Prerequisites

- Probability (distns, transformations)
- Statistical Inference (standard procedures)
- Ideally two semesters at graduate level

Broad Outline

- Univariate/multivariate models
- Hierarchical models and model checking
- Computation
- Other models (glm’s, missing data, etc.)

Computing

- R - mostly covered in class
- BUGS - if used, we will cover in class
- Other - at your own risk
Stat 225

History

• Bayes & Laplace (late 1700s) - inverse probability
 – probability - statements about observables given assumptions about unknown parameters
 – inverse probability - statements about unknown parameters given observed data values

• Ex: given y successes in n iid trials with probability of success θ, find $\Pr(a < \theta < b)$

• Little after that except for isolated individuals (e.g., Jeffreys)

• Interest resumes in mid 1900s (the term Bayesian statistics is born)

• Computational advances in late 20th century have led to increase in interest
Stat 225
Bayes/Frequentist Controversy

• Bayes
 – parameters as random variables
 – subjective probability (for some people)

• Frequentist
 – parameters as fixed but unknown quantities
 – probability as long-run frequency

• Some controversy in the past (and present)

• Message in this course is NOT adversarial
Some Things Not Discussed (Much)

- The following terms are sometimes associated with Bayesian statistics. They will be discussed briefly but will not receive much attention here:
 - decision theory
 - nonparametric Bayesian methods
 - subjective probability
 - objective Bayesian methods
 - maximum entropy
Motivating Example: Cancer Maps

• Kidney cancer mortality rates
 (Manton et al. - JASA, 1989)
 – Analyses of age-standardized death rates for cancer of kidney/ureter by U.S. county
 – Two maps of estimated rates
 * Direct calculation: use observed rates in county/age-group cells to form estimates
 * Empirical Bayes: modeling to stabilize estimated rates
Motivating Example: SAT coaching

- SAT coaching study
 - Randomized experiments in 8 schools
 - Separate analyses
 - Outcome is SAT-Verbal score
 - Effect of treatment (coaching) estimated using analysis of covariance

<table>
<thead>
<tr>
<th>School</th>
<th>Treatment effect</th>
<th>Standard error of effect estimate</th>
<th>Treatment effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>15</td>
<td>?</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>10</td>
<td>?</td>
</tr>
<tr>
<td>C</td>
<td>-3</td>
<td>16</td>
<td>?</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>11</td>
<td>?</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>9</td>
<td>?</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>11</td>
<td>?</td>
</tr>
<tr>
<td>G</td>
<td>18</td>
<td>10</td>
<td>?</td>
</tr>
<tr>
<td>H</td>
<td>12</td>
<td>18</td>
<td>?</td>
</tr>
</tbody>
</table>
Stat 225
Bayesian inference: Two key ideas

• Explicit use of probability for quantifying uncertainty
 – probability models for data given parameters
 – probability distributions for parameters

• Inference for unknowns conditional on observed data
 – inverse probability
 – Bayes’ theorem (hence the modern name)
 – formal decision-making
Introduction to Bayesian Methods
Notation/Terminology

• θ = unobservable quantities (parameters)

• y = observed data (outcomes, responses, random variable)

• x = explanatory variables (covariates, often treated as fixed)

• Don’t usually distinguish between upper and lower case roman letters since everything is a random variable

• \tilde{y} = unknown but potentially observable quantities (predictions, response to a different treatment)

• NOTE: don’t usually distinguish between univariate, multivariate quantities
• \(p(\cdot) \) or \(p(\cdot|\cdot) \) denote distributions (generic)

• It would take too many letters if each distn received its own letter

• We write \(Y|\mu, \sigma^2 \sim N(\mu, \sigma^2) \) to denote that \(Y \) has a normal density

• We write \(p(y|\mu, \sigma^2) = N(y|\mu, \sigma^2) \) to refer to the normal density with argument \(y \)

• Same for other distributions: \(\text{Beta}(a, b), \text{Unif}(a, b), \text{Exp}(\theta), \text{Pois}(\lambda), \) etc.
Introduction to Bayesian Methods

The Bayesian approach

• Focus here is on three step process
 – specify a full probability model
 – posterior inference via Bayes’ rule
 – model checking/sensitivity analysis

• Usually an iterative process - specify model, fit and check, then respecify model
Introduction to Bayesian Methods

Specifying a full probability model

- Data distribution $p(y|\theta) = p(\text{data} \mid \text{parameters})$
 - also known as sampling distribution
 - $p(y|\theta)$ when viewed as a function of θ is also known as the likelihood function $L(\theta|y)$

- Prior distribution $p(\theta)$
 - may contain subjective prior information
 - often chosen vague/uninformative
 - mathematical convenience

- Marginal model
 - above can be combined to determine implied marginal model for y $p(y) = \int p(y|\theta)p(\theta)d\theta$
 - useful for model checking
 - Bayesian way of thinking leads to new distns that can be useful even for frequentists
Introduction to Bayesian Methods

Posterior inference/Model checking

- Posterior inference
 - Bayes’ thm to derive posterior distribution
 \[
 p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)} = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}
 \]
 - probability statements about unknowns
 - formal decision-making is based on posterior distn
 - sometimes write \(p(\theta|y) \propto p(\theta)p(y|\theta) \) because the denominator is a constant in terms of \(\theta \)

- Model checking/sensitivity analysis
 - does the model fit
 - are conclusions sensitive to choice of prior distn/likelihood
Introduction to Bayesian Methods
Likelihood, Odds, Posteriors

• Recall that \(p(\theta | y) \propto p(\theta)p(y|\theta) \)
 – posterior \(\propto \) prior \(\times \) likelihood
 – consider two possible values of \(\theta \), say \(\theta_1 \) and \(\theta_2 \)

\[
\frac{p(\theta_1 | y)}{p(\theta_2 | y)} = \frac{p(\theta_1)}{p(\theta_2)} \times \frac{p(y|\theta_1)}{p(y|\theta_2)}
\]

– posterior odds = prior odds \(\times \) likelihood ratio
– note likelihood ratio is still important
Introduction to Bayesian Methods

Likelihood principle

- Likelihood principle - if two likelihood functions agree, then the same inferences about θ should be drawn
- Traditional frequentist methods violate this
- Example: given a sequence of coin tosses with constant probability of success θ we wish to test $H_0 : \theta = 0.5$
 - observe 9 heads, 3 tails in 12 coin tosses
 - if binomial sampling ($n = 12$ fixed), then
 \[L(\theta|y) = p(y|\theta) = \binom{12}{9} \theta^9 (1 - \theta)^3 \]
 and p-value is .073
 - if negative binomial sampling (sample until 3 tails), then
 \[L(\theta|y) = p(y|\theta) = \binom{11}{9} \theta^9 (1 - \theta)^3 \]
 and p-value is .033
 - but data (and likelihood function) is the same ... 9 successes, 3 failures ... and should carry the same information about θ
Introduction to Bayesian Methods

Independence

• A common statement in statistics:
 assume Y_1, \ldots, Y_n are iid r.v.’s

• In Bayesian class, we need to think hard about independence

• Why?
 – Consider two ”indep” Bernoulli trials with probability of success θ
 – It is true that
 \[
 p(y_1, y_2|\theta) = \theta^{y_1+y_2}(1-\theta)^{2-y_1-y_2} = p(y_1|\theta)p(y_2|\theta)
 \]
 so that y_1 and y_2 are independent given θ
 – But ... $p(y_1, y_2) = \int p(y_1, y_2|\theta)p(\theta)d\theta$ may not factor
 – If $p(\theta) = \text{Unif}(\theta|0, 1) = 1$ for $0 < \theta < 1$, then
 \[
 p(y_1, y_2) = \Gamma(y_1 + y_2 + 1)\Gamma(3 - y_1 - y_2)/\Gamma(4)
 \]
 so y_1 and y_2 are not independent in their marginal distribution
Introduction to Bayesian Methods

Exchangeability

• If independence is no longer the key, then what is?

• Exchangeability
 – Informal defn: subscripts don’t matter
 – Formally: given events A_1, \ldots, A_n, we say they are exchangeable if

 \[P(A_1 A_2 \ldots A_k) = P(A_{i_1} A_{i_2} \ldots A_{i_k}) \]

 for every k where i_1, i_2, \ldots, i_n are a permutation of the indices

 – Similarly, given random variable Y_1, \ldots, Y_n, we say they are exchangeable if

 \[P(Y_1 \leq y_1, \ldots, Y_k \leq y_k) = P(Y_{i_1} \leq y_1, \ldots, Y_{i_k} \leq y_k) \]

 for every k
Introduction to Bayesian Methods
Exchangeability and independence

• Relationship between exchangeability and independence
 – r.v.’s that are iid given θ are exchangeable
 – an infinite sequence of exchangeable r.v.’s can always be thought of as iid given some parameter (Definetti)
 – note previous point requires an infinite sequence

• What is not exchangeable?
 – time series, spatial data
 – may become exchangeable if we explicitly include time in the analysis
 – i.e., $y_1, y_2, \ldots, y_t, \ldots$ are not exchangeable but $(t_1, y_1), (t_2, y_2), \ldots$ may be
Introduction to Bayesian Methods
A simple example

- Hemophilia - blood clotting disease
 - sex-linked genetic disease on X chromosome
 - males (XY) - affected or not
 - females (XX) - may have 0 copies of disease gene (not affected), 1 copy (carrier), 2 copies (usually fatal)

- Consider a woman – brother is a hemophiliac, father is not
 - we ignore the possibility of a mutation introducing the disease
 - woman’s mother must be a carrier
 - woman inherits one X from mother
 -- \rightarrow 50/50 chance of being a carrier

- Let $\theta = 1$ if woman is carrier, 0 if not
 - a priori we have $\Pr(\theta = 1) = \Pr(\theta = 0) = 0.5$

- Let $y_i =$ status of woman’s ith male child
 (1 if affected, 0 if not)
Introduction to Bayesian Methods

A simple example (cont’d)

• Given two unaffected sons (not twins), what inference can be drawn about θ?

• Assume two sons are iid given θ

• $\Pr(y_1 = y_2 = 0|\theta = 1) = 0.5 \times 0.5 = 0.25$
 $\Pr(y_1 = y_2 = 0|\theta = 0) = 1 \times 1 = 1.00$

• Posterior distn by Bayes’ theorem

$$
\Pr(\theta = 1|y) = \frac{\Pr(y|\theta = 1) \Pr(\theta = 1)}{\Pr(y)}
$$

$$
= \frac{\Pr(y|\theta = 1) \Pr(\theta = 1)}{\Pr(y|\theta = 1) \Pr(\theta = 1) + \Pr(y|\theta = 0) \Pr(\theta = 0)}
$$

$$
= \frac{0.25 \times 0.5}{0.25 \times 0.5 + 1 \times 0.5} = 0.2
$$
Introduction to Bayesian Methods

A simple example (cont’d)

• Odds version of Bayes’ rule
 – prior odds $\Pr(\theta = 1)/\Pr(\theta = 0) = 1$
 – likelihood ratio $\Pr(y|\theta = 1)/\Pr(y|\theta = 0) = 1/4$
 – posterior odds = $1/4$
 (posterior prob = $0.25/(1 + 0.25) = 0.20$)

• Updating for new information
 – suppose that a 3rd son is born (unaffected)
 – note: if we observe an affected child, then we know $\theta = 1$ since that outcome is assumed impossible when $\theta = 0$
 – two approaches to updating analysis
 * redo entire analysis (y_1, y_2, y_3 as data)
 * update using only new data (y_3)
Introduction to Bayesian Methods
A simple example (cont’d)

• Updating for new information - redo analysis
 – as before but now $y = (0, 0, 0)$
 – $Pr(y|\theta = 1) = .5 \times .5 \times .5 = .125$,
 $Pr(y|\theta = 0) = 1$
 – $Pr(\theta = 1|y) = .125 \times .5 / (.125 \times .5 + 1 \times .5) = .111$

• Updating for new information - updating
 – take previous posterior distn as new prior distn
 ($Pr(\theta = 1) = .2$ and $Pr(\theta = 0) = .8$)
 – take data as consisting only of y_3
 – $Pr(\theta = 1|y_3) = .5 \times .2 / (.5 \times .2 + 1 \times .8) = .111$
 – same answer!
Introduction to Bayesian Methods
Probability review

• Probability (mathematical definition):
 A set function that is
 – nonnegative
 – additive over disjoint sets
 – sums to one over entire sample space

• For Bayesian methods probability is a fundamental measure of uncertainty
 – \(\Pr(1 < \bar{y} < 3|\theta = 0) \) or \(\Pr(1 < \bar{y} < 3) \) is interesting before data has been collected
 – \(\Pr(1 < \theta < 3|y) \) is interesting after data has been collected

• Where do probabilities come from?
 – frequency argument (e.g., 10,000 coin tosses)
 – physical argument (e.g., symmetry in coin toss)
 – subjective (e.g., if would be willing to bet on NY Giants given 1:1 odds, then must believe the probability Giants win is greater than .5)
Introduction to Bayesian Methods
Probability review

• Some terms/defns you should know
 – joint distn \(p(u, v) \)
 – marginal distn \(p(u) = \int p(u, v)dv \)
 – conditional distn \(p(u|v) = p(u, v)/p(v) \)
 – moments:
 \[
 E(u) = \int up(u)du = \int \int up(u, v)dvdv
 \]
 \[
 \text{Var}(u) = \int (u - E(u))^2p(u)du
 \]
 \[
 E(u|v) = \int up(u|v)du \text{ (a fn of } v)
 \]
 – conditional distns play a large role in Bayesian inference so the following rules are useful
 * \(E(u) = E(E(u|v)) \)
 * \(\text{Var}(u) = E(\text{Var}(u|v)) + \text{Var}(E(u|v)) \)
 – transformations (one-to-one)
 * denote distn of \(u \) by \(p_u(u) \)
 * take \(v = f(u) \)
 * distribution of \(v \) is
 \[
 p_v(v) = p_u(f^{-1}(v)) \text{ in discrete case}
 \]
 \[
 p_v(v) = p_u(f^{-1}(v))|J| \text{ in continuous case}
 \]
 where Jacobian \(J \) is
 \[
 \left| \frac{\partial u_i}{\partial v_j} \right| = \left| \frac{\partial f^{-1}(v)}{\partial v_j} \right|
 \]
Introduction to Bayesian Methods
Probability review - intro to simulation

- Simulation plays a big role in modern Bayesian inference and one particular transformation is important in this context

- Probability integral transform
 - suppose X is a continuous r.v. with cdf $F_X(x)$
 - then $Y = F_X(X)$ has uniform distn on 0 to 1

- Application in simulations
 - if U is uniform on $(0, 1)$ and $F(\cdot)$ is cdf of a continuous r.v.
 - then $Z = F^{-1}(U)$ is a r.v. with cdf F
 - example:
 * let $F(x) = 1 - e^{-x/\lambda} = \text{exponential cdf}$
 * then $F^{-1}(u) = -\lambda \log(1 - u)$
 * if we have a source of uniform random numbers then we can easily transform to construct samples from an exponential distn
Single Parameter Models

Introduction

- We introduce important concepts/computations in the one-parameter case

- There is little advantage to the Bayesian approach in these cases

- The benefits of the Bayesian approach are in hierarchical (often random effects) models

- Main approach is to teach via example

- First example is binomial data (Bernoulli trials)
 - easy
 - historical interest (Bayes, Laplace)
 - representative of a large class of distns (exponential families)
Single Parameter Models

Binomial Model

• Consider \(n \) exchangeable trials

• Data can be summarized by total \# of successes

• Natural model: define \(\theta \) as probability of success and take \(Y \sim \text{Bin}(n, \theta) \)

\[
p(y|\theta) = \text{Bin}(y|n, \theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}
\]

• Question - do we have to be explicit about conditioning on \(n \)? (usually are not)

• Prior distn: \(p(\theta) = \text{Unif}(\theta|0,1) \)

• Posterior distn:

\[
p(\theta|y) = \binom{n}{y} \theta^y (1 - \theta)^{n-y} / \int \binom{n}{y} \theta^y (1 - \theta)^{n-y} d\theta
\]

\[
= (n + 1) \binom{n}{y} \theta^y (1 - \theta)^{n-y} = \frac{(n+1)!}{y!(n-y)!} \theta^y (1 - \theta)^{n-y}
\]

\[
= \frac{\Gamma(n+2)}{\Gamma(y+1)\Gamma(n-y+1)} \theta^{y+1-1} (1 - \theta)^{n-y+1-1} = \text{Beta}(y+1, n-y+1)
\]

• Note: could have noticed \(p(\theta|y) \propto \theta^y (1 - \theta)^{n-y} \) and inferred it is a \(\text{Beta}(y+1, n-y+1) \) distn (formal calculation confirms this)
Single Parameter Models
Binomial Model

• Inference
 – draw inferences from posterior distn
 – point estimation
 * posterior mean = \(\frac{y + 1}{n + 2} \)
 (compromise between sample proportion \(\frac{y}{n} \) and prior mean \(\frac{1}{2} \))
 * posterior mode = \(\frac{y}{n} \)
 * best point estimate depends on loss function
 * posterior variance = \(\left(\frac{y+1}{n+2} \right) \left(\frac{n-y+1}{n+2} \right) \left(\frac{1}{n+3} \right) \)
 – interval estimation
 * 95% central posterior interval - find a,b s.t.
 \[
 \int_{0}^{a} \text{Beta}(\theta|y + 1, n - y + 1)d\theta = .025 \quad \text{and} \quad \int_{b}^{0} \text{Beta}(\theta|y + 1, n - y + 1)d\theta = .975
 \]
 * alternative is highest posterior density region
 * note this interval has the interpretation we want to give to traditional CIs
 – hypothesis test – don’t say anything now
Single Parameter Models

Binomial Model

• Inference by simulation
 – all of the inferences mentioned (point estimation, interval estimation) can be done via simulation
 – simulate 1000 draws from the posterior distribution
 * available in standard packages
 * MCMC for harder problems later
 – point estimates easy to compute
 (now include Monte Carlo error)
 – interval estimates easy – find percentiles of the simulated values
Single Parameter Models

Prior distributions

• Where do prior distributions come from?
 – a priori knowledge about θ ("deep thoughts")
 – population interpretation (a population of possible θ values)
 – mathematical convenience

• Frequently rely on asymptotic results (to come) which guarantee that likelihood will dominate the prior distn in large samples
Single Parameter Models
Conjugate prior distributions

- Consider Beta(α, β) prior distn for binomial model
 - think of α, β as fixed now (but these could also be random and given their own prior distn)
 - \(p(\theta|y) \propto \theta^{y+\alpha-1}(1 - \theta)^{n-y+\beta-1} \)
 - recognize as kernel of Beta(\(y + \alpha\), \(n - y + \beta\))
 - example of conjugate distn - posterior distn is in the same parametric family as the prior distn
 - convenient mathematically
 - convenient interpretation - prior in this case is like observing \(\alpha\) successes in \(\alpha + \beta\) “prior” trials
Single Parameter Models
Conjugate prior distributions - general

• Definition:
 Let F be a class of sampling distn ($p(y|\theta)$).
 Let P be a class of prior distns ($p(\theta)$).
 P is conjugate for F if $p(\theta) \in P$ and $p(y|\theta) \in F$
 implies that $p(\theta|y) \in P$

• Not a great definition ... trivially satisfied by
 $P = \{ \text{all distns} \}$ but this is not an interesting case

• Exponential families (most common distns):
 the only distns that are finitely parametrizable
 and have conjugate prior families
 – density of exponential families is
 \[
 p(y|\theta) = f(y)g(\theta)e^{\phi(\theta)^t u(y)}
 \]
 with $\phi(\theta)$ denoting the natural parameter
 – $p(\theta) \propto g(\theta)^{\eta}e^{\phi(\theta)^t \nu}$ will be conjugate family
 – binomial: $\phi(\theta) = \log(\theta/(1-\theta))$ and $g(\theta) = 1-\theta$
 conjugate prior distn is $\theta^\nu(1-\theta)^{\eta-\nu}$
Single Parameter Models
Conjugate prior distributions - general

- Advantages
 - mathematically convenient
 - easy to interpret
 - can provide good approx to many prior opinions
 (especially if we allow mixtures of distns from the conjugate family)

- Disadvantages
 - may not be realistic
Single Parameter Models
Nonconjugate prior distributions

• No real difference conceptually in how analysis proceeds
• Harder computationally
• Grid-based simulation
 – specify prior distn on a grid $\Pr(\theta = \theta_i) = \pi_i$
 – compute likelihood on same grid $l_i = p(y|\theta_i)$
 – posterior distn lives on the grid with
 $\Pr(\theta = \theta_i|y) = \pi_i^* = \pi_i l_i / (\sum_j \pi_j l_j)$
 – can sample from this posterior distn easily in Splus
 – can do better with a trapezoidal approx to the prior distn

• There are serious problems with grid-based simulation
• We will see better computational approaches
Single Parameter Models
Noninformative prior distributions

• Often there is a desire to have the prior distn play a minimal role the posterior distn (why?)

• Example: consider \(y_1, \ldots, y_n | \theta \sim \text{iid} N(\theta, \sigma^2) \) and \(p(\theta | \mu, \tau^2) = N(\theta | \mu, \tau^2) \) where \(\sigma^2, \mu, \tau^2 \) are known
 – a conjugate family
 – \(p(\theta | y) = N(\theta | \hat{\mu}, V) \) with
 \[
 \hat{\mu} = \frac{n \bar{y} + \frac{1}{\tau^2} \mu}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}} \quad \text{and} \quad V = \frac{1}{\frac{n}{\sigma^2} + \frac{1}{\tau^2}}
 \]
 – note: if \(n \to \infty \) then posterior distn resembles \(p(\theta | y) = N(\theta | \bar{y}, \sigma^2/n) \); like classical sampling distn result (data dominates prior distn)
 – if \(\tau^2 \to \infty \), then \(p(\theta | y) \approx N(\theta | \bar{y}, \sigma^2/n) \)
 (this yields the same estimates and intervals as classical methods; can be thought of as non-informative)
 – same result would be obtained by taking \(p(\theta) \propto 1 \) BUT that is not a proper prior distn
 – we can use improper prior distn but must check that the posterior distn is a proper distn
Single Parameter Models
Noninformative prior distributions

- How do we find noninformative prior distributions?

- Flat or uniform distributions
 - did the job in the binomial and normal cases
 - makes each value of θ equally likely
 - but on what scale (should every value of $\log \theta$ be equally likely or every value of θ)

- Jeffrey’s prior
 - invariance principle – a rule for creating noninformative prior distns should be invariant to transformation
 - if p_θ is prior distn for θ and we consider $\phi = h(\theta)$, so that $p_\phi(\phi) = p_\theta(h^{-1}(\phi)) |d\theta/d\phi|$
 - Jeffrey’s suggestion $p(\theta) \propto I(\theta)^{1/2}$ where $I(\theta)$ is the Fisher information
 - gives flat prior for θ in normal case
 - does this work for multiparameter problems?
Single Parameter Models
Noninformative prior distributions

• How do we find noninformative prior distributions? (cont’d)

• Pivotal quantities
 – location family has $p(y - \theta|\theta) = f(y - \theta)$ so should expect $p(y - \theta|y) = f(y - \theta)$ as well
 this suggests $p(\theta) \propto 1$
 – similarly for scale family we find $p(\theta) \propto 1/\theta$ (where θ
 is a scale parameter like normal s.d.)

• Vague, diffuse distributions
 – use conjugate or other prior distn with large variance
Single Parameter Models

Noninformative prior distributions - example

- Binomial case
 - Uniform on θ is Beta(1, 1)
 - Jeffreys’ prior distn is Beta($1/2$, $1/2$)
 - Uniform on natural parameter $\log(\theta/(1 - \theta))$ is Beta(0, 0) (an improper prior distn)

- Summary on noninformative distn
 - very difficult to make this idea rigorous since it requires a definition of “information”
 - informally — this is a useful but dangerous idea
 - useful as a first approximation or first attempt
 - dangerous if applied automatically without thought
 - improper distributions can cause serious problems (improper posterior distns) that are hard to detect
 - some prefer vague or diffuse proper distributions as a way of expressing ignorance
Multiparameter Models

Introduction

• Now write $\theta = (\theta_1, \theta_2)$
 (at least two parameters)

• θ_1 and θ_2 may be vectors as well

• Key point here is how Bayesian approach handles “nuisance” parameters

• Posterior distn $p(\theta_1, \theta_2|y) \propto p(y|\theta_1, \theta_2)p(\theta_1, \theta_2)$

• Suppose θ_1 is of primary interest, i.e., want $p(\theta_1|y)$
 - $p(\theta_1|y) = \int p(\theta_1, \theta_2|y)d\theta_2$ analytically
 or by numerical integration
 - $p(\theta_1|y) = \int p(\theta_1|\theta_2, y)p(\theta_2|y)d\theta_2$
 (often a convenient way to calculate)
 - $p(\theta_1|y) = \int p(\theta_1, \theta_2|y)d\theta_2$ by simulation
 (generate simulations of both and toss out the θ_2’s)

• Note: Bayesian results still usually match those of traditional methods. We don’t see differences until hierarchical models
Multiparameters Models

Normal example

- \(y_1, y_2, \ldots, y_n | \mu, \sigma^2 \) are iid \(N(\mu, \sigma^2) \)

- Prior distn: \(p(\mu, \sigma^2) \propto 1/\sigma^2 \)
 - indep non-informative prior distns for \(\mu \) and \(\sigma^2 \)
 - equivalent to \(p(\mu, \log \sigma) \propto 1 \)
 - not a proper distn

- Posterior distn:

\[
p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2} \right)^{\frac{n}{2}+1} \exp\left[- \frac{1}{2\sigma^2} \sum_i (y_i - \mu)^2 \right]

\propto \left(\frac{1}{\sigma^2} \right)^{\frac{n}{2}+1} \exp\left[- \frac{1}{2\sigma^2} \left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2 \right) \right]
\]

- note that \(\mu, \sigma^2 \) are not indep in their posterior distn
- posterior distn depends on data only through the sufficient statistics
Multiparameters Models
Normal example (cont’d)

• Further examination of joint posterior distribution

\[
p(\mu, \sigma^2|y) \propto \left(\frac{1}{\sigma^2}\right)^{\frac{n}{2}+1} \exp \left[-\frac{1}{2\sigma^2} \left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2 \right) \right]
\]

− conditional posterior distn \(p(\mu|\sigma^2, y)\)
 * examine joint posterior distn but now think of \(\sigma^2\) as known
 * focus only on \(\mu\) terms
 * \(p(\mu|\sigma^2, y) \propto \exp[-\frac{1}{2\sigma^2} n(\bar{y} - \mu)^2]\)
 * just like known variance case
 * recognize \(\mu|\sigma^2, y \sim N(\bar{y}, \sigma^2/n)\)

− marginal posterior distn of \(\sigma^2\), i.e., \(p(\sigma^2|y)\)
 * \(p(\sigma^2|y) = \int p(\mu, \sigma^2|y)d\mu\)
 * alternative: note \(p(\sigma^2|y) = p(\mu, \sigma^2|y)/p(\mu|\sigma^2, y)\)
 (LHS doesn’t have \(\mu\), RHS does must be true for any \(\mu\))
 * \(p(\sigma^2|y) \propto (\sigma^2)^{-(n+1)/2} \exp[-\frac{1}{2\sigma^2} \sum_i (y_i - \bar{y})^2]\)
 * known as scaled-inverse-\(\chi^2(n - 1, s^2)\) distn with
 \(s^2 = \sum_i (y_i - \bar{y})^2/(n - 1)\)
Multiparameters Models

Normal example (cont’d)

- Further examination of joint posterior distribution

\[
p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2} \right)^{\frac{n}{2}+1} \exp \left[-\frac{1}{2\sigma^2} \left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2 \right) \right]
\]

- so far, \(p(\mu, \sigma^2 | y) = p(\sigma^2 | y)p(\mu | \sigma^2, y) \)
- this factorization can be used to simulate from joint posterior distn
 * generate \(\sigma^2 \) from \(\text{Inv-}\chi^2(n - 1, s^2) \) distn
 * then generate \(\mu \) from \(N(\bar{y}, \sigma^2 / n) \) distn
- often most interested in \(p(\mu | y) \)
 * \(p(\mu | y) = \int_0^\infty p(\mu, \sigma^2 | y) d\sigma^2 \propto \left[1 + \frac{n(\mu - \bar{y})}{(n-1)s^2} \right]^{-n/2} \)
 * \(\mu | y \sim t_{n-1}(\bar{y}, s^2 / n) \) (a t-distn)
 * recall traditional result \(\frac{\bar{y} - \mu}{s/\sqrt{n}} | \mu, \sigma^2 \sim t_{n-1} \)
 (note result doesn’t depend at all on \(\sigma^2 \))
Multiparameters Models
Normal example (cont’d)

• Further examination of joint posterior distribution

\[p(\mu, \sigma^2 | y) \propto \left(\frac{1}{\sigma^2} \right)^{\frac{n}{2} + 1} \exp \left[-\frac{1}{2\sigma^2} \left(\sum_i (y_i - \bar{y})^2 + n(\bar{y} - \mu)^2 \right) \right] \]

– consider \(\tilde{y} \) a future draw from the same population
– what is the predictive distn of \(\tilde{y} \), i.e., \(p(\tilde{y} | y) \)
– \(p(\tilde{y} | y) = \int \int p(\tilde{y} | \mu, \sigma^2, y)p(\mu, \sigma^2 | y)d\mu d\sigma^2 \)
– note first term in integral doesn’t depend on \(y \)
 given params we know distn of \(\tilde{y} \) is \(N(\mu, \sigma^2) \)
– predictive distn by simulation
 (simulate \(\sigma^2 \sim \text{Inv-\(\chi^2\)}(n - 1, s^2) \),
then \(\mu \sim N(\bar{y}, \sigma^2/n) \), then \(\tilde{y} \sim N(\mu, \sigma^2) \))
– predictive distn analytically (can proceed as for \(\mu \) by first conditioning on \(\sigma^2 \))
 \(\tilde{y} | y \sim t_{n-1}(\bar{y}, (1 + \frac{1}{n})s^2) \)
Multiparameters Models
Normal example - other prior distns (cont’d)

- Semi-conjugate analysis
 - for conjugate distn, the prior distn for μ
depends on scale parameter σ (unknown)
 - may want to allow info about μ that does not
depend on σ
 - consider independent prior distributions
 $\sigma^2 \sim \text{Inv-}\chi^2(\nu_o, \sigma^2_o)$ and $\mu \sim N(\mu_o, \tau^2_o)$
 - may call this semi-conjugate
 - note that given σ^2, analysis for μ is conjugate
 normal-normal case so that $\mu|\sigma^2, y \sim N(\mu_n, \tau^2_n)$ with
 \[
 \mu_n = \frac{1}{\frac{1}{\tau^2_o} + \frac{n}{\sigma^2}} \mu_o + \frac{n}{\sigma^2} \bar{y} \quad \text{and} \quad \tau^2_n = \frac{1}{\frac{1}{\tau^2_o} + \frac{n}{\sigma^2}}
 \]
Multiparameters Models
Normal example - other prior distns (cont’d)

• Semi-conjugate analysis (cont’d)
 – \(p(\sigma^2|y) \) is not recognizable distn
 * calculate as
 \[
p(\sigma^2|y) = \int \prod_{i=1}^{n} \mathcal{N}(y_i|\mu, \sigma^2)\mathcal{N}(\mu|\mu_0, \tau_0^2)\text{Inv} - \chi^2(\sigma^2|\nu_0, \sigma_0^2)d\mu
\]
 * or calc \(p(\sigma^2|y) = p(\mu, \sigma^2|y)/p(\mu|\sigma^2, y) \)
 \(\text{(RHS evaluated at convenient choice of } \mu) \)
 * use a 1-dimensional grid approximation or some other simulation technique

• Multivariate normal case
 – no details here (see book)
 – discussion is almost identical to that for univariate normal distn with Inv-Wishart distn in place of the Inv-\(\chi^2 \)
Multiparameters Models
Multinomial data

• Data distribution

\[p(y|\theta) = \prod_{j=1}^{k} \theta_{y_j}^{y_j} \]

where \(\theta \) = vector of probabilities with \(\sum_{j=1}^{k} \theta_j = 1 \) and \(y \) = vector of counts with \(\sum_{j=1}^{k} y_j = n \)

• Conjugate prior distn is the Dirichlet(\(\alpha \)) distn
 (multivariate generalization of the beta distn)

\[p(\theta) = \prod_{j=1}^{k} \theta_j^{\alpha_j-1} \]

for vectors \(\theta \) such that \(\sum_{j=1}^{k} \theta_j = 1 \) and \(\alpha > 0 \)

- \(\alpha = 1 \) yields uniform prior distn on \(\theta \) vectors such that \(\sum_j \theta_j = 1 \)
 (noninformative? ... favors uniform distn)

- \(\alpha = 0 \) uniform on log \(\theta \)
 (noninformative but improper)

• Posterior distn is Dirchlet(\(\alpha + y \))
Multiparameters Models

A non-standard example: logistic regression

• A toxicology study (Racine et al, 1986, Applied Statistics)

• \(x_i = \log(\text{dose}), i = 1, \ldots, k \) (\(k \) dose levels)

• \(n_i = \text{animals given } i\text{th dose level} \)

• \(y_i = \text{number of deaths} \)

• Goals:
 – traditional inference for parameters \(\alpha, \beta \)
 – special interest in inference for LD50 (dose at which expect 50% would die)
Multiparameters Models
Logistic regression (cont’d)

• Data model specification
 – within group (dose): exchangeable animals
 so model \(y_i|\theta_i \sim \text{Bin}(n_i, \theta_i) \)
 – between groups: non-exchangeable (higher dose means more deaths); many possible models
 including
 \[
 \text{logit}(\theta_i) = \log \left(\frac{\theta_i}{1 - \theta_i} \right) = \alpha + \beta x_i
 \]
 – resulting data model
 \[
 p(y|\alpha, \beta) = \prod_{i=1}^{k} \left(\frac{e^{\alpha+\beta x_i}}{1 + e^{\alpha+\beta x_i}} \right)^{y_i} \left(\frac{1}{1 + e^{\alpha+\beta x_i}} \right)^{n_i-y_i}
 \]

• Prior distn
 – noninformative: \(p(\alpha, \beta) \propto 1 \) ... is posterior distn proper?
 – answer is yes but it is not-trivial to show
 – should we restrict \(\beta > 0 \)??
Multiparameters Models
Logistic regression example (cont’d)

• Posterior distn: \(p(\alpha, \beta|y) \propto p(y|\alpha, \beta)p(\alpha, \beta) \)

\[
p(\alpha, \beta|y) = \prod_{i=1}^{k} \left(\frac{e^{\alpha + \beta x_i}}{1 + e^{\alpha + \beta x_i}} \right)^{y_i} \left(\frac{1}{1 + e^{\alpha + \beta x_i}} \right)^{n_i - y_i}
\]

• Grid approximation
 – obtain crude estimates of \(\alpha, \beta \)
 (perhaps by standard logistic regression)
 – define grid centered on crude estimates
 – evaluate posterior density on 2-dimensional grid
 – sample from discrete approximation
 – refine grid and repeat if necessary

• Grid approximations are risky (may miss important parts of distn)

• More sophisticated approaches will be developed later (MCMC)
Multiparameters Models
Logistic regression example (cont’d)

- Inference for LD50
 - want x_i such that $\theta_i = 0.5$
 - turns out $x_i = -\alpha/\beta$
 - with simulation it is trivial to get posterior distn of $-\alpha/\beta$
 - note that using MLEs it would be easy to get estimate but hard to get standard error
 - doesn’t make sense to talk about LD50 if $\beta < 0$ could do inference in two steps
 * $\Pr(\beta > 0)$
 * distn of LD50 given $\beta > 0$

- Real-data example (handout)
Large Sample Inference

Asymptotics in Bayesian Inference

- “Optional” because Bayesian methods provide proper finite sample inference, i.e. we have a posterior distribution for θ that is valid regardless of sample size everything.

- Large sample results are still interesting – Why?
 - theoretical results (the likelihood dominates the prior so that frequentist asymptotic results apply to Bayesian methods also)
 - having normal approx allows us to know if we have a programming problem when simulating from actual posterior distn
 - approximation to the posterior distn
Large Sample Inference
Asymptotics in Bayesian Inference

• Large sample results are still interesting - Why?
 (continuation)
 – approximation to the posterior distn
 * normal approx is easy (need only posterior mean
 and s.d.).
 * normal approx often adequate if few
 dimensions (especially after transforming)
 – normal theory helps interprete posterior pdf’s: for
 d-dimension normal approx
 * $-2 \log(\text{density}) = (x - \mu)'\Sigma^{-1}(x - \mu)$ is
 approximately χ^2_d as $n \to \infty$
 * 95% posterior confidence region for μ
 contains all μ with
 posterior density $\geq \exp\{-0.5\chi^2_{d,0.95}\} \times \max p(\theta|y)$
Large Sample Inference
Consistency

- Let \(f(y) \) be true data generating distn
- Let \(p(y|\theta) \) be the model being fit
- Finite parameter space \(\Theta \).
 - true value generating the data is \(\theta_0 \in \Theta \) (i.e. \(f(y) = p(y|\theta_0) \))
 - assume \(p(\theta_0) > 0 \).

then

\[
p(\theta = \theta_0|y) \to 1 \text{ as } n \to \infty
\]

- Same result if \(p(y|\theta) \) is not the right family of distn by taking \(\theta_0 \) to be the Kullback-Leibler minimizer, i.e.,
 \[
 \theta_0 \text{ s.t. } H(\theta) = \int f(y) \log \left(\frac{f(y)}{p(y|\theta)} \right) dy \text{ is minimized}
 \]
- Can extend to more general parameter spaces
Large Sample Inference
Asymptotic Normality
(1-dimension parameter space)

Theorem (BDA, page 486)

Under some regularity conditions (notably that θ_0 not be on the boundary of Θ), as $n \to \infty$, the posterior distribution of θ approaches normality with mean θ_0 and variance $(nJ(\theta_0))^{-1}$, where θ_0 is the true value or the value that minimizes the Kullback-Leibler information and $J(\cdot)$ is the Fisher information.
Large Sample Inference
Asymptotic Normality

• Problems that affect Bayesian and classical arguments
 – If “true” θ_0 is on the boundary of the parameter space, then no asymptotic normality
 – Sometimes the likelihood is unbounded
 e.g.
 $$f(y|\lambda, \mu_1, \sigma_1, \mu_2, \sigma_2) = \lambda f_1(y|\theta) + (1 - \lambda) f_2(y|\theta)$$
 where
 $$f_i(y|\theta) = \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{1}{2} \left(\frac{y - \mu_i}{\sigma_i} \right)^2} \quad i = 1, 2$$
 If we take $\mu_1 = y_1$ and $\sigma_1 \to 0$, then $f(\theta|y)$ is unbounded
Large Sample Inference
Asymptotic Normality

• Problems that only affect Bayesians
 – improper posterior distns (already discussed)
 – prior distn that excludes “true” \(\theta_0 \)
 – problems where the number of parameters increase with the sample size, e.g.,

\[
Y_i | \theta_i \sim N(\theta_i, 1) \\
\theta_i | \mu, \tau^2 \sim N(\mu, \tau^2)
\]

\[
i = 1, \ldots, n
\]

then asymptotic results hold for \(\mu, \tau^2 \) but not \(\theta_i \)
Large Sample Inference
Asymptotic Normality

- Problems that only affect Bayesians (cont’d)
 - parameters not identified.
 e.g.
 \[
 \begin{pmatrix}
 U \\
 V
 \end{pmatrix}
 \sim N
 \left[\begin{pmatrix}
 \mu_1 \\
 \mu_2
 \end{pmatrix},
 \begin{pmatrix}
 1 & \rho \\
 \rho & 1
 \end{pmatrix}
 \right]
 \]
 if you observe only \(U \) or \(V \) for each pair, there is no information about \(\rho \).
 - tails of the distribution may not be normal, e.g., our logistic regression example