Statistics 225
Bayesian Statistical Analysis

Hal Stern

Department of Statistics
University of California, Irvine
sternh@uci.edu

March 28, 2019
Course Overview

Prerequisites
▶ Probability (distributions, transformations)
▶ Statistical Inference (standard procedures)
▶ Ideally two semesters at graduate level

Broad Outline
▶ Univariate/multivariate models
▶ Hierarchical models and model checking
▶ Computation
▶ Other models (glm's, missing data, etc.)

Computing
▶ R - covered in class
▶ STAN - introduction provided
Bayesian Statistics - History

- Bayes & Laplace (late 1700s) - inverse probability
 - probability - statements about observables given assumptions about unknown parameters
 - inverse probability - statements about unknown parameters given observed data values
- Ex: given y successes in n iid trials with probability of success θ, find $Pr(a < \theta < b | y)$
- Little progress after Bayes/Laplace except for isolated individuals (e.g., Jeffreys)
- Interest resumes in mid 1900s (the term Bayesian statistics is born)
- Computational advances in late 20th/early 21st centuries have led to increase in interest
Bayes vs Frequentist

- Bayes
 - parameters as random variables
 - subjective probability (for some people)
- Frequentist
 - parameters as fixed but unknown quantities
 - probability as long-run frequency
- Some controversy in the past (and present)
- Goal here is to introduce Bayesian methods and some advantages
Some Things Not Discussed (Much)

The following terms are sometimes associated with Bayesian statistics. They will be discussed briefly but will not receive much attention here:

- decision theory
- nonparametric Bayesian methods
- subjective probability
- objective Bayesian methods
- maximum entropy
Motivating Example: Cancer Maps

- Kidney cancer mortality rates (Manton et al. - JASA, 1989)
 - Age-standardized death rates for by county
Motivating Example: Cancer Maps

- Kidney cancer mortality rates (Manton et al. - JASA, 1989)
 - Empirical Bayes (smoothed) estimated death rates
Motivating Example: Cancer Maps

- Kidney cancer mortality rates (Manton et al. - JASA, 1989)
 - Observed (left) and Smoothed (right)
Motivating Example: SAT coaching

 - Randomized experiments in 8 schools
 - Outcome is SAT-Verbal score
 - Effect of treatment (coaching) is estimated separately in each school using analysis of covariance

<table>
<thead>
<tr>
<th>School</th>
<th>Estimated treatment effect</th>
<th>Standard error of effect estimate</th>
<th>Treatment effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>15</td>
<td>?</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>10</td>
<td>?</td>
</tr>
<tr>
<td>C</td>
<td>-3</td>
<td>16</td>
<td>?</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>11</td>
<td>?</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>9</td>
<td>?</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>11</td>
<td>?</td>
</tr>
<tr>
<td>G</td>
<td>18</td>
<td>10</td>
<td>?</td>
</tr>
<tr>
<td>H</td>
<td>12</td>
<td>18</td>
<td>?</td>
</tr>
</tbody>
</table>
Bayesian Inference: Two key ideas

- Explicit use of probability for quantifying uncertainty
 - probability models for data given parameters
 - probability distributions for parameters
- Inference for unknowns conditional on observed data
 - inverse probability
 - Bayes’ theorem (hence the modern name)
 - formal decision-making
Introduction to Bayesian Methods
Probability review

- Probability (mathematical definition):
 A set function that is
 - nonnegative
 - additive over disjoint sets
 - sums to one over entire sample space
- For Bayesian methods probability is a fundamental measure of uncertainty
 - \(\Pr(1 < \bar{y} < 3 | \theta = 0) \) or \(\Pr(1 < \bar{y} < 3) \) is interesting before data has been collected
 - \(\Pr(1 < \theta < 3 | y) \) is interesting after data has been collected
- Where do probabilities come from?
 - frequency argument (e.g., 10,000 coin tosses)
 - physical argument (e.g., symmetry in coin toss)
 - subjective (e.g., if I would be willing to bet on A given 1:1 odds, then I must believe the probability of A is greater than .5)
Introduction to Bayesian Methods
Probability review

Some terms/definitions you should know

- joint distribution $p(u, v)$
- marginal distribution $p(u) = \int p(u, v)dv$
- conditional distribution $p(u|v) = p(u, v)/p(v)$
- moments:
 $$E(u) = \int u \ p(u)du = \int \int u \ p(u, v) \ dv \ du$$
 $$\text{Var}(u) = \int (u - E(u))^2 \ p(u)du$$
 $$E(u|v) = \int u \ p(u|v)du \ (\text{a fn of } v)$$
Introduction to Bayesian Methods
Probability review (cont’d)

Some terms/definitions you should know
- conditional distributions play a large role in Bayesian inference so the following rules are useful
 - \(E(u) = E(E(u|v)) \)
 - \(\text{Var}(u) = E(\text{Var}(u|v)) + \text{Var}(E(u|v)) \)
- transformations (one-to-one)
 - denote distribution of \(u \) by \(p_u(u) \)
 - take \(v = f(u) \)
 - distribution of \(v \) is
 - \(p_v(v) = p_u(f^{-1}(v)) \) in discrete case
 - \(p_v(v) = p_u(f^{-1}(v))|J| \) in continuous case
 - where Jacobian \(J \) is
 \[
 \left| \frac{\partial u_i}{\partial v_j} \right| = \left| \frac{\partial f^{-1}(v)}{\partial v_j} \right|
 \]
Introduction to Bayesian Methods
Probability review - intro to simulation

- Simulation plays a big role in modern Bayesian inference and one particular transformation is important in this context
- Probability integral transform
 - suppose X is a continuous r.v. with cdf $F_X(x)$
 - then $Y = F_X(X)$ has uniform distn on 0 to 1
- Application in simulations
 - if U is uniform on $(0, 1)$ and $F(\cdot)$ is cdf of a continuous r.v.
 - then $Z = F^{-1}(U)$ is a r.v. with cdf F
 - example:
 - let $F(x) = 1 - e^{-x/\lambda} = \text{exponential cdf}$
 - then $F^{-1}(u) = -\lambda \log(1 - u)$
 - if we have a source of uniform random numbers then we can transform to construct samples from an exponential distn
- This is a general strategy for generating random samples
Introduction to Bayesian Methods
Notation/Terminology

- θ = unobservable quantities (parameters)
- y = observed data (outcomes, responses, random variable)
- x = explanatory variables (covariates, often treated as fixed)
- Don’t usually distinguish between upper and lower case roman letters since everything is a random variable
- \tilde{y} = unknown but potentially observable quantities (predictions, response to a different treatment)
- NOTE: don’t usually distinguish between univariate, multivariate quantities
Introduction to Bayesian Methods
Notation/Terminology

- $p(\cdot)$ or $p(\cdot|\cdot)$ denote distributions (generic)
- It would take too many letters if each distribution received its own letter
- We write $Y|\mu, \sigma^2 \sim N(\mu, \sigma^2)$ to denote that Y has a normal density
- We write $p(y|\mu, \sigma^2) = N(y|\mu, \sigma^2)$ to refer to the normal density with argument y
- Same for other distributions: $\text{Beta}(a, b)$, $\text{Unif}(a, b)$, $\text{Exp}(\theta)$, $\text{Pois}(\lambda)$, etc.
Introduction to Bayesian Methods
The Bayesian approach

- Focus here is on three step process
 - specify a full probability model
 - posterior inference via Bayes’ rule
 - model checking/sensitivity analysis

- Usually an iterative process - specify model, fit and check, then respecify model
Introduction to Bayesian Methods
Specifying a full probability model

- Data distribution $p(y|\theta) = p(\text{data} | \text{parameters})$
 - also known as sampling distribution
 - $p(y|\theta)$ when viewed as a function of θ is also known as the likelihood function $L(\theta|y)$

- Prior distribution $p(\theta)$
 - may contain subjective prior information
 - often chosen vague/uninformative
 - mathematical convenience

- Marginal model
 - above can be combined to determine implied marginal model for y $p(y) = \int p(y|\theta)p(\theta)d\theta$
 - useful for model checking
 - Bayesian way of thinking leads to new distns that can be useful even for frequentists (e.g., Beta-Binomial)
Introduction to Bayesian Methods
Posterior inference/Model checking

▶ Posterior inference
 ▶ Bayes’ thm to derive posterior distribution

\[
p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}
\]

▶ probability statements about unknowns
▶ formal decision-making is based on posterior distn
▶ sometimes write \(p(\theta|y) \propto p(\theta)p(y|\theta) \) because the denominator is a constant in terms of \(\theta \)

▶ Model checking/sensitivity analysis
 ▶ does the model fit
 ▶ are conclusions sensitive to choice of prior distn/likelihood
Introduction to Bayesian Methods
Likelihood, Odds, Posteriors

- Recall that $p(\theta|y) \propto p(\theta)p(y|\theta)$
 - posterior \propto prior \times likelihood
 - consider two possible values of θ, say θ_1 and θ_2

$$\frac{p(\theta_1|y)}{p(\theta_2|y)} = \frac{p(\theta_1)}{p(\theta_2)} \times \frac{p(y|\theta_1)}{p(y|\theta_2)}$$

- posterior odds $=$ prior odds \times likelihood ratio
- note likelihood ratio is still important
Likelihood principle - if two likelihood functions agree, then the same inferences about θ should be drawn.

Traditional frequentist methods violate this.

Example: given a sequence of coin tosses with constant probability of success θ we wish to test $H_0: \theta = 0.5$.

- observe 9 heads, 3 tails in 12 coin tosses
- if binomial sampling ($n = 12$ fixed), then

$$L(\theta|y) = p(y|\theta) = \binom{12}{9} \theta^9 (1 - \theta)^3$$

and p-value is $\Pr(y \geq 9) = 0.073$

- if negative binomial sampling (sample until 3 tails), then

$$L(\theta|y) = p(y|\theta) = \binom{11}{9} \theta^9 (1 - \theta)^3$$

and p-value is $\Pr(y \geq 9) = 0.033$

- but data (and likelihood function) is the same ... 9 successes, 3 failures ... and should carry the same information about θ
Introduction to Bayesian Methods

Independence

▶ A common statement in traditional statistics courses: assume \(Y_1, \ldots, Y_n \) are iid r.v.’s
▶ In Bayesian class, we need to think hard about independence
▶ Why?
 ▶ Consider two "indep" Bernoulli trials with probability of success \(\theta \)
 ▶ It is true that

\[
p(y_1, y_2 | \theta) = \theta^{y_1 + y_2} (1 - \theta)^{2 - y_1 - y_2} = p(y_1 | \theta)p(y_2 | \theta)
\]

so that \(y_1 \) and \(y_2 \) are independent given \(\theta \)
▶ But ... \(p(y_1, y_2) = \int p(y_1, y_2 | \theta)p(\theta)d\theta \) may not factor
▶ If \(p(\theta) = \text{Unif}(\theta | 0, 1) = 1 \) for \(0 < \theta < 1 \), then

\[
p(y_1, y_2) = \Gamma(y_1 + y_2 + 1)\Gamma(3 - y_1 - y_2)/\Gamma(4)
\]

so \(y_1 \) and \(y_2 \) are not independent in their marginal distribution
Introduction to Bayesian Methods

Exchangeability

- If independence is no longer the key concept, then what is?
- Exchangeability
 - Informal defn: subscripts don’t matter
 - Formally: given events A_1, \ldots, A_n, we say they are exchangeable if $P(A_1 A_2 \ldots A_k) = P(A_{i_1} A_{i_2} \ldots A_{i_k})$ for every k where i_1, i_2, \ldots, i_n are a permutation of the indices
 - Similarly, given random variable Y_1, \ldots, Y_n, we say they are exchangeable if $P(Y_1 \leq y_1, \ldots, Y_k \leq y_k) = P(Y_{i_1} \leq y_1, \ldots, Y_{i_k} \leq y_k)$ for every k
Introduction to Bayesian Methods
Exchangeability and independence

- Relationship between exchangeability and independence
 - r.v.’s that are iid given θ are exchangeable
 - an infinite sequence of exchangeable r.v.’s can always be thought of as iid given some parameter (de Finetti)
 - note previous point requires an infinite sequence

- What is not exchangeable?
 - time series, spatial data
 - may become exchangeable if we explicitly include time or spatial location in the analysis
 - i.e., $y_1, y_2, \ldots, y_t, \ldots$ are not exchangeable but $(t_1, y_1), (t_2, y_2), \ldots$ may be
Introduction to Bayesian Methods
A simple example

- Hemophilia - blood clotting disease
 - sex-linked genetic disease on X chromosome
 - males (XY) - affected or not
 - females (XX) - may have 0 copies of disease gene (not affected), 1 copy (carrier), 2 copies (usually fatal)

- Consider a woman – brother is a hemophiliac, father is not
 - we ignore the possibility of a mutation introducing the disease
 - woman’s mother must be a carrier
 - woman inherits one X from mother
 - > 50/50 chance of being a carrier

- Let $\theta = 1$ if woman is carrier, 0 if not
 - a priori we have $\Pr(\theta = 1) = \Pr(\theta = 0) = 0.5$

- Let $y_i =$ status of woman’s ith male child
 (1 if affected, 0 if not)
Introduction to Bayesian Methods

* A simple example (cont’d)

- Given two unaffected sons (not twins), what inference can be drawn about θ?
- Assume two sons are iid given θ
- $\Pr(y_1 = y_2 = 0 | \theta = 1) = 0.5 \times 0.5 = .25$
 $\Pr(y_1 = y_2 = 0 | \theta = 0) = 1 \times 1 = 1.00$
- Posterior distn by Bayes’ theorem

\[
\Pr(\theta = 1 | y) = \frac{\Pr(y | \theta = 1) \Pr(\theta = 1)}{\Pr(y)}
= \frac{\Pr(y | \theta = 1) \Pr(\theta = 1)}{\Pr(y | \theta = 1) \Pr(\theta = 1) + \Pr(y | \theta = 0) \Pr(\theta = 0)}
= \frac{.25 \times .5}{.25 \times .5 + 1 \times .5} = .2
\]
Introduction to Bayesian Methods
A simple example (cont’d)

- Odds version of Bayes’ rule
 - prior odds \(\Pr(\theta = 1)/\Pr(\theta = 0) = 1 \)
 - likelihood ratio \(\Pr(y|\theta = 1)/\Pr(y|\theta = 0) = 1/4 \)
 - posterior odds = 1/4
 (posterior prob = \(.25/(1 + .25) = .20 \))

- Updating for new information
 - suppose that a 3rd son is born (unaffected)
 - note: if we observe an affected child, then we know \(\theta = 1 \) since that outcome is assumed impossible when \(\theta = 0 \)
 - two approaches to updating analysis
 - redo entire analysis (\(y_1, y_2, y_3 \) as data)
 - update using only new data (\(y_3 \))
Introduction to Bayesian Methods
A simple example (cont’d)

- Updating for new information - redo analysis
 - as before but now \(y = (0, 0, 0) \)
 - \(\Pr(y|\theta = 1) = .5 \times .5 \times .5 = .125, \)
 \(\Pr(y|\theta = 0) = 1 \)
 - \(\Pr(\theta = 1|y) = .125 \times .5 / (.125 \times .5 + 1 \times .5) = .111 \)

- Updating for new information - updating
 - take previous posterior distn as new prior distn
 (\(\Pr(\theta = 1) = .2 \) and \(\Pr(\theta = 0) = .8 \))
 - take data as consisting only of \(y_3 \)
 - \(\Pr(\theta = 1|y_3) = .5 \times .2 / (.5 \times .2 + 1 \times .8) = .111 \)
 - same answer!
Single Parameter Models

Introduction

- We introduce important concepts/computations in the one-parameter case.
- There is generally little advantage to the Bayesian approach in these cases.
- The benefits of the Bayesian approach are more obvious in hierarchical (often random effects) models.
- Main approach is to teach via example.
- First example is binomial data (Bernoulli trials):
 - easy
 - historical interest (Bayes, Laplace)
 - representative of a large class of distns (exponential families)
Consider n exchangeable trials

Data can be summarized by total # of successes

Natural model: define θ as probability of success and take $Y \sim \text{Bin}(n, \theta)$

$$p(y|\theta) = \text{Bin}(y|n, \theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}$$

Question - do we have to be explicit about conditioning on n? (usually are not)

Prior distribution: To start assume $p(\theta) = \text{Unif}(\theta|0, 1)$
Single Parameter Models

Binomial Model

Posterior distribution:

\[
p(\theta|y) = \binom{n}{y} \theta^y (1 - \theta)^{n-y} / \int_0^1 \binom{n}{y} \theta^y (1 - \theta)^{n-y} d\theta
\]

\[
= (n + 1) \binom{n}{y} \theta^y (1 - \theta)^{n-y} = \frac{(n + 1)!}{y!(n - y)!} \theta^y (1 - \theta)^{n-y}
\]

\[
= \frac{\Gamma(n + 2)}{\Gamma(y + 1)\Gamma(n - y + 1)} \theta^{y+1-1} (1 - \theta)^{n-y+1-1}
\]

\[
= \text{Beta}(y + 1, n - y + 1)
\]

Note: could have noticed \(p(\theta|y) \propto \theta^y (1 - \theta)^{n-y} \) and inferred it is a Beta\((y + 1, n - y + 1)\) distribution (formal calculation confirms this)
Single Parameter Models
Binomial Model

- Inferences from the posterior distribution
 - point estimation
 - posterior mean $= (y + 1)/(n + 2)$
 (compromise between sample proportion $\frac{y}{n}$ and prior mean $\frac{1}{2}$)
 - posterior mode $= \frac{y}{n}$
 - best point estimate depends on loss function
 - posterior variance $= \left(\frac{y+1}{n+2}\right) \left(\frac{n-y+1}{n+2}\right) \left(\frac{1}{n+3}\right)$

- interval estimation
 - 95% central posterior interval - find a, b s.t.
 $\int_{0}^{a} \text{Beta}(\theta|y + 1, n - y + 1)d\theta = .025$ and
 $\int_{0}^{b} \text{Beta}(\theta|y + 1, n - y + 1)d\theta = .975$
 - alternative is highest posterior density region
 - note this interval has the interpretation we want to give to traditional CIs

- hypothesis test – don’t say anything about this now
Single Parameter Models
Binomial Model

- Inference by simulation
 - the inferences mentioned (point estimation, interval estimation) can be done via simulation
 - simulate 1000 draws from the posterior distribution
 - available in standard packages
 - we will discuss algorithms for harder problems later
 - point estimates easy to compute (now include Monte Carlo error)
 - interval estimates easy – find percentiles of the simulated values
Single Parameter Models
Prior distributions

Where do prior distributions come from?
 ▶ a priori knowledge about θ ("thinking deeply about context")
 ▶ population interpretation (a population of possible θ values)
 ▶ mathematical convenience

Frequently rely on asymptotic results (to come) which guarantee that likelihood will dominate the prior distn in large samples
Single Parameter Models
Conjugate prior distributions

Consider Beta(α, β) prior distn for binomial model

- think of α, β as fixed now (but these could also be random and given their own prior distn)
- \[p(\theta|y) \propto \theta^y (1 - \theta)^{n-y} \theta^{\alpha-1} (1 - \theta)^{\beta-1} \]
 \[\propto \theta^{y+\alpha-1} (1 - \theta)^{n-y+\beta-1} \]

- recognize as kernel of Beta(y + α, n − y + β)
- example of conjugate prior distn - posterior distn is in the same parametric family as the prior distn
- convenient mathematically
- convenient interpretation - prior in this case is like observing α successes in α + β “prior” trials
Definition:
Let F be a class of sampling distn ($p(y|\theta)$). Let P be a class of prior distns ($p(\theta)$).
P is **conjugate** for F if $p(\theta) \in P$ and $p(y|\theta) \in F$ implies that $p(\theta|y) \in P$

Not a great definition ... trivially satisfied by $P = \{\text{all distns}\}$ but this is not an interesting case

Exponential families (most common distns): the only distns that are finitely parametrizable and have conjugate prior families
Single Parameter Models
Conjugate prior distributions - exponential families

- The density of an exponential family can be written as

\[p(y_i|\theta) = f(y_i)g(\theta)e^{\phi(\theta)^t u(y_i)} \]

\[p(y_1, \ldots, y_n|\theta) = \left(\prod_{i=1}^{n} f(y_i) \right) g(\theta)^n e^{\phi(\theta)^t t(y)} \]

with \(\phi(\theta) \) denoting the natural parameter(s) and \(t(y) = \sum_i u(y_i) \) denoting the sufficient statistic(s)

- Note that \(p(\theta) \propto g(\theta)^\eta e^{\phi(\theta)^t \nu} \) will be conjugate family

- Binomial example
 - \(p(y|\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y} \)
 - exponential family with \(\phi(\theta) = \log(\theta/(1 - \theta)) \) and \(g(\theta) = 1 - \theta \)
 - conjugate prior distn is \(\theta^{\nu} (1 - \theta)^{\eta - \nu} \) (Beta distribution)
Single Parameter Models
Conjugate prior distributions - normal distn with known variance

- Normal example
 - $p(y_i|\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i-\theta)^2}{2\sigma^2}}$
 - exponential family with $\phi(\theta) = \theta/\sigma$ and $g(\theta) = e^{-\theta^2/2\sigma^2}$
 - conjugate prior distn is exponential of quadratic form in θ
 (i.e., normal distribution)
 - take prior distn as $\theta \sim N(\mu, \tau^2)$
 - posterior distn is $p(\theta|y) = N(\theta|\hat{\mu}, V)$ with

$$\hat{\mu} = \frac{n}{\sigma^2} \bar{y} + \frac{1}{\tau^2} \mu$$

$$V = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}}$$
Single Parameter Models
Conjugate prior distributions - normal distn with known variance

- Normal example (cont’d)
 - posterior distribution is \(p(\theta|y) = N(\theta|\hat{\mu}, V) \) with
 \[
 \hat{\mu} = \frac{n \bar{y} + \frac{1}{\tau^2} \mu}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}} \quad \text{and} \quad V = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}}
 \]
 - posterior mean = wtd average of prior mean and sample mean
 - weights depend on precision (inverse variance) of the prior distribution and the data distribution
 - posterior precision is the sum of the prior precision and the data precision
 - if \(n \to \infty \) then posterior distn resembles \(p(\theta|y) = N(\theta|\bar{y}, \sigma^2/n) \); like classical sampling distn result (so the data dominates the prior distn for large \(n \))
Single Parameter Models
Conjugate prior distributions - general

▶ Advantages
 ▶ mathematically convenient
 ▶ easy to interpret
 ▶ can provide good approx to many prior opinions (especially if we allow mixtures of distns from the conjugate family)

▶ Disadvantages
 ▶ may not be realistic
Single Parameter Models
Nonconjugate prior distributions

- No real difference conceptually in how analysis proceeds
- Harder computationally
- One simple idea is grid-based simulation
 - specify prior distn on a grid \(Pr(\theta = \theta_i) = \pi_i \)
 - compute likelihood on same grid \(l_i = p(y|\theta_i) \)
 - posterior distn lives on the grid with
 \[Pr(\theta = \theta_i|y) = \pi_i^* = \pi_i l_i / (\sum_j \pi_j l_j) \]
 - can sample from this posterior distn easily in R
 - can do better with a trapezoidal approx to the prior distn
- However there are serious problems with grid-based simulation
- We will see better computational approaches
Single Parameter Models
Noninformative prior distributions

Sometimes there is a desire to have the prior distn play a minimal role in forming the posterior distn (why?)

To see how this might work recall our normal example with $y_1, \ldots, y_n | \theta \sim \text{iid} N(\theta, \sigma^2)$ and $p(\theta | \mu, \tau^2) = N(\theta | \mu, \tau^2)$ where σ^2, μ, τ^2 are known

a conjugate family with $p(\theta | y) = N(\theta | \hat{\mu}, V)$ where

$$\hat{\mu} = \frac{n \sigma^2 \bar{y} + \frac{1}{\tau^2} \mu}{n \sigma^2 + \frac{1}{\tau^2}}$$
and
$$V = \frac{1}{n \sigma^2 + \frac{1}{\tau^2}}$$

if $\tau^2 \to \infty$, then $p(\theta | y) \approx N(\theta | \bar{y}, \sigma^2 / n)$
(this yields the same estimates and intervals as classical methods; can be thought of as non-informative)

same result would be obtained by taking $p(\theta) \propto 1$
BUT that is not a proper prior distn

we can use an improper prior distn but must check that the posterior distn is a proper distn
Single Parameter Models
Noninformative prior distributions

- How do we find noninformative prior distributions?
- Flat or uniform distributions
 - did the job in the binomial and normal cases
 - makes each value of θ equally likely
 - but on what scale (should every value of $\log \theta$ be equally likely or every value of θ)
- Jeffrey’s prior
 - invariance principle – a rule for creating noninformative prior distns should be invariant to transformation
 - this means that if $p_\theta(\theta)$ is prior distn for θ and we consider $\phi = h(\theta)$, then our rule should create $p_\phi(\phi) = p_\theta(h^{-1}(\phi)) |d\theta/d\phi|$
 - Jeffrey’s suggestion to use $p(\theta) \propto J(\theta)^{1/2}$ where $J(\theta)$ is the Fisher information satisfies this principle
 - gives flat prior for θ in normal case
 - does this work for multiparameter problems?
Single Parameter Models
Noninformative prior distributions

- How do we find noninformative prior distributions? (cont’d)
- Pivotal quantities
 - location family has $p(y - \theta | \theta) = f(y - \theta)$ so should expect $p(y - \theta | y) = f(y - \theta)$ as well this suggests $p(\theta) \propto 1$
 - similar argument for scale family suggests $p(\theta) \propto 1/\theta$
 (where θ is a scale parameter like normal s.d.)
- Vague, diffuse distributions
 - use conjugate or other prior distn with large variance
Single Parameter Models
Noninformative prior distributions - example

- Binomial case
 - Uniform on θ is Beta(1, 1)
 - Jeffreys’ prior distn is Beta(1/2, 1/2)
 - Uniform on natural parameter $\log(\theta/(1 - \theta))$ is Beta(0, 0) (an improper prior distn)

- Summary on noninformative distn
 - very difficult to make this idea rigorous since it requires a definition of “information’
 - can be useful as a first approximation or first attempt
 - dangerous if applied automatically without thought
 - improper distributions can cause serious problems (improper posterior distns) that are hard to detect
 - some prefer vague, diffuse, or “weakly informative” proper distributions as a way of expressing ignorance
Single Parameter Models
Weakly informative prior distributions

- Proper distributions
- Intentionally made weaker (more diffuse) than the actual prior information that is available
- Example 1 - normal mean
 - Can take the prior distribution to be $N(0, A^2)$ where A is chosen based on problem context ($2A$ is a plausible upper bound on θ)
- Example 2 - binomial proportion
 - Can take the prior distribution to be $N(0.5, A^2)$ where A is chosen so that $0.5 \pm 2A$ contains all plausible values of θ
Multiparameter Models
Introduction

- Now write $\theta = (\theta_1, \theta_2)$ (at least two parameters)
- θ_1 and θ_2 may be vectors as well
- Key point here is how the Bayesian approach handles "nuisance" parameters
- Posterior distn $p(\theta_1, \theta_2|y) \propto p(y|\theta_1, \theta_2)p(\theta_1, \theta_2)$
- Suppose θ_1 is of primary interest, i.e., want $p(\theta_1|y)$
 - $p(\theta_1|y) = \int p(\theta_1, \theta_2|y)d\theta_2$ analytically or by numerical integration
 - $p(\theta_1|y) = \int p(\theta_1|\theta_2, y)p(\theta_2|y)d\theta_2$
 (often a convenient way to calculate)
 - $p(\theta_1|y) = \int p(\theta_1, \theta_2|y)d\theta_2$ by simulation
 (generate simulations of both and toss out the θ_2's)
- Note: Bayesian results still usually match those of traditional methods. We don’t see differences until hierarchical models
Multiparameters Models
Normal example

- $y_1, y_2, \ldots, y_n | \mu, \sigma^2$ are iid $N(\mu, \sigma^2)$
- Prior distn: $p(\mu, \sigma^2) \propto 1/\sigma^2$
 - indep non-informative prior distns for μ and σ^2
 - equivalent to $p(\mu, \log \sigma) \propto 1$
 - not a proper distn
- Posterior distn:

$$p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2} + 1} \exp\left[-\frac{1}{2\sigma^2} \sum_i (y_i - \mu)^2\right]$$

$$\propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2} + 1} \exp\left[-\frac{1}{2\sigma^2} \left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right)\right]$$

- note that μ, σ^2 are not indep in their posterior distn
- posterior distn depends on data only through the sufficient statistics
Multiparameters Models
Normal example (cont’d)

▶ Further examination of joint posterior distribution

\[p(\mu, \sigma^2|y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp \left[-\frac{1}{2\sigma^2} \left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right)\right] \]

▶ conditional posterior distn \(p(\mu|\sigma^2, y) \)
 ▶ examine joint posterior distn but now think of \(\sigma^2 \) as known
 ▶ focus only on \(\mu \) terms
 ▶ \(p(\mu|\sigma^2, y) \propto \exp[-\frac{1}{2\sigma^2} n(\bar{y} - \mu)^2] \)
 ▶ just like known variance case
 ▶ recognize \(\mu|\sigma^2, y \sim N(\bar{y}, \sigma^2/n) \)

▶ marginal posterior distn of \(\sigma^2 \), i.e., \(p(\sigma^2|y) \)
 ▶ \(p(\sigma^2|y) = \int p(\mu, \sigma^2|y) d\mu \)
 ▶ \(p(\sigma^2|y) \propto (\sigma^2)^{-(n+1)/2} \exp[-\frac{1}{2\sigma^2} \sum_i (y_i - \bar{y})^2] \)
 ▶ known as scaled-inverse-\(\chi^2(n-1, s^2) \) distn with \(s^2 = \sum_i (y_i - \bar{y})^2/(n-1) \)
Recall joint posterior distribution

\[p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2} \right)^{\frac{n}{2} + 1} \exp \left[-\frac{1}{2\sigma^2} \left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2 \right) \right] \]

A useful identity for deriving marginal distributions from the joint distribution and a conditional distribution

- marginal posterior distn of \(\sigma^2 \) is defined as
 \[p(\sigma^2 | y) = \int p(\mu, \sigma^2 | y) d\mu \]
- note also that \(p(\sigma^2 | y) = p(\mu, \sigma^2 | y) / p(\mu | \sigma^2, y) \)
- LHS doesn’t have \(\mu \), RHS does
- equality must be true for any choice of \(\mu \)
- evaluate this ratio at \(\mu = \bar{y} \)
 (why? the conditional density is \(N(\mu | \bar{y}, \sigma^2 / n) \))
- this also yields \(p(\sigma^2 | y) \propto (\sigma^2)^{-\frac{n+1}{2}} \exp \left[-\frac{1}{2\sigma^2} \sum_i (y_i - \bar{y})^2 \right] \)
Further examination of joint posterior distribution

\[p(\mu, \sigma^2|y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp\left[-\frac{1}{2\sigma^2}\left(\sum_i(y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right)\right] \]

so far, \(p(\mu, \sigma^2|y) = p(\sigma^2|y)p(\mu|\sigma^2, y) \)

this factorization can be used to simulate from joint posterior distn

- generate \(\sigma^2 \) from Inv-\(\chi^2(n-1, s^2) \) distn
- then generate \(\mu \) from \(N(\bar{y}, \sigma^2/n) \) distn

often most interested in \(p(\mu|y) \)

\[p(\mu|y) = \int_0^\infty p(\mu, \sigma^2|y)d\sigma^2 \propto \left[1 + \frac{n(\mu - \bar{y})}{(n-1)s^2}\right]^{-n/2} \]

\(\mu|y \sim t_{n-1}(\bar{y}, s^2/n) \) (a t-distn)

recall traditional result \(\frac{\bar{y} - \mu}{s/\sqrt{n}}|\mu, \sigma^2 \sim t_{n-1} \)

(note result doesn’t depend at all on \(\sigma^2 \))
Further examination of joint posterior distribution

\[p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2} \right)^{\frac{n}{2} + 1} \exp \left[-\frac{1}{2\sigma^2} \left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2 \right) \right] \]

- consider \(\tilde{y} \) a future draw from the same population
- what is the predictive distn of \(\tilde{y} \), i.e., \(p(\tilde{y} | y) \)
- \(p(\tilde{y} | y) = \int \int p(\tilde{y} | \mu, \sigma^2, y) p(\mu, \sigma^2 | y) d\mu \ d\sigma^2 \)
- note first term in integral doesn’t depend on \(y \) given params we know distn of \(\tilde{y} \) is \(\mathcal{N}(\mu, \sigma^2) \)
- predictive distn by simulation
 (simulate \(\sigma^2 \sim \text{Inv-}\chi^2(n - 1, s^2) \), then \(\mu \sim \mathcal{N}(\bar{y}, \sigma^2/n) \), then \(\tilde{y} \sim \mathcal{N}(\mu, \sigma^2) \))
- predictive distn analytically (can proceed as for \(\mu \) by first conditioning on \(\sigma^2 \))
 \(\tilde{y} | y \sim t_{n-1}(\bar{y}, (1 + \frac{1}{n})s^2) \)
Multiparameters Models
Normal example - conjugate prior distn

- It can be hard to find conjugate prior distributions for multiparameter problems
- It is possible for the normal (two-parameter) example
- Conjugate prior distribution is product of $\sigma^2 \sim \text{Inv-CH}^2(\nu_o, \sigma_o^2)$ and $\mu|\sigma^2 \sim N(\mu_o, \sigma^2/\kappa_o)$
- Conditional distribution for μ is equivalent to κ_o observations on the scale of y
- This is known as the Normal-Inv$\text{CH}^2(\mu_o, \kappa_o; \nu_o, \sigma_o^2)$ prior
- The posterior distribution is of the same form with
 \[
 \begin{align*}
 \mu_n &= \frac{\kappa_o}{\kappa_o + n} \mu_o + \frac{n}{\kappa_o + n} \bar{y} \\
 \kappa_n &= \kappa_o + n \\
 \nu_n &= \nu_o + n \\
 \nu_n \sigma_n^2 &= \nu_o \sigma_o^2 + (n - 1)s^2 + \frac{\kappa_o n}{\kappa_o + n} (\bar{y} - \mu_o)^2
 \end{align*}
\]
Multiparameters Models
Normal example - other prior distns (cont’d)

▶ Semi-conjugate analysis
 ▶ for conjugate distn, the prior distn for μ
depends on scale parameter σ (unknown)
 ▶ may want to allow info about μ that does not depend on σ
 ▶ consider independent prior distributions
 $\sigma^2 \sim \text{Inv-}\chi^2(\nu_o, \sigma_o^2)$ and $\mu \sim N(\mu_o, \tau_o^2)$
 ▶ may call this semi-conjugate
 ▶ note that given σ^2, analysis for μ is conjugate normal-normal
 case so that $\mu|\sigma^2, y \sim N(\mu_n, \tau_n^2)$ with

$$
\mu_n = \frac{1}{\tau_o^2} \mu_o + \frac{n}{\sigma^2} \bar{y} \quad \text{and} \quad \tau_n^2 = \frac{1}{\tau_o^2 + \frac{n}{\sigma^2}}
$$
Multiparameters Models
Normal example - other prior distns (cont’d)

- Semi-conjugate analysis (cont’d)
 - \(p(\sigma^2|y) \) is not recognizable distn
 - calculate as
 \[
 p(\sigma^2|y) = \int \prod_{i=1}^n N(y_i|\mu, \sigma^2)N(\mu|\mu_o, \tau_o^2)\text{Inv} - \chi^2(\sigma^2|\nu_o, \sigma_o^2) d\mu
 \]
 - or calc \(p(\sigma^2|y) = p(\mu, \sigma^2|y)/p(\mu|\sigma^2, y) \)
 (RHS evaluated at convenient choice of \(\mu \))
 - use a 1-dimensional grid approximation or some other simulation technique

- Multivariate normal case
 - no details here (see book)
 - discussion is almost identical to that for univariate normal distn with Inv-Wishart distn in place of the Inv-\(\chi^2 \)
Multiparameters Models
Multinomial data

Data distribution

\[p(y|\theta) = \prod_{j=1}^{k} \theta_{j}^{y_{j}} \]

where \(\theta = \text{vector of probabilities with } \sum_{j=1}^{k} \theta_{j} = 1 \)

and \(y = \text{vector of counts with } \sum_{j=1}^{k} y_{j} = n \)

Conjugate prior distn is the Dirichlet(\(\alpha \)) distn (\(\alpha > 0 \))
(multivariate generalization of the beta distn)

\[p(\theta) = \prod_{j=1}^{k} \theta_{j}^{\alpha_{j}-1} \]

for vectors \(\theta \) such that \(\sum_{j=1}^{k} \theta_{j} = 1 \)

- \(\alpha = 1 \) yields uniform prior distn on \(\theta \) vectors (noninformative?
 ... favors uniform distn)
- \(\alpha = 0 \) uniform on log \(\theta \) (noninformative but improper)

Posterior distn is Dirichlet(\(\alpha + y \))
Multiparameters Models
A non-standard example: logistic regression

- A toxicology study (Racine et al, 1986, Applied Statistics)
- $x_i = \log(\text{dose}), i = 1, \ldots, k$ (k dose levels)
- $n_i = \text{animals given } i\text{th dose level}$
- $y_i = \text{number of deaths}$
- Goals:
 - traditional inference for parameters α, β
 - special interest in inference for LD50 (dose at which expect 50% would die)
Multiparameters Models
Logistic regression (cont’d)

▶ Data model specification
 ▶ within group (dose): exchangeable animals so model
 \(y_i | \theta_i \sim \text{Bin}(n_i, \theta_i)\)
 ▶ between groups: non-exchangeable (higher dose means more deaths); many possible models including
 \[
 \text{logit}(\theta_i) = \log \left(\frac{\theta_i}{1 - \theta_i} \right) = \alpha + \beta x_i
 \]

▶ resulting data model
 \[
 p(y | \alpha, \beta) = \prod_{i=1}^{k} \left(\frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}} \right)^{y_i} \left(\frac{1}{1 + e^{\alpha + \beta x_i}} \right)^{n_i - y_i}
 \]

▶ Prior distn
 ▶ noninformative: \(p(\alpha, \beta) \propto 1 \) ... is posterior distn proper?
 ▶ answer is yes but it is not-trivial to show
 ▶ should we restrict \(\beta > 0\) ??
Multiparameters Models
Logistic regression example (cont’d)

- Posterior distn: \(p(\alpha, \beta | y) \propto p(y | \alpha, \beta) p(\alpha, \beta) \)

\[
p(\alpha, \beta | y) = \prod_{i=1}^{k} \left(\frac{e^{\alpha+\beta x_i}}{1 + e^{\alpha+\beta x_i}} \right)^{y_i} \left(\frac{1}{1 + e^{\alpha+\beta x_i}} \right)^{n_i-y_i}
\]

- Grid approximation
 - obtain crude estimates of \(\alpha, \beta \)
 (perhaps by standard logistic regression)
 - define grid centered on crude estimates
 - evaluate posterior density on 2-dimensional grid
 - sample from discrete approximation
 - refine grid and repeat if necessary

- Grid approximations are risky because they may miss important parts of the distn

- More sophisticated approaches will be developed later (MCMC)
Multiparameters Models
Logistic regression example (cont’d)

- Inference for LD50
 - want \(x_i \) such that \(\theta_i = 0.5 \)
 - turns out \(x_i = -\alpha/\beta \)
 - with simulation it is trivial to get posterior distn of \(-\alpha/\beta\)
 - note that using MLEs it would be easy to get estimate but hard to get standard error
 - doesn’t make sense to talk about LD50 if \(\beta < 0 \) could do inference in two steps
 - \(\Pr(\beta > 0) \)
 - distn of LD50 given \(\beta > 0 \)

- Real-data example (handout)
Large Sample Inference

Asymptotics in Bayesian Inference

- “Optional” because Bayesian methods provide proper finite sample inference, i.e. we have a posterior distribution for θ that is valid regardless of sample size
- Large sample results are still interesting – Why?
 - theoretical results (the likelihood dominates the prior so that frequentist asymptotic results apply to Bayesian methods also)
 - approximation to the posterior distn
 - normal approx can provide useful information to check simulations from actual posterior distn
Large Sample Inference
Asymptotics in Bayesian Inference

- Large sample results are still interesting - Why?
 (continuation)
 - approximation to the posterior distn
 - normal approx is easy (need only posterior mean and s.d.).
 - normal approx often adequate if few dimensions (especially after transforming)
 - normal theory helps interprete posterior pdf's: for d-dimension normal approx
 - $-2 \log(\text{density}) = (x - \mu)'\Sigma^{-1}(x - \mu)$ is approximately χ^2_d as $n \to \infty$
 - 95% posterior confidence region for μ contains all μ with posterior density $\geq \exp\{-0.5\chi^2_{d,0.95}\} \times \max p(\theta|y)$
Let $f(y)$ be true data generating distn

Let $p(y|\theta)$ be the model being fit

Finite parameter space Θ.
- true value generating the data is $\theta_0 \in \Theta$ (i.e. $f(y) = p(y|\theta_0)$)
- assume $p(\theta_0) > 0$.

then

$$p(\theta = \theta_0|y) \rightarrow 1 \text{ as } n \rightarrow \infty$$

- Same result if $p(y|\theta)$ is not the right family of distn by taking θ_0 to be the Kullback-Leibler minimizer, i.e., θ_0 s.t. $H(\theta) = \int f(y) \log \left(\frac{f(y)}{p(y|\theta)} \right) dy$ is minimized

- Can extend to more general parameter spaces
Large Sample Inference
Asymptotic Normality
(1-dimension parameter space)

Theorem (BDA3, pg 587)
Under some regularity conditions (notably that θ_0 not be on the boundary of Θ), as $n \to \infty$, the posterior distribution of θ approaches normality with mean θ_0 and variance $(nJ(\theta_0))^{-1}$, where θ_0 is the true value or the value that minimizes the Kullback-Leibler information and $J(\cdot)$ is the Fisher information.
Large Sample Inference
Asymptotic Normality

- Problems that affect Bayesian and classical arguments
 - If “true” θ_0 is on the boundary of the parameter space, then no asymptotic normality
 - Sometimes the likelihood is unbounded
 e.g.
 \[
 f(y|\lambda, \mu_1, \sigma_1, \mu_2, \sigma_2) = \lambda f_1(y|\theta) + (1 - \lambda) f_2(y|\theta)
 \]
 where
 \[
 f_i(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{1}{2} \left(\frac{y - \mu_i}{\sigma_i} \right)^2} \quad i = 1, 2
 \]
 If we take $\mu_1 = y_1$ and $\sigma_1 \to 0$, then $f(\theta|y)$ is unbounded
Large Sample Inference
Asymptotic Normality

- Problems that only affect Bayesians
 - improper posterior distns (already discussed)
 - prior distn that excludes “true” \(\theta_0 \)
 - problems where the number of parameters increase with the sample size, e.g.,

\[
Y_i \mid \theta_i \sim N(\theta_i, 1) \\
\theta_i \mid \mu, \tau^2 \sim N(\mu, \tau^2) \quad i = 1, \ldots, n
\]

then asymptotic results hold for \(\mu, \tau^2 \) but not \(\theta_i \)
Large Sample Inference
Asymptotic Normality

- Problems that only affect Bayesians (cont’d)
 - parameters not identified.
 e.g.

\[
\begin{pmatrix}
 U \\
 V
\end{pmatrix}
\sim
\mathcal{N}
\left[
\begin{pmatrix}
 \mu_1 \\
 \mu_2
\end{pmatrix},
\begin{pmatrix}
 1 & \rho \\
 \rho & 1
\end{pmatrix}
\right]
\]

if you observe only \(U \) or \(V \) for each pair, there is no information about \(\rho \).

- tails of the distribution may not be normal, e.g., our logistic regression example