key k = ¢ — m mod 26 s.t. Enc(k,m) = (m + k mod 26) = c¢. And therefore for everyn, c we
have];r(’)cb[Enc(k, m) = c] = 1/26, and so the perfect secrecy requirement is satisfied.  [J

3.3 SUBSTITUTION CIPHER
M :{A, ..., Z}*, wherel is the message length

K : permutations o0, ...,25}; i.e. eachkek is chosen at random and is a 1:1 mapping from
{0,...,25} to {0, ..., 25}

¢ = Enc(k,[mq,...,myg|) = [k(mq), k(m2), ..., k(my)], for m = [mq, ..., my] € M andk € K
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Example 2 Keyk is the mapping from Plaintext Alphabet to Ciphertext Alpgtab
So ifm="HELLO"; k is mapping in Table 1¢="JREEM”"

alb|c|d|e|f|g|h|i|j|k|l|m|n|o]|p|q|r|s|t|ulv|w|x]y|z|<Plaintext Alphabet
alb|gjwir|o|v|j|z|l|s|e| x|q/m|c|t|i|h|k|p|y| u|d|f|n|<Ciphertext Alphabet

Table 1: An Example Permutation

Comments on security:
¢ Vulnerable to brute force attack: keyspace is 26! (not sofbad computer).

¢ Vulnerable to frequency analysis (i.e. language pattemshographs, bigraphs, trigraphs...

Claim 5 Permutation cipher also is perfectly secure fo 1 but fails to satisfy the perfect secrecy
property foré > 2.

(We leave the proof as an exercise.)

3.4 ADDITIVE CIPHER
M :{A, ..., Z}*, wherel is the message length.
K:A{A, .., Z}"

c = Enc(k,[m1,...,mg]) S.t. ¢ = [c1,...,ce] Wheree; = (m; + ki mod n)) mod 26 for m =
[ml, ...,md € Mandk = [k‘o, . k‘nfl] e K.

i.e. a keyk can be thought of as the double (n-character keyword, afee&ey). Ifn < ¢,
concatenaté to itself | ¢/k | times to get the effective key.

Example 3 m ="HELLOBOB”
k =(keyword="SECRET" effective key="SECRETSE")
Using{A4, ..., Z} = {0, ...,25}, we get
¢ =[(H+S),(E+E),(L+C),(L+R),(O+E),(B+T),(0+S),(B+E)] ma 26 = “ZINCSUGF”"

Comments on security:

e Although this withstands simple frequency analysis, tHeeate breaks once you figure the
keyword length ). Oncen is known (or guessed), one simply does frequency analysis on
blocks of ciphertext, each block formed by concatenatirgryexth letter of the originat.

¢ A brute force attack requires a search26f, which leaks information ifv < /.

Claim 6 Additive cipher is perfectly secure fére= n but fails to satisfy the perfect secrecy property
for ¢ > n.
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3.5 ONE TIME PaD [OTP] (VERNAM CIPHER)
M : {0,1}¢, where/ is the message length.
K : {0, 1}~
¢ = Enc(k,m) =m®k,form € M,k € K, where " stands for a bit-wise xor
m = Dec(k,c) =c@® k,form e M,k € K.

Decryption works because ¢ k) = (m @& k) k) =ma (ke k) =m

Example 4
m = [0011100100010110101101110]
k= [1110100110101000110001111]
¢ = [1101000010111110011100001]

Remark: Comments on security

e Here an exhaustive search gives no additional informatiocesthe keyspace is as large as
the message space, and every ciphertext could correspang toessage. Indeed, this cipher
satisfies perfect security!

e Using the samé of some lengthh < ¢ more than once breaks the scheme because it leaks
some information about the plaintext = [m, ..., my]. For example, i# = 2n then note
thatC[17...7n} =M1, n @ k (wherek = k[17...7n}) and similarlyc[n+17___72n} = Mn+t1,...2n] D k.

And therefore

ML) D Mnt1,.20) = L. 0] D Clntt,....2n] 3)
which means that = c[; .. 5, gives some information about; . o,. This information in
particular precludes some choicesmofe M, namely those that violate equation (3).

Theorem 7 OTP encryption satisfies thperfect secrecyequirement.
Proof: Take anym € M andc € C, and letk* = m & c¢. Note that:
Prob|Enc(k = = Prob|(k =
Prob[Enc(k,m) = (] Prob[(k ©m) = |
= Problk =c®m]
k—K

= Problk = k¥]
k<K

1
2f
Since the equation holds for every € M, it follows that for everym,,ms € M we have

Iljr%b[Enc(k,ml) =] = 2_1z as well aSkPT(I)Cl)[Enc(k,mg) =] = 2—12, which implies that

Prob[Enc(k,mi1) = ¢| = Prob[Enc(k, ma) = |
k—K k=K

which establishes perfect security of OTP. L]
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Even though the OTP method is secure, it has a big flaw whicrem@kmpractical: The key
needs to be as long as the total length of all communicatiahd@n ever be encrypted using this
key. So if two communication components (computers, celingls, whatever) establish a shared
key of length, sayf = 1K bytes, and plan to use it to communicate secretly using the €her,
they can only send at mos$t# of traffic between each other. There might be some exoticscase
where this is enough, but it usually will not be.

Note also that there does not seem to be a way to bootstraipitiaskey so that to send some
traffic, say0.5K, using0.5K of the key material, and then have one party create and besesid
to the other a newK secret key using the remainiigh K of the old secret key material.

In fact, we can easily show that no such trick can possiblykwod that the above impracticality
of the OTP cipher isnherentto any cipher which satisfies Shannon’s perfect secrecyinsgant.

Theorem 8 (Optimality of OTP) For any encryption schem&¥ which satisfies Shannon’s perfect
secrecy requirement, it must be that the keyspgéat®ms the same size as the message spdce

If keys and messages are binary string{ = {0,1}* and X = {0,1}", this means that an
encryption scheme can be perfectly secure onty i ¢. Thus the OTP cipher is optimal with
respect to the key length.

Proof: Assume for contradiction that an encryption scheftiehas|C| < |M|. Take any ciphertext
cC s.t. there exists some* € M andk* € K s.t. Enc(k*, m*) = c. Let us count the number of
messagesn that could result from the decryption efundersomevalid secret keyk € K. l.e.,
let S € M be the set of messages = {m | Jyex Enc(k,m) = c}. Note thatS = {m =
Dec(k, c)}rex, and since to everg € K there corresponds at most one unigue= Dec(k, c),
the size of sefS is at most the size of. Therefore, there exists a non-empty Sét= M \ S of
messages s.t. for each € S’ there exists no ke s.t.c = Enc(k,m). In other words, for all
m € S’ we have

Prob[Enc(K,m) =¢c] =0

KK

But since there exists/*, k* s.t.c = Enc(k*, m*), then in particular

{(’Qolg[Enc(K,m )=¢]#0

And this violates the perfect secrecy requirement. L]

4 WHAT S AHEAD: PRACTICAL and PROVABLY SECURE CRYPTO

The above negative result does not mean that secure emerydis no hope of being practical.
What it does show, however, is that Shannon’s notion of pedecrecy is too strong to be useful
in practice. Fortunately, we can relax this notion from mfation-theoretic secrecy womputa-
tional secrecy, and achieve provably secure encryption schersagesender this notion. While
information-theoretic secrecy required that every giveiphertext, every plaintexts are exactly as
likely, the computational secrecy notion will ask only timat efficient algorithmcan tell, given a
ciphertext, and, say, any two messages that could potgntial plaintexts corresponding to this
ciphertext, whether one of these messages is more liketyttteaother to be the actual plaintext.

This computational notion will be the subject of the nextlee (and indeed the subject of the
rest of this class).
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A Shannon’s Original Definition of Secrecy

Definition 9 (Shannon Secrecy)LetD be any probability distribution on messages. An encryption
scheme satisfies Shannon secrecy w.r.t. the messageudistril if for all messagesn (regardless
of the probability distributiorD) and all ¢ € C we have

Prob [M =m| Enc(K,M) = c] = Prob|[M = m] 4)
M—D,K—K M—D
where the first probability is taken ovéd chosen according to distributio®, over random keys
K chosen inkC, and over the possible random choices of the (possibly)gtritistic encryption
algorithm Enc, while the second probability is taken ovief < D.
We say that encryption scheme satisfies Shannon secresgtiiies Shannon secrecy w.r.t. all
probability distributionsD on messages.

What this requirement says is that, for any a-priori disititm of message®,® the probability
that a communicated messabgD is equal to any particular messagedoes not changeven if we
know the ciphertext = Enc(K, M), for randomly generated kely < K. In other words, seeing
a ciphertext does not tell us anyoreabout messag#/ which the attacker does not already know
from the a-priori message distributidn.

SFor example, we might know that and B usually communicate in English sentences, in which case-ieori
probability distributionD would assign an extremely low probability to message="axrqe asdvas”...
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