(i) \(p(\lambda_1, \lambda_2 | y) \propto p(y | \lambda_1, \lambda_2) p(\lambda_1) p(\lambda_2) \)

Since \(p(\lambda_1, \lambda_2 | y) = p(y | \lambda_1, \lambda_2) \) (can be factored), we know \(\lambda_1, \lambda_2 \) are independent.

\[p(\lambda_1 | y) = \text{Gamma}(\lambda_1 | a_i + \sum_{k \neq i} y_k, b_i + k) \]
\[p(\lambda_2 | y) = \text{Gamma}(\lambda_2 | a_l + \sum_{k \neq i} y_k, b_l + (T - k)) \]

Note: Several people tried to do i. by finding \(p(\lambda, y) \propto p(y | \lambda_1) p(\lambda_1) \) but \(y \)'s dist depends on both \(\lambda_1, \lambda_2 \) so you can't do this calculation. \(p(\lambda_1 | y) \) can be found from the joint dist given above.

(ii) \(p(\lambda_1, \lambda_2, k | y) \propto p(y | \lambda_1, \lambda_2, k) p(\lambda_1) p(\lambda_2) p(k) \)

\[\propto \left(\prod_{i=1}^{k} \lambda_{i_k}^{-y_i} e^{-\lambda_i} \right) \left(\prod_{i=1}^{k} \lambda_{i_k}^{-y_i} e^{-\lambda_2} \right) \lambda_1^{-a_i - \lambda_1} \lambda_2^{-a_l - \lambda_2} e^{-k} \]

(Same as before but \(p(k) \) is uniform)

(iii) Gibbs sampling: \(p(\lambda_1, \lambda_2 | y, k) \) is the posterior dist from \(\lambda_1, \lambda_2 \) hence known.

\(p(k | \lambda_1, \lambda_2, y) \) is not a known dist but it is a discrete dist taking values in \(\{1, 2, \ldots, T - 1\} \). Just compute above at each value and renormalize to create distribution.

Note: A grid here would be 3-dimensional. Probably not practical if \(T \) is large.

(c) i. \(p(y_t | y_{-t}) = \int p(y_t | \lambda_1, y_{-t}) p(\lambda_1 | y_{-t}) d\lambda_1 \)

\[= \int p(y_t | \lambda_1) p(\lambda_1 | y_{-t}) d\lambda_1 \]

(\(y_t \) is indep of \(Y_{-t} \) given \(\lambda \))

ii. Compute \(p(y_t | y_{-t}) \). If this is small then \(y_t \) is unusual given the other data. Of course it can be hard to judge "small" if order of magnitude of \(y_t \) is large because then every value is unlikely. In such a case we might sample \(y_t^{(n)} \) from \(p(y_t | y_{-t}) \) and see where observed \(y_t \) falls in the distribution.

2. In this case \(Y_{ij} \) are not iid given \(\theta_i \) since they also depend on \(M_{ij} \). They are not exchangeable. If all of the \(M_{ij} \)'s for a given \(i \) are equal, then the \(Y_{ij} \) will be exchangeable.
\(p(\theta, \alpha, \beta | Y) \propto \prod_{i=1}^{T} \prod_{j=1}^{n_i} \theta_i (\theta_i^j)^{Y_{ij}} e^{-\theta_i^j (\beta + \bar{X} m_j Y_{ij})} \)

\(p(\theta | \alpha, \beta, Y) \propto \prod_{i=1}^{T} \theta_i^{\alpha + n_i - 1} e^{-\theta_i (\beta + \bar{X} m_j Y_{ij})} \) (only include terms depending on \(\theta \))

\(\Rightarrow \theta_i, i=1, \ldots T \) are independent Geo(\(\alpha + n_i, \beta + \bar{X} m_j Y_{ij} \)) r.v.

3. The conditional posterior distribution takes the prior info (\(\alpha, \beta \)) and updates it to include the data yielding \(\theta_i (\alpha + n_i, \beta + \bar{X} m_j Y_{ij}) \). Another way to see this is to look at prior and posterior means:

\[
\text{prior mean of } \theta_i = \frac{\alpha}{\beta}, \quad \text{posterior mean } = \frac{\alpha + n_i}{\beta + \bar{X} m_j Y_{ij}} = \frac{\alpha}{\beta} + \frac{n_i}{\beta + \bar{X} m_j Y_{ij}} \sum_{j} m_j Y_{ij}
\]

which combines prior mean \(\frac{\alpha}{\beta} \) and MLE for \(\theta_i \frac{n_i}{\sum_{j} m_j Y_{ij}} \)

4. This is just like the HW and example in class.

\textbf{Approach 1:} Find \(p(\alpha, \beta | Y) = \frac{p(\alpha, \beta, \theta | Y)}{p(\theta | \alpha, \beta, Y)} \) from 6

- Use 2-D grid approx to \(p(\alpha, \beta | Y) \) to generate \((\alpha, \beta) \) sample
- Sample \(\theta \) from \(p(\theta | \alpha, \beta, Y) \)

\textbf{Approach 2: MCMC} — We know \(p(\theta | \alpha, \beta, Y) \)

- Need to say something about \(p(\alpha, \beta | \theta, Y) \) (HARD!)

5. Given posterior sample, for \(\theta_i \), say \(\theta_i^{(1)}, \theta_i^{(2)}, \ldots, \theta_i^{(M)} \) (from part 6), we just sample \(y_{\text{new}} \sim \text{Exp}(\theta_i^{(K)} \cdot 2) \) \(k=1, \ldots, M \).

6. Here we need \(y_{\text{new}} \). To simulate the predictive distribution.

\textbf{For } k=1, \ldots, M

- Generate \(\theta_{\text{new}} \sim p(\alpha, \beta | Y) \) (a new job type parameter)
- Generate \(y_{\text{new}} \sim \text{Exp}(\theta_{\text{new}} \cdot 2) \)