Wireless Networks

Welcome to Wireless

• Radio waves
 – No need to be physically plugged into the network
 – Remote access

• Coverage
 – Personal Area Network (PAN)
 – Local Area Network (LAN)
 – Metropolitan Area Network (MAN)

• Security concerns
 – Radio signals leaking outside buildings
 – Unauthorized devices
 – Verification of users
 – Intercepting wireless communications
 – Man-in-the-middle attacks
Types of Wireless Networks

- **Infrastructure**
 - Client machines establish a radio connection to a special network device, called access point
 - Access points connected to a wired network, which provides a gateway to the internet
 - Most common type of wireless network

- **Peer-to-peer**
 - Multiple peer machines connect to each other
 - Typically used in ad-hoc networks and internet connection sharing

SSID

- **Multiple wireless networks can coexist**
 - Each network is identified by a 32-character service set ID (SSID)
 - Typical default SSID of access point is manufacturer’s name
 - SSIDs often broadcasted to enable discovery of the network by prospective clients

- **SSIDs are not signed, thus enabling a simple spoofing attack**
 - Place a rogue access point in a public location (e.g., cafe, airport)
 - Use the SSID of an ISP
 - Set up a login page similar to the one of the ISP
 - Wait for clients to connect to rogue access point and authenticate
 - Possibly forward session to ISP network
 - Facilitated by automatic connection defaults
Eavesdropping and Spoofing

- All wireless network traffic can be eavesdropped
- Wireless access point (AP) manages link layer of protocol stack
- IEEE 802.11 standard connection management:
 - Authentication and Association frames
 - Dissociation and Deauthentication frames
 - Re-association frames
- MAC-based authentication typically used to identify approved machines in corporate network
- MAC spoofing attacks possible, as in wired networks
 - Sessions kept active after brief disconnects
 - If ISP client does not explicitly end a session, MAC spoofing allows to take over that session

Captive Portal

- Protocol
 - DHCP provides IP address
 - Name server maps everything to authentication server
 - Firewall blocks all other traffic
 - Any URL is redirected to authentication page
 - After authentication, regular network services reinstated
 - Client identified by MAC address
 - Used by wireless ISPs
- Security issues
 - A MAC spoofing and session stealing attack may be performed if client does not actively disconnect
 - A tunneling attack can bypass captive portal if (DNS) traffic beyond firewall is not blocked before authentication
Wardriving and Warchalking

- Driving around looking for wireless local area networks
- Some use GPS devices to log locations, post online
- Software such as NetStumbler for Windows, KisMac for Macs and Kismet for Linux are easily available online
- Use antennas to increase range
- Legality is unclear when no information is transmitted, and no network services are used
- Warchalking involves leaving chalk marks (derived from hobo symbols) on the side walk marking wireless networks and associated information

Wired Equivalent Privacy

- Goals
 - Confidentiality: eavesdropping is prevented
 - Data integrity: packets cannot be tampered with
 - Access control: only properly encrypted packets are routed
- Design constraints
 - Inexpensive hardware implementation with 90's technology
 - Compliance with early U.S. export control regulations on encryption devices (40-bit keys)
- Implementation and limitations
 - Encrypts the body of each frame at the data-link level
 - Fit within IEEE 802.11 communication standard
WEP Protocol

• Setup
 – Access point and client share 40-bit key K
 – The key never changes during a WEP session

• Encryption
 – Compute CRC-32 checksum of message M (payload of frame)
 – Pick 24-bit initialization vector V
 – Using the RC4 stream cipher, generate key stream S(K,V)
 – Create ciphertext
 \[C = (M \ || \ \text{crc}(M)) \oplus S(K,V) \]

• Client authentication
 – Access point sends unencrypted random challenge to client
 – Client responds with encrypted challenge

• Transmission
 – Send \(V \ || \ C \)

Message Modification Attack

• Message modification
 – Given an arbitrary string \(\Delta \), we want to replace message M with \(M' = M \oplus \Delta \)
 – Man-in-the-middle replaces ciphertext C with \(C' = C \oplus (\Delta \ || \ \text{crc}(M) \oplus \text{crc}(M')) \)

• Targeted text replacement
 – Possible if we know position of text in message
 – E.g., change date in email

• Reason of vulnerability
 – CRC checksum commutative with XOR
 – Insufficient encryption: stream cipher allows malleability
Reused Initialization Vectors

- Repeated IV implies reused key stream
 - Attacker obtains XOR of two messages
 - Attacker can get both messages and the key stream
 - Recovered key stream can be used by attacker to inject traffic
- Default IV
 - Several flawed implementations of IV generation
 - E.g., start at zero when device turned on and then repeatedly increment by one
- Random IV
 - Small length (24 bits) leads to repetition in a short amount of time even randomly generated
 - E.g., collision expected with high probability after \(2^{12} \approx 4,000\) transmissions

Authentication Spoofing

- Attacker wants to spoof a legitimate client
 - Does not know the secret key \(K\)
 - Can eavesdrop authentication messages
- Attack
 - Obtain challenge \(R\) and encrypted challenge \(C = (R \mid \text{crc}(R)) \oplus S(K,V)\)
 - Compute key stream \(S(K,V) = (R \mid \text{crc}(R)) \oplus C\)
 - Reuse key stream \(S(K,V)\) when challenged from access point
DEMO: WARDRIVING AND WEP CRACKING

3/10/2012 Wireless Networks 13

Wardriving Tools

• Netstumbler wifi scanner

• Antenna for db gain

• Wireless card with plug and monitor mode

• GPS (optional)
Wireless Networks

Wardriving Setup

- The access point and client are using WEP encryption
- The hacker is sniffing using wardriving tools

Slow Attack: WEP Sniffing

- To crack a 64-bit WEP key you can capture:
 - 50,000 to 200,000 packets containing Initialization Vectors (IVs)
 - Only about ¼ of the packets contain IVs
 - So you need 200,000 to 800,000 packets
- It can take a long time (typically several hours or even days) to capture that many packets
Initialization vector (IV)

- One for each packet, a 24-bit value
- Sent in the cleartext part of the message!
- Small space of initialization vectors guarantees reuse of the same key stream
- IV Collision:
 - Attack the XOR of the two plaintext messages
 - IV is often very predictable and introduces a lot of redundancy

Wi-Fi Protected Access (WPA)

- WEP became widely known as insecure
 - In 2005, FBI publically cracked a WEP key in only 3 minutes!
- Wi-Fi Protected Access (WPA) proposed in 2003
- Improves on WEP in several ways:
 - Larger secret key (128 bits) and initialization data (48 bits)
 - Supports various types of authentication besides a shared secret, such as username/password
 - Dynamically changes keys as session continues
 - Cryptographic method to check integrity
 - Frame counter to prevent replay attacks
WPA2

• WPA was an intermediate stepping-stone
 – Final version: IEEE 802.11i, aka WPA2
• Improvements over WPA are incremental rather than changes in philosophy:
 – Uses AES instead of RC4
 – Handles encryption, key management, and integrity
 – MAC provided by Counter Mode with Cipher Block Chaining (CCMP) used in conjunction with AES
• WPA2 needs recent hardware to operate properly, but this will get better over time

Alternatives and Add-Ons

• WEP, WPA, and WPA2 all protect your traffic only up to the access point
 – No security provided beyond access point
• Other methods can encrypt end-to-end:
 – SSL, SSH, VPN, PGP, and so on
• End-to-end encryption is often simpler than setting up network-level encryption
• Most of these solutions require per-application configuration