Statistics 225 Bayesian Statistical Analysis

Hal S. Stern Department of Statistics University of California, Irvine sternh@uci.edu

Prerequisites

- Probability (distns, transformations)
- Statistical Inference (standard procedures)
- Ideally two semesters at graduate level

Broad Outline

- Univariate/multivariate models
- Hierarchical models and model checking
- Computation
- Other models (glm's, missing data, etc.)

Computing

- R mostly covered in class
- BUGS if used, we will cover in class
- Other at your own risk

History

- Bayes & Laplace (late 1700s) inverse probability
 - probability statements about observables given assumptions about unknown parameters
 - inverse probability statements about unknown
 parameters given observed data values
- Ex: given y successes in n iid trials with probability of success θ , find $\Pr(a < \theta < b)$
- Little after that except for isolated individuals (e.g., Jeffreys)
- Interest resumes in mid 1900s (the term Bayesian statistics is born)
- Computational advances in late 20th century have led to increase in interest

Bayes/Frequentist Controversy

- Bayes
 - parameters as random variables
 - subjective probability (for some people)
- Frequentist
 - parameters as fixed but unknown quantities
 - probability as long-run frequency
- Some controversy in the past (and present)
- Message in this course is NOT adversarial

Some Things Not Discussed (Much)

- The following terms are sometimes associated with Bayesian statistics. They will be discussed briefly but will not receive much attention here:
 - decision theory
 - nonparametric Bayesian methods
 - subjective probability
 - objective Bayesian methods
 - maximum entropy

Motivating Example: Cancer Maps

- Kidney cancer mortality rates (Manton et al. JASA, 1989)
 - Analyses of age-standardized death rates for cancer of kidney/ureter by U.S. county
 - Two maps of estimated rates
 - * Direct calculation: use observed rates in county/age-group cells to form estimates
 - * Empirical Bayes: modeling to stabilize estimated rates

Stat 225
Motivating Example: SAT coaching

- SAT coaching study (Rubin J. Educ. Stat., 1981)
 - Randomized experiments in 8 schools
 - Separate analyses
 - Outcome is SAT-Verbal score
 - Effect of treatment (coaching) estimated using analysis of covariance

	Estimated	Standard error	
	treatment	of effect	Treatment
School	effect	estimate	effect
A	28	15	?
В	8	10	?
\mathbf{C}	-3	16	?
D	7	11	?
${f E}$	-1	9	?
\mathbf{F}	1	11	?
G	18	10	?
H	12	18	?

Bayesian inference: Two key ideas

- Explicit use of probability for quantifying uncertainty
 - probability models for data given parameters
 - probability distributions for parameters
- Inference for unknowns conditional on observed data
 - inverse probability
 - Bayes' theorem (hence the modern name)
 - formal decision-making

Notation/Terminology

- θ = unobservable quantities (parameters)
- y = observed data (outcomes, responses, random variable)
- x = explanatory variables (covariates, often treated as fixed)
- Don't usually distinguish between upper and lower case roman letters since everything is a random variable
- \tilde{y} = unknown but potentially observable quantities (predictions, response to a different treatment)
- NOTE: don't usually distinguish between univariate, multivariate quantities

Notation/Terminology

- $p(\cdot)$ or $p(\cdot|\cdot)$ denote distributions (generic)
- It would take too many letters if each distn received its own letter
- We write $Y|\mu, \sigma^2 \sim N(\mu, \sigma^2)$ to denote that Y has a normal density
- We write $p(y|\mu, \sigma^2) = N(y|\mu, \sigma^2)$ to refer to the normal density with argument y
- Same for other distributions: Beta(a, b), Unif(a, b), Exp (θ) , Pois (λ) , etc.

The Bayesian approach

- Focus here is on three step process
 - specify a full probability model
 - posterior inference via Bayes' rule
 - model checking/sensitivity analysis
- Usually an iterative process specify model, fit and check, then respecify model

Specifying a full probability model

- Data distribution $p(y|\theta) = p(\text{data} \mid \text{parameters})$
 - also known as sampling distribution
 - $-p(y|\theta)$ when viewed as a function of θ is also known as the likelihood function $L(\theta|y)$
- Prior distribution $p(\theta)$
 - may contain subjective prior information
 - often chosen vague/uninformative
 - mathematical convenience
- Marginal model
 - above can be combined to determine implied marginal model for y $p(y) = \int p(y|\theta)p(\theta)d\theta$
 - useful for model checking
 - Bayesian way of thinking leads to new distns that can be useful even for frequentists

Posterior inference/Model checking

- Posterior inference
 - Bayes' thm to derive posterior distribution

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

- probability statements about unknowns
- formal decision-making is based on posterior distn
- sometimes write $p(\theta|y) \propto p(\theta)p(y|\theta)$ because the denominator is a constant in terms of θ
- Model checking/sensitivity analysis
 - does the model fit
 - are conclusions sensitive to choice of prior distn/likelihood

Likelihood, Odds, Posteriors

- Recall that $p(\theta|y) \propto p(\theta)p(y|\theta)$
 - posterior \propto prior \times likelihood
 - consider two possible values of θ , say θ_1 and θ_2

$$\frac{p(\theta_1|y)}{p(\theta_2|y)} = \frac{p(\theta_1)}{p(\theta_2)} \times \frac{p(y|\theta_1)}{p(y|\theta_2)}$$

- posterior odds = prior odds \times likelihood ratio
- note likelihood ratio is still important

Likelihood principle

- Likelihood principle if two likelihood functions agree, then the same inferences about θ should be drawn
- Traditional frequentist methods violate this
- Example: given a sequence of coin tosses with constant probability of success θ we wish to test $H_o: \theta = 0.5$
 - observe 9 heads, 3 tails in 12 coin tosses
 - if binomial sampling (n = 12 fixed), then

$$L(\theta|y) = p(y|\theta) = {12 \choose 9} \theta^9 (1-\theta)^3$$

and p-value is .073

- if negative binomial sampling (sample until 3 tails), then

$$L(\theta|y) = p(y|\theta) = {11 \choose 9} \theta^9 (1-\theta)^3$$

and p-value is .033

– but data (and likelihood function) is the same ... 9 successes, 3 failures ... and should carry the same information about θ

Independence

- A common statement in statistics: assume Y_1, \ldots, Y_n are iid r.v.'s
- In Bayesian class, we need to think hard about independence
- Why?
 - Consider two "indep" Bernoulli trials with probability of success θ
 - It is true that

$$p(y_1, y_2|\theta) = \theta^{y_1 + y_2} (1 - \theta)^{2 - y_1 - y_2} = p(y_1|\theta) p(y_2|\theta)$$

so that y_1 and y_2 are independent given θ

- But ... $p(y_1, y_2) = \int p(y_1, y_2|\theta)p(\theta)d\theta$ may not factor
- If $p(\theta) = \text{Unif}(\theta|0,1) = 1$ for $0 < \theta < 1$, then

$$p(y_1, y_2) = \Gamma(y_1 + y_2 + 1)\Gamma(3 - y_1 - y_2)/\Gamma(4)$$

so y_1 and y_2 are not independent in their marginal distribution

Exchangeability

- If independence is no longer the key, then what is?
- Exchangeability
 - Informal defn: subscripts don't matter
 - Formally: given events A_1, \ldots, A_n , we say they are exchangeable if $P(A_1 A_2 \ldots A_k) = P(A_{i_1} A_{i_2} \ldots A_{i_k})$ for every k where i_1, i_2, \ldots, i_n are a permutation of the indices
 - Similarly, given random variable Y_1, \ldots, Y_n , we say they are exchangeable if $P(Y_1 \leq y_1, \ldots, Y_k \leq y_k) = P(Y_{i_1} \leq y_1, \ldots, Y_{i_k} \leq y_k)$ for every k

Exchangeability and independence

- Relationship between exchangeability and independence
 - r.v.'s that are iid given θ are exchangeable
 - an infinite sequence of exchangeable r.v.'s can always be thought of as iid given some parameter (Definetti)
 - note previous point requires an infinite sequence
- What is not exchangeable?
 - time series, spatial data
 - may become exchangeable if we explicitly include time in the analysis
 - i.e., $y_1, y_2, \ldots, y_t, \ldots$ are not exchangeable but $(t_1, y_1), (t_2, y_2), \ldots$ may be

A simple example

- Hemophilia blood clotting disease
 - sex-linked genetic disease on X chromosome
 - males (XY) affected or not
 - females (XX) may have 0 copies of disease gene (not affected), 1 copy (carrier), 2 copies (usually fatal)
- Consider a woman brother is a hemophiliac, father is not
 - we ignore the possibility of a mutation introducing the disease
 - woman's mother must be a carrier
 - woman inherits one X from mother
 - --> 50/50 chance of being a carrier
- Let $\theta = 1$ if woman is carrier, 0 if not
 - a priori we have $Pr(\theta = 1) = Pr(\theta = 0) = 0.5$
- Let $y_i = \text{status of woman's } i \text{th male child}$ (1 if affected, 0 if not)

A simple example (cont'd)

- Given two unaffected sons (not twins), what inference can be drawn about θ ?
- Assume two sons are iid given θ

•
$$\Pr(y_1 = y_2 = 0 | \theta = 1) = 0.5 * 0.5 = .25$$

 $\Pr(y_1 = y_2 = 0 | \theta = 0) = 1 * 1 = 1.00$

• Posterior distr by Bayes' theorem

$$\Pr(\theta = 1|y) = \frac{\Pr(y|\theta = 1)\Pr(\theta = 1)}{\Pr(y)} \\
= \frac{\Pr(y|\theta = 1)\Pr(\theta = 1)}{\Pr(y|\theta = 1)\Pr(\theta = 1) + \Pr(y|\theta = 0)\Pr(\theta = 0)} \\
= \frac{.25 * .5}{.25 * .5 + 1 * .5} = .2$$

A simple example (cont'd)

- Odds version of Bayes' rule
 - prior odds $Pr(\theta = 1)/Pr(\theta = 0) = 1$
 - likelihood ratio $Pr(y|\theta=1)/Pr(y|\theta=0)=1/4$
 - posterior odds = 1/4(posterior prob = .25/(1 + .25) = .20)
- Updating for new information
 - suppose that a 3rd son is born (unaffected)
 - note: if we observe an affected child, then we know $\theta = 1$ since that outcome is assumed impossible when $\theta = 0$
 - two approaches to updating analysis
 - * redo entire analysis $(y_1, y_2, y_3 \text{ as data})$
 - * update using only new data (y_3)

A simple example (cont'd)

- Updating for new information redo analysis
 - as before but now y = (0, 0, 0)
 - $-\Pr(y|\theta = 1) = .5 * .5 * .5 = .125,$ $\Pr(y|\theta = 0) = 1$
 - $-\Pr(\theta = 1|y) = .125 * .5/(.125 * .5 + 1 * .5) = .111$
- Updating for new information updating
 - take previous posterior distn as new prior distn $(\Pr(\theta = 1) = .2 \text{ and } \Pr(\theta = 0) = .8)$
 - take data as consisting only of y_3
 - $Pr(\theta = 1|y_3) = .5 * .2/(.5 * .2 + 1 * .8) = .111$
 - same answer!

Probability review

• Probability (mathematical definition):

A set function that is

- nonnegative
- additive over disjoint sets
- sums to one over entire sample space
- For Bayesian methods probability is a fundamental measure of uncertainty
 - $\Pr(1 < \bar{y} < 3 | \theta = 0)$ or $\Pr(1 < \bar{y} < 3)$ is interesting before data has been collected
 - $\Pr(1 < \theta < 3|y)$ is interesting after data has been collected
- Where do probabilities come from?
 - frequency argument (e.g., 10,000 coin tosses)
 - physical argument (e.g., symmetry in coin toss)
 - subjective (e.g., if would be willing to bet on NY Giants given 1:1 odds, then must believe the probability Giants win is greater than .5)

Probability review

- Some terms/defns you should know
 - joint distn p(u, v)
 - marginal distn $p(u) = \int p(u, v) dv$
 - conditional disting p(u|v) = p(u,v)/p(v)
 - moments: $E(u) = \int up(u)du = \int \int up(u,v)dvdu$ $Var(u) = \int (u - E(u))^2 p(u)du$ $E(u|v) = \int up(u|v)du$ (a fin of v)
 - conditional districts play a large role in Bayesian inference so the following rules are useful
 - * E(u) = E(E(u|v))
 - * Var(u) = E(Var(u|v)) + Var(E(u|v))
 - transformations (one-to-one)
 - * denote distn of u by $p_u(u)$
 - * take v = f(u)
 - * distribution of v is

$$p_v(v) = p_u(f^{-1}(v))$$
 in discrete case

$$p_v(v) = p_u(f^{-1}(v))|J|$$
 in continuous case

where Jacobian
$$J$$
 is $\left| \frac{\partial u_i}{\partial v_j} \right| = \left| \frac{\partial f^{-1}(v)}{\partial v_j} \right|$

Probability review - intro to simulation

- Simulation plays a big role in modern Bayesian inference and one particular transformation is important in this context
- Probability integral transform
 - suppose X is a continuous r.v. with cdf $F_X(x)$
 - then $Y = F_X(X)$ has uniform distn on 0 to 1
- Application in simulations
 - if U is uniform on (0,1) and $F(\cdot)$ is cdf of a continuous r.v.
 - then $Z = F^{-1}(U)$ is a r.v. with cdf F
 - example:
 - * let $F(x) = 1 e^{-x/\lambda} = \text{exponential cdf}$
 - * then $F^{-1}(u) = -\lambda \log(1 u)$
 - * if we have a source of uniform random numbers then we can easily transform to construct samples from an exponential distn

Introduction

- We introduce important concepts/computations in the one-parameter case
- There is little advantage to the Bayesian approach in these cases
- The benefits of the Bayesian approach are in hierarchical (often random effects) models
- Main approach is to teach via example
- First example is binomial data (Bernoulli trials)
 - easy
 - historical interest (Bayes, Laplace)
 - representative of a large class of distns (exponential families)

Binomial Model

- \bullet Consider n exchangeable trials
- Data can be summarized by total # of successes
- Natural model: define θ as probability of success and take $Y \sim \text{Bin}(n, \theta)$

$$p(y|\theta) = \text{Bin}(y|n,\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}$$

- Question do we have to be explicit about conditioning on n? (usually are not)
- Prior distn: $p(\theta) = \text{Unif}(\theta|0,1)$
- Posterior distn:

$$p(\theta|y) = \binom{n}{y} \theta^y (1-\theta)^{n-y} / \int \binom{n}{y} \theta^y (1-\theta)^{n-y} d\theta$$

$$= (n+1) \binom{n}{y} \theta^y (1-\theta)^{n-y} = \frac{(n+1)!}{y!(n-y)!} \theta^y (1-\theta)^{n-y}$$

$$= \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)} \theta^{y+1-1} (1-\theta)^{n-y+1-1}$$

$$= \text{Beta}(y+1, n-y+1)$$

• Note: could have noticed $p(\theta|y) \propto \theta^y (1-\theta)^{n-y}$ and inferred it is a Beta(y+1,n-y+1) distn (formal calculation confirms this)

Binomial Model

- Inference
 - draw inferences from posterior distn
 - point estimation
 - * posterior mean = (y+1)/(n+2)(compromise between sample proportion y/nand prior mean 1/2)
 - * posterior mode = y/n
 - * best point estimate depends on loss function
 - * posterior variance = $\left(\frac{y+1}{n+2}\right)\left(\frac{n-y+1}{n+2}\right)\left(\frac{1}{n+3}\right)$
 - interval estimation
 - * 95% central posterior interval find a,b s.t. $\int_0^a \text{Beta}(\theta|y+1,n-y+1)d\theta = .025 \text{ and }$ $\int_0^b \text{Beta}(\theta|y+1,n-y+1)d\theta = .975$
 - * alternative is highest posterior density region
 - * note this interval has the interpretation we want to give to traditional CIs
 - hypothesis test don't say anything now

Binomial Model

- Inference by simulation
 - all of the inferences mentioned (point estimation, interval estimation) can be done via simulation
 - simulate 1000 draws from the posterior distribution
 - * available in standard packages
 - * MCMC for harder problems later
 - point estimates easy to compute (now include Monte Carlo error)
 - interval estimates easy find percentiles of the simulated values

Prior distributions

- Where do prior distributions come from?
 - -a priori knowledge about θ ("deep thoughts")
 - population interpretation (a population of possible θ values)
 - mathematical convenience
- Frequently rely on asymptotic results (to come) which guarantee that likelihood will dominate the prior distn in large samples

Conjugate prior distributions

- Consider Beta (α, β) prior distn for binomial model
 - think of α, β as fixed now (but these could also be random and given their own prior distn)
 - $p(\theta|y) \propto \theta^{y+\alpha-1} (1-\theta)^{n-y+\beta-1}$
 - recognize as kernel of Beta $(y + \alpha, n y + \beta)$
 - example of conjugate distn posterior distn is in the same parametric family as the prior distn
 - convenient mathematically
 - convenient interpretation prior in this case is like observing α successes in $\alpha + \beta$ "prior" trials

Conjugate prior distributions - general

- Definition:
 - Let F be a class of sampling distn $(p(y|\theta))$. Let P be a class of prior distns $(p(\theta))$. P is **conjugate** for F if $p(\theta) \in P$ and $p(y|\theta) \in F$ implies that $p(\theta|y) \in P$
- Not a great definition ... trivially satisfied by $P = \{ \text{ all distns} \}$ but this is not an interesting case
- Exponential families (most common distns): the only distns that are finitely parametrizable and have conjugate prior families
 - density of exponential families is

$$p(y|\theta) = f(y)g(\theta)e^{\phi(\theta)^t u(y)}$$

with $\phi(\theta)$ denoting the natural parameter

- $-p(\theta) \propto g(\theta)^{\eta} e^{\phi(\theta)^t \nu}$ will be conjugate family
- binomial: $\phi(\theta) = \log(\theta/(1-\theta))$ and $g(\theta) = 1-\theta$ conjugate prior distn is $\theta^{\nu}(1-\theta)^{\eta-\nu}$

Conjugate prior distributions - general

- Advantages
 - mathematically convenient
 - easy to interpret
 - can provide good approx to many prior opinions
 (especially if we allow mixtures of distns from the conjugate family)
- Disadvantages
 - may not be realistic

Nonconjugate prior distributions

- No real difference conceptually in how analysis proceeds
- Harder computationally
- Grid-based simulation
 - specify prior distn on a grid $Pr(\theta = \theta_i) = \pi_i$
 - compute likelihood on same grid $l_i = p(y|\theta_i)$
 - posterior distributes on the grid with $\Pr(\theta = \theta_i | y) = \pi_i^* = \pi_i l_i / (\sum_j \pi_j l_j)$
 - can sample from this posterior distnessily in Splus
 - can do better with a trapezoidal approx to the prior distn
- There are serious problems with grid-based simulation
- We will see better computational approaches

Noninformative prior distributions

- Often there is a desire to have the prior dist play a minimal role the posterior distn (why?)
- Example: consider $y_1, \ldots, y_n | \theta \sim \text{iid} N(\theta, \sigma^2)$ and $p(\theta | \mu, \tau^2) = N(\theta | \mu, \tau^2)$ where σ^2, μ, τ^2 are known
 - a conjugate family
 - $-p(\theta|y) = N(\theta|\hat{\mu}, V)$ with

$$\hat{\mu} = \frac{\frac{n}{\sigma^2}\bar{y} + \frac{1}{\tau^2}\mu}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}} \text{ and } V = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}}$$

- note: if $n \to \infty$ then posterior distn resembles $p(\theta|y) = N(\theta|\bar{y}, \sigma^2/n)$; like classical sampling distn result (data dominates prior distn)
- if $\tau^2 \to \infty$, then $p(\theta|y) \approx N(\theta|\bar{y}, \sigma^2/n)$ (this yields the same estimates and intervals as classical methods; can be thought of as non-informative)
- same result would be obtained by taking $p(\theta) \propto 1$ BUT that is not a proper prior distn
- we can use improper prior distn but must
 check that the posterior distn is a proper distn

Noninformative prior distributions

- How do we find noninformative prior distributions?
- Flat or uniform distributions
 - did the job in the binomial and normal cases
 - makes each value of θ equally likely
 - but on what scale (should every value of $\log \theta$ be equally likely or every value of θ)
- Jeffrey's prior
 - invariance principle a rule for creating noninformative prior distns should be invariant to transformation
 - if p_{θ} is prior distn for θ and we consider $\phi = h(\theta)$, so that $p_{\phi}(\phi) = p_{\theta}(h^{-1}(\phi)) |d\theta/d\phi|$
 - Jeffrey's suggestion $p(\theta) \propto I(\theta)^{1/2}$ where $I(\theta)$ is the Fisher information
 - gives flat prior for θ in normal case
 - does this work for multiparameter problems?

Noninformative prior distributions

- How do we find noninformative prior distributions? (cont'd)
- Pivotal quantities
 - location family has $p(y \theta | \theta) = f(y \theta)$ so should expect $p(y \theta | y) = f(y \theta)$ as well this suggests $p(\theta) \propto 1$
 - similarly for scale family we find $p(\theta) \propto 1/\theta$ (where θ is a scale parameter like normal s.d.)
- Vague, diffuse distributions
 - use conjugate or other prior distn with large variance

Single Parameter Models

Noninformative prior distributions - example

- Binomial case
 - Uniform on θ is Beta(1,1)
 - Jeffreys' prior distn is Beta(1/2, 1/2)
 - Uniform on natural parameter $\log(\theta/(1-\theta))$ is Beta(0,0) (an improper prior distn)
- Summary on noninformative distn
 - very difficult to make this idea rigorous since it requires a definition of "information"
 - informally this is a useful but dangerous idea
 - useful as a first approximation or first attempt
 - dangerous if applied automatically without thought
 - improper distributions can cause serious
 problems (improper posterior distns) that are hard to detect
 - some prefer vague or diffuse proper
 distributions as a way of expressing ignorance

Introduction

- Now write $\theta = (\theta_1, \theta_2)$ (at least two parameters)
- θ_1 and θ_2 may be vectors as well
- Key point here is how Bayesian approach handles "nuisance" parameters
- Posterior disting $p(\theta_1, \theta_2|y) \propto p(y|\theta_1, \theta_2)p(\theta_1, \theta_2)$
- Suppose θ_1 is of primary interest, i.e., want $p(\theta_1|y)$
 - $-p(\theta_1|y) = \int p(\theta_1, \theta_2|y) d\theta_2$ analytically or by numerical integration
 - $p(\theta_1|y) = \int p(\theta_1|\theta_2, y) p(\theta_2|y) d\theta_2$ (often a convenient way to calculate)
 - $p(\theta_1|y) = \int p(\theta_1, \theta_2|y) d\theta_2$ by simulation (generate simulations of both and toss out the θ_2 's)
- Note: Bayesian results still usually match those of traditional methods. We don't see differences until hierarchical models

Normal example

- $y_1, y_2, \ldots, y_n | \mu, \sigma^2$ are iid $N(\mu, \sigma^2)$
- Prior distn: $p(\mu, \sigma^2) \propto 1/\sigma^2$
 - indep non-informative prior distns for μ and σ^2
 - equivalent to $p(\mu, \log \sigma) \propto 1$
 - not a proper distn
- Posterior distn:

$$p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp\left[-\frac{1}{2\sigma^2} \sum_i (y_i - \mu)^2\right]$$
$$\propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp\left[-\frac{1}{2\sigma^2} \left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right)\right]$$

- note that μ, σ^2 are not indep in their posterior distn
- posterior distn depends on data only through the sufficient statistics

Normal example (cont'd)

• Further examination of joint posterior distribution

$$p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp\left[-\frac{1}{2\sigma^2}\left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right)\right]$$

- conditional posterior distin $p(\mu|\sigma^2, y)$
 - * examine joint posterior distribut now think of σ^2 as known
 - * focus only on μ terms
 - * $p(\mu|\sigma^2, y) \propto \exp\left[-\frac{1}{2\sigma^2}n(\bar{y}-\mu)^2\right]$
 - * just like known variance case
 - * recognize $\mu | \sigma^2, y \sim N(\bar{y}, \sigma^2/n)$
- marginal posterior distn of σ^2 , i.e., $p(\sigma^2|y)$
 - * $p(\sigma^2|y) = \int p(\mu, \sigma^2|y) d\mu$
 - * alternative: note $p(\sigma^2|y) = p(\mu, \sigma^2|y)/p(\mu|\sigma^2, y)$ (LHS doesn't have μ , RHS does must be true for any μ)
 - * $p(\sigma^2|y) \propto (\sigma^2)^{-(n+1)/2} \exp[-\frac{1}{2\sigma^2} \sum_i (y_i \bar{y})^2]$
 - * known as scaled-inverse- $\chi^2(n-1,s^2)$ distn with $s^2 = \sum_i (y_i \bar{y})^2/(n-1)$

Normal example (cont'd)

• Further examination of joint posterior distribution

$$p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp\left[-\frac{1}{2\sigma^2}\left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right)\right]$$

- so far, $p(\mu, \sigma^2|y) = p(\sigma^2|y)p(\mu|\sigma^2, y)$
- this factorization can be used to simulate from joint posterior distn
 - * generate σ^2 from Inv- $\chi^2(n-1,s^2)$ distn
 - * then generate μ from $N(\bar{y}, \sigma^2/n)$ distn
- often most interested in $p(\mu|y)$

*
$$p(\mu|y) = \int_0^\infty p(\mu, \sigma^2|y) d\sigma^2 \propto \left[1 + \frac{n(\mu - \bar{y})}{(n-1)s^2}\right]^{-n/2}$$

- * $\mu|y \sim t_{n-1}(\bar{y}, s^2/n)$ (a t-distn)
- * recall traditional result $\frac{\bar{y}-\mu}{s/\sqrt{n}}|\mu,\sigma^2 \sim t_{n-1}$ (note result doesn't depend at all on σ^2)

Normal example (cont'd)

• Further examination of joint posterior distribution

$$p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp\left[-\frac{1}{2\sigma^2}\left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2\right)\right]$$

- consider \tilde{y} a future draw from the same population
- what is the predictive distn of \tilde{y} , i.e., $p(\tilde{y}|y)$
- $-p(\tilde{y}|y) = \int \int p(\tilde{y}|\mu,\sigma^2,y)p(\mu,\sigma^2|y)d\mu \ d\sigma^2$
- note first term in integral doesn't depend on y given params we know distn of \tilde{y} is $N(\mu, \sigma^2)$
- predictive distn by simulation (simulate $\sigma^2 \sim \text{Inv-}\chi^2(n-1,s^2)$, then $\mu \sim N(\bar{y},\sigma^2/n)$, then $\tilde{y} \sim N(\mu,\sigma^2)$)
- predictive distn analytically (can proceed as for μ by first conditioning on σ^2) $\tilde{y}|y \sim t_{n-1}(\bar{y}, (1+\frac{1}{n})s^2)$

Normal example - other prior distns (cont'd)

- Semi-conjugate analysis
 - for conjugate distn, the prior distn for μ depends on scale parameter σ (unknown)
 - may want to allow info about μ that does not depend on σ
 - consider independent prior distributions $\sigma^2 \sim \text{Inv-}\chi^2(\nu_o, \sigma_o^2)$ and $\mu \sim N(\mu_o, \tau_o^2)$
 - may call this semi-conjugate
 - note that given σ^2 , analysis for μ is conjugate normal-normal case so that $\mu|\sigma^2, y \sim N(\mu_n, \tau_n^2)$ with

$$\mu_n = \frac{\frac{1}{\tau_o^2} \mu_o + \frac{n}{\sigma^2} \bar{y}}{\frac{1}{\tau_o^2} + \frac{n}{\sigma^2}}$$
 and $\tau_n^2 = \frac{1}{\frac{1}{\tau_o^2} + \frac{n}{\sigma^2}}$

Normal example - other prior distns (cont'd)

- Semi-conjugate analysis (cont'd)
 - $-p(\sigma^2|y)$ is not recognizable distn
 - * calculate as

$$p(\sigma^2|y) = \prod_{n=1}^{n} N(x|x, \sigma^2) N(x|x, \sigma^2)$$

$$\int \prod_{i=1}^{n} N(y_i|\mu,\sigma^2) N(\mu|\mu_o,\tau_o^2) \text{Inv} - \chi^2(\sigma^2|\nu_o,\sigma_o^2) d\mu$$

- * or calc $p(\sigma^2|y) = p(\mu, \sigma^2|y)/p(\mu|\sigma^2, y)$ (RHS evaluated at convenient choice of μ)
- * use a 1-dimensional grid approximation or some other simulation technique
- Multivariate normal case
 - no details here (see book)
 - discussion is almost identical to that for univariate normal distn with Inv-Wishart distn in place of the Inv- χ^2

Multinomial data

• Data distribution

$$p(y|\theta) = \prod_{j=1}^{k} \theta_j^{y_j}$$

where $\theta = \text{vector of probabilities with } \sum_{j=1}^{k} \theta_j = 1 \text{ and } y = \text{vector of counts with } \sum_{j=1}^{k} y_j = n$

• Conjugate prior distn is the Dirichlet(α) distn (multivariate generalization of the beta distn)

$$p(\theta) = \prod_{j=1}^{k} \theta_j^{\alpha_j - 1}$$

for vectors θ such that $\sum_{j=1}^k \theta_j = 1$ and $\alpha > 0$

- $-\alpha = 1$ yields uniform prior distn on θ vectors such that $\sum_{j} \theta_{j} = 1$ (noninformative? ... favors uniform distn)
- $-\alpha = 0$ uniform on $\log \theta$ (noninformative but improper)
- Posterior distn is $Dirchlet(\alpha + y)$

A non-standard example: logistic regression

- A toxicology study (Racine et al, 1986, Applied Statistics)
- $x_i = \log(\text{dose}), i = 1, \dots, k \text{ (k dose levels)}$
- $n_i = \text{animals given } i \text{th dose level}$
- $y_i = \text{number of deaths}$
- Goals:
 - traditional inference for parameters α, β
 - special interest in inference for LD50 (dose at which expect 50% would die)

Logistic regression (cont'd)

- Data model specification
 - within group (dose): exchangeable animals so model $y_i|\theta_i \sim \text{Bin}(n_i, \theta_i)$
 - between groups: non-exchangeable (higher dose means more deaths); many possible models including

$$logit(\theta_i) = log\left(\frac{\theta_i}{1 - \theta_i}\right) = \alpha + \beta x_i$$

- resulting data model

$$p(y|\alpha,\beta) = \prod_{i=1}^{k} \left(\frac{e^{\alpha+\beta x_i}}{1 + e^{\alpha+\beta x_i}}\right)^{y_i} \left(\frac{1}{1 + e^{\alpha+\beta x_i}}\right)^{n_i - y_i}$$

- Prior distn
 - noninformative: $p(\alpha, \beta) \propto 1$... is posterior distribution proper?
 - answer is yes but it is not-trivial to show
 - should we restrict $\beta > 0$??

Logistic regression example (cont'd)

• Posterior distn: $p(\alpha, \beta|y) \propto p(y|\alpha, \beta)p(\alpha, \beta)$

$$p(\alpha, \beta|y) = \prod_{i=1}^{k} \left(\frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}}\right)^{y_i} \left(\frac{1}{1 + e^{\alpha + \beta x_i}}\right)^{n_i - y_i}$$

- Grid approximation
 - obtain crude estimates of α, β (perhaps by standard logistic regression)
 - define grid centered on crude estimates
 - evaluate posterior density on 2-dimensional grid
 - sample from discrete approximation
 - refine grid and repeat if necessary
- Grid approximations are risky (may miss important parts of distn)
- More sophisticated approaches will be developed later (MCMC)

Logistic regression example (cont'd)

- Inference for LD50
 - want x_i such that $\theta_i = 0.5$
 - turns out $x_i = -\alpha/\beta$
 - with simulation it is trivial to get posterior distn of $-\alpha/\beta$
 - note that using MLEs it would be easy to get estimate but hard to get standard error
 - doesn't make sense to talk about LD50 if $\beta < 0$ could do inference in two steps
 - * $Pr(\beta > 0)$
 - * distn of LD50 given $\beta > 0$
- Real-data example (handout)

Asymptotics in Bayesian Inference

- "Optional" because Bayesian methods provide proper finite sample inference, i.e. we have a posterior distribution for θ that is valid regardless of sample size everything.
- Large sample results are still interesting Why?
 - theoretical results (the likelihood dominates the prior so that frequentist asymptotic results apply to Bayesian methods also)
 - having normal approx allows us to know if we have a programming problem when simulating from actual posterior distn
 - approximation to the posterior distn

Asymptotics in Bayesian Inference

- Large sample results are still interesting Why? (continuation)
 - approximation to the posterior distn
 - * normal approx is easy (need only posterior mean and s.d.).
 - * normal approx often adequate if few dimensions (especially after transforming)
 - normal theory helps interprete posterior pdf's: for d-dimension normal approx
 - * $-2\log(\text{density}) = (x \mu)'\Sigma^{-1}(x \mu)$ is approximately χ_d^2 as $n \to \infty$
 - * 95% posterior confidence region for μ contains all μ with posterior density $\geq \exp\{-0.5\chi_{d,0.95}^2\} \times \max p(\theta|y)$

Consistency

- Let f(y) be true data generating distn
- Let $p(y|\theta)$ be the model being fit
- Finite parameter space Θ .
 - true value generating the data is $\theta_0 \in \Theta$ (i.e. $f(y) = p(y|\theta_0)$)
 - assume $p(\theta_0) > 0$.

then

$$p(\theta = \theta_0|y) \to 1 \text{ as } n \to \infty$$

• Same result if $p(y|\theta)$ is not the right family of distn by taking θ_0 to be the Kullback-Leibler minimizer, i.e.,

$$\theta_0$$
 s.t. $H(\theta) = \int f(y) \log \left(\frac{f(y)}{p(y|\theta)} \right) dy$ is minimized

• Can extend to more general parameter spaces

Asymptotic Normality (1-dimension parameter space)

Theorem (BDA, page 486)

Under some regularity conditions (notably that θ_0 not be on the boundary of Θ), as $n \to \infty$, the posterior distribution of θ approaches normality with mean θ_0 and variance $(nJ(\theta_0))^{-1}$, where θ_0 is the true value or the value that minimizes the Kullback-Leibler information and $J(\cdot)$ is the Fisher information.

Asymptotic Normality

- Problems that affect Bayesian and classical arguments
 - If "true" θ_0 is on the boundary of the parameter space, then no asymptotic normality
 - Sometimes the likelihood is unbounded e.g.

$$f(y|\lambda, \mu_1, \sigma_1, \mu_2, \sigma_2) = \lambda f_1(y|\theta) + (1-\lambda)f_2(y|\theta)$$

where

$$f_i(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{1}{2}\left(\frac{Y-\mu_i}{\sigma_i}\right)^2} \quad i = 1, 2$$

If we take $\mu_1 = y_1$ and $\sigma_1 \to 0$, then $f(\theta|y)$ is unbounded

Asymptotic Normality

- Problems that only affect Bayesians
 - improper posterior distns (already discussed)
 - prior district that excludes "true" θ_0
 - problems where the number of parameters increase with the sample size, e.g.,

$$Y_i | \theta_i \sim N(\theta_i, 1)$$

$$\theta_i | \mu, \tau^2 \sim N(\mu, \tau^2)$$

$$i = 1, \dots, n$$

then asymptotic results hold for μ, τ^2 but not θ_i

Asymptotic Normality

- Problems that only affect Bayesians (cont'd)
 - parameters not identified.e.g.

$$\left(\begin{array}{c} U \\ V \end{array}\right) \sim N \left[\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right) , \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right) \right]$$

if you observe only U or V for each pair, there is no information about ρ .

 tails of the distribution may not be normal, e.g., our logistic regression example