Hierarchical models – motivation
James-Stein inference

• Suppose $X \sim N(\theta, 1)$
 – X is admissible (not dominated) for estimating θ
 with squared error loss

• Now $X_i \sim N(\theta_i, 1), \ i = 1, \ldots, r$
 – $X = (X_1, \ldots, X_r)$ is admissible if $r = 1, 2$ but not $r \geq 3$
 – for $r \geq 3$
 \[
 \delta_i = (1 - \frac{r - 2}{\sum_i X^2_i})X_i
 \]
 yields better estimates
 – known as James-Stein estimation
Hierarchical models – motivation
James-Stein inference (cont’d)

- Bayes view: $X_i \sim N(\theta_i, 1)$ and $\theta_i \sim N(0, a)$
 - posterior distn: $\theta_i | X_i \sim N$
 - posterior mean is $(1 - \frac{1}{a+1})X_i$
 - need to estimate a; one natural approach yields James-Stein

- Summary
 - estimation results depend on loss function
 - squared-error loss do well on avg but maybe poor for one component
 - powerful lesson about combining related problems to get improved inferences
Hierarchical Models

Suppose we have data

\[Y_{ij} \quad j = 1, \ldots, J \]
\[i = 1, \ldots, n_j \]

such that \(Y_{ij} \quad i = 1, \ldots, n_j \) are independent given \(\theta_j \) with distribution \(p(Y|\theta_j) \). e.g. scores for students in classrooms It might be reasonable to expect \(\theta_j \)'s to be “similar” (but not necessarily identical). Therefore, we may perhaps try to estimate population distribution of \(\theta_j \)'s. This is achieved in a natural way if we use a prior distribution in which the \(\theta_j \)'s are viewed as a sample from a common population distribution.
Hierarchical Models

- **Key:** The observed data, y_{ij}, with units indexed by i within groups indexed by j, can be used to estimate aspects of the population distribution of the θ_j’s even though the values of θ_j are not themselves observed.

- **How?** It is natural to model such a problem hierarchically
 - observable outcomes modeled conditionally on parameters θ
 - θ given a probabilistic specification in terms of other parameters, ϕ, known as hyperparameters.
Hierarchical Models

• Nonhierarchical models are usually inappropriate for hierarchical data.
 – a single \(\theta \) (i.e. \(\theta_j \equiv \theta \ \forall j \)) may be inadequate to fit a combined data set.
 – separate unrelated \(\theta_j \) are likely to “overfit” data.
 – information about one \(\theta_j \) can be obtained from others’ data.

• Hierarchical model uses many parameters but population distribution induces enough structure to avoid overfitting.
Setting up hierarchical models

Exchangeability

Recall: A set of random variables \((\theta_1, \ldots, \theta_k)\) is **exchangeable** if the joint distribution is invariant to permutations of the indexes \((1, \ldots, k)\). The indexes contain no information about the values of the random variables.

- hierarchical models often use exchangeable models for the prior distribution of model parameters
- iid random variables are one example
- seemingly non-exchangeable r.v.’s may become exchangeable if we condition on all available information (e.g., regression analysis)
Setting up hierarchical models

Exchangeable models

• Basic form of exchangeable model
 – \(\theta = (\theta_1, \ldots, \theta_k) \) are independent conditional on additional parameters \(\phi \) (known as hyperparameters)

\[
p(\theta|\phi) = \prod_{j=1}^{k} p(\theta_j|\phi)
\]

 – \(\phi \) referred to as hyperparameter(s) with hyperprior distn \(p(\phi) \)
 – implies \(p(\theta) = \int p(\theta|\phi)p(\phi)d\phi \)
 – work with joint posterior distribution, \(p(\theta, \phi|y) \)

• One objection to exchangeable model is that we may have other information, say \((X_j) \). In that case may take

\[
p(\theta_1, \ldots, \theta_J|X_1, \ldots, X_J) = \prod_{i=1}^{J} p(\theta_i|\phi, X_i)
\]
Setting up hierarchical models

- Model is specified in nested stages
 - sampling distribution $p(y|\theta)$
 (first level of hierarchy)
 - prior (or population) distribution for θ: $p(\theta|\phi)$
 (second level of hierarchy)
 - prior distribution for ϕ (hyperprior): $p(\phi)$
 - Note: more levels are possible
 - hyperprior at highest level is often diffuse but
 improper priors must be checked carefully to avoid
 improper posterior distributions.
Setting up hierarchical models

- Inference
 - Joint distn:
 \[
 p(y, \theta, \phi) = p(y|\theta, \phi)p(\theta|\phi)p(\phi)
 \]
 \[
 = p(y|\theta)p(\theta|\phi)p(\phi)
 \]
 - Posterior distribution
 \[
 p(\theta, \phi|y) \propto p(\phi)p(\theta|\phi)p(y|\theta)
 \]
 \[
 = p(\theta|y, \phi)p(\phi|y)
 \]
 * often \(p(\theta|\phi)\) is conjugate for \(p(y|\theta)\)
 * if we know (or fix) \(\phi\): \(p(\theta|y, \phi)\) follows from conjugacy
 * then need inference for \(\phi\): \(p(\phi|y)\)
Computational approaches for hierarchical models

- Marginal model
 \[p(y|\phi) = \int p(y|\theta)p(\theta|\phi)d\theta \]
 do inference only for \(\phi \) (e.g. marginal maximum likelihood)

- Empirical Bayes
 \[p(\theta|y, \hat{\phi}) \propto p(y|\theta)p(\theta|\hat{\phi}) \]
 do inference for \(\theta \)

- Hierarchical Bayes (a.k.a. full Bayes)
 \[p(\theta, \phi|y) \propto p(y|\theta)p(\theta|\phi)p(\phi) \]
 inference for \(\theta \) and \(\phi \)
Hierarchical models and random effects

Animal breeding example

Consider the following mixed linear model commonly used in animal breeding studies

\[Y = X\beta + Zu + e \]

- **X** = design matrix for fixed effects
- **Z** = design matrix for random effects
- **\beta** = fixed effects parameters
- **u** = random effects parameters
- **e** = individual variation \(\sim N(0, \sigma_e^2 I) \)

\[Y|\beta, u, \sigma_e^2 \sim N(X\beta + Zu, \sigma_e^2 I) \]

\[u|\sigma_a^2 \sim N(0, \sigma_a^2 A) \]

(can also think of **\beta** as random with \(p(\beta) \propto 1 \))
Hierarchical models and random effects
Animal breeding example

• Marginal model (after integrating out u)

\[Y|\beta, \sigma_a^2, \sigma_e^2 \sim N(X\beta, \sigma_a^2ZA^T + \sigma_e^2I) \]

• Note: the separation of parameters into θ and ϕ is somewhat ambiguous here:

 – model specification suggests $\phi = \{\sigma_a^2\}$
 and $\theta = \{\beta, u, \sigma_e\}$
 – marginal model suggests $\phi = \{\beta, \sigma_a^2, \sigma_e^2\}$
 and $\theta = \{u\}$
Hierarchical models and random effects
Animal breeding example

• Empirical Bayes (known as REML/BLUP)
 We can estimate σ_a^2, σ_e^2 by marginal (restricted?) maximum likelihood ($\hat{\sigma}_a^2$, $\hat{\sigma}_e^2$).
 Then
 \[p(u, \beta|y, \hat{\sigma}_a^2, \hat{\sigma}_e^2) \propto p(y|\beta, u, \hat{\sigma}_e^2)p(u|\hat{\sigma}_a^2) \]
 (a joint normal distn)

• Hierarchical Bayes
 \[p(\beta, \sigma_a^2, \sigma_e^2, \mu|y) \propto p(y|\beta, u, \sigma_e^2)P(u|\sigma_a^2)p(\beta, \sigma_a^2, \sigma_e^2) \]
Computation with hierarchical models

- Two cases
 - conjugate case \((p(\theta|\phi) \text{ conjugate prior for } p(y|\theta))\)
 * approach described below
 - non-conjugate case
 * requires more advanced computing
 * problem-specific implementations

- Computational strategy for conjugate case
 - write \(p(\theta, \phi|y) = p(\phi|y)p(\theta|\phi, y)\)
 - identify conditional posterior density of \(\theta\) given \(\phi\), \(p(\theta|\phi, y)\) (easy for conjugate models)
 - obtain marginal posterior distribution of \(\phi\), \(p(\phi|y)\)
 - simulate from \(p(\phi|y)\) and then \(p(\theta|\phi, y)\)
Computation with hierarchical models

The marginal posterior distribution \(p(\phi|y) \)

- Approaches for obtaining \(p(\phi|y) \)
 - integration \(p(\phi|y) = \int p(\theta, \phi|y) d\theta \)
 - algebra - for a convenient value of \(\theta \)
 \[
p(\phi|y) = \frac{p(\theta, \phi|y)}{p(\theta|\phi, y)}
 \]

- Sampling from \(p(\phi|y) \)
 - easy if known distribution
 - grid if \(\phi \) is low-dimensional
 - more sophisticated methods (later)
Beta-binomial example

• Series of toxicology studies

• Study j: n_j exchangeable individuals
 y_j develop tumors

• Model specification:
 - $y_j | \theta_j \sim \text{Bin}(n_j, \theta_j), j = 1, \ldots, J$ (indep)
 - $\theta_j, j = 1, \ldots, J | \alpha, \beta \sim \text{Beta}(\alpha, \beta)$ (iid)
 - $p(\alpha, \beta)$ – to be specified later, hopefully ”non-informative”

• Marginal model:
 - can integrate out $\theta_j, j = 1, \ldots, J$ in this case

\[
\begin{align*}
p(y | \alpha, \beta) &= \int \cdot \int \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_j^{\alpha-1} (1 - \theta_j)^{\beta-1} \left(\frac{n_j}{y_j}\right) \theta_j^{y_j} (1 - \theta_j)^{n_j - y_j} d\theta_1 \cdot d\theta_J \\
&= \prod_{j=1}^{J} \left(\frac{n_j}{y_j}\right) \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha + y_j)\Gamma(\beta + n_j - y_j)}{\Gamma(\alpha + \beta + n_j)}
\end{align*}
\]

- $y_j, j = 1, \ldots, J$ are ind
- distn of y_j is known as beta-binomial distn
Beta-binomial example

- Conditional distn of θ’s given α, β, y
 - $p(\theta|\alpha, \beta, y) = \prod_j \text{Beta}(\alpha + y_j, \beta + n_j - y_j)$
 - independent conjugate analyses
 - find this by algebra or by inspection of $p(\theta, \alpha, \beta|y)$
 - analysis is thus reduced to finding (and simulating from) $p(\alpha, \beta|y)$

- Marginal posterior distn of α, β

$$p(\alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^J \frac{\Gamma(\alpha + \beta) \Gamma(\alpha + y_j) \Gamma(\beta + n_j - y_j)}{\Gamma(\alpha) \Gamma(\beta) \Gamma(\alpha + \beta + n_j)}$$

 - could derive from marginal distn on previous slide
 - could also derive from joint posterior distn
 - not a known distn (on α, β) but easy to evaluate
Beta-binomial example

- Hyperprior distn $p(\alpha, \beta)$
 - First try: $p(\alpha, \beta) \propto 1$ (flat, noninformative?)
 * equivalent to $p(\alpha/(\alpha + \beta), \alpha + \beta) \propto (\alpha + \beta)$
 * equivalent to $p(\log(\alpha/\beta), \log(\alpha + \beta)) \propto \alpha \beta$
 * check to see if posterior is proper
 - consider diff’t cases (e.g., $\alpha \to 0, \beta$ fixed)
 - if $\alpha, \beta \to \infty$ with $\alpha/(\alpha + \beta) = c$,
 then $p(\alpha, \beta|y) \propto$ constant (not integrable)
 - this is an improper distn
 - contour plot would also show this (lots of probability extending out towards infinity)
Beta-binomial example

- Hyperprior distn \(p(\alpha, \beta)\)
 - Second try: \(p(\alpha/(\alpha + \beta), \alpha + \beta) \propto 1\) (flat on prior mean and precision)
 * more intuitive, these two params are plausibly independent
 * equivalent to \(p(\alpha, \beta) \propto 1/(\alpha + \beta)\)
 * still leads to improper posterior distn
 - Third try: \(p(\log(\alpha/\beta), \log(\alpha + \beta)) \propto 1\) (flat on natural transformation of prior mean and variance)
 * equivalent to \(p(\alpha, \beta) \propto 1/(\alpha\beta)\)
 * still leads to improper posterior distn
 - Fourth try: \(p(\alpha/(\alpha + \beta), (\alpha + \beta)^{-1/2}) \propto 1\) (flat on prior s.d. and prior mean)
 * equivalent to \(p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}\)
 * ”final answer” - proper posterior distn
 * equivalent to
 \(p(\log(\alpha/\beta), \log(\alpha + \beta)) \propto \alpha\beta(\alpha + \beta)^{-5/2}\) (this will come up later)
Beta-binomial example

- Computing
 - later consider more sophisticated approaches
 - for now, use grid approach
 * simulate α, β from grid approx to posterior distn
 * then simulate θ’s using conjugate beta posterior distn
 - convenient to use $(\log(\alpha/\beta), \log(\alpha + \beta))$ scale because contours ”look better” and we can get away with smaller grid

- Illustrate with rat tumor data (separate handout)
Normal-normal hierarchical model

• Data model
 – $y_j | \theta_j \sim N(\theta_j, \sigma_j^2), j = 1, \ldots, J$ (indep)
 – σ_j^2’s are assumed known
 (can release this assumption later)
 – motivation: y_j could be a summary statistic
 with (approx) normal distn from the j-th study
 (e.g., regression coefficient, sample mean)

• Prior distn
 – need a prior distn $p(\theta_1, \ldots, \theta_J)$
 – if exchangeable, then model θ’s as iid given
 parameters ϕ
 – some additional comments follow
Normal-normal hierarchical model

• Constructing a prior distribution
Can think of this data model as a one-way ANOVA model (especially if \(y_j \) is a sample mean of \(n_j \) obs in group \(j \)). Typical ANOVA analysis begins by testing:

\[
H_0 : \theta_1 = \ldots = \theta_J \\
H_a : \text{not } H_0
\]

– If we don’t reject \(H_0 \), we might prefer to estimate each \(\theta_j \) by the pooled estimate,

\[
\bar{y}.. = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2} y_j}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2}}
\]

– If we reject \(H_0 \), we might use separate estimates, \(\hat{\theta}_j = y_j \) for each \(j \).

– Alternative: compromise between complete pooling and none at all,
e.g., a weighted combination,

\[
\theta_j = \lambda_j y_j + (1 - \lambda) \bar{y}.. \quad \text{where } \lambda_j \in (0, 1)
\]
Normal-normal hierarchical model

- **Constructing a prior distribution** (Cont’d)

 (a) The pooled estimate $\hat{\theta} = \bar{y}_\cdot$ is the posterior mean if the J values θ_j are restricted to be equal, with a uniform prior density on the common θ; i.e.

 $p(\theta) \propto 1.$

 (b) The unpooled estimate $\hat{\theta}_j = y_j$ is the posterior mean if the J values θ_j have independent uniform prior densities on $(-\infty, \infty)$;

 i.e. $p(\theta_1, \ldots, \theta_J) \propto 1.$

 (c) The weighted combination is the posterior mean if the J values θ_j are iid $N(\mu, \tau^2)$.

 Note: (a) corresponds to (c) with $\tau^2 = 0$

 (b) corresponds to (c) with $\tau^2 \to \infty$
Normal-normal hierarchical model

• Data model \(p(y_j|\theta_j) \sim N(\theta_j, \sigma_j^2), j = 1, \ldots, J \)
 \(\sigma_j^2 \)'s assumed known

• Prior model for \(\theta_j \)'s is normal (conjugate)

\[
p(\theta_1, \ldots, \theta_J|\mu, \tau) = \prod_{j=1}^{J} N(\theta_j|\mu, \tau^2)
\]

\[
p(\theta_1, \ldots, \theta_J) = \int \left[\prod_{j=1}^{J} N(\theta_j|\mu, \tau^2) \right] p(\mu, \tau) d(\mu, \tau)
\]

i.e. \(\theta_j \)'s conditionally independent given \((\mu, \tau)\)

• Hyperprior distribution
 – noninformative distribution for \(\mu \) given \(\tau \),
 i.e., \(p(\mu|\tau) \propto 1 \) (this won’t matter much
 because the combined data from all
 \(J \) experiments are highly informative about \(\mu \))
 – more on \(p(\tau) \) later
 – \(p(\mu, \tau) = p(\tau)p(\mu|\tau) \propto p(\tau) \)
Normal-normal model: computation

- Joint posterior distribution:

\[
p(\theta, \mu, \tau|y) \\
\propto p(\mu, \tau)p(\theta|\mu, \tau)p(y|\theta) \\
\propto p(\tau) \prod_{j=1}^{J} N(\theta_j|\mu, \tau^2) \prod_{j=1}^{J} N(y_j|\theta_j, \sigma_j^2) \\
\propto p(\tau) \frac{1}{\tau^J} \exp \left[-\frac{1}{2} \sum_{j} \frac{1}{\tau^2} (\theta_j - \mu)^2 \right] \exp \left[-\frac{1}{2} \sum_{j} \frac{1}{\sigma_j^2} (y_j - \theta_j)^2 \right]
\]

- Factors that depend only on \(y \) and \{\sigma_j\} are treated as constants because they are known

- Posterior distn is a distn on \(J + 2 \) parameters

- Can compute using MCMC (later) or

- Hierarchical computation:

 1. \(p(\theta_1, \ldots, \theta_J|\mu, \tau, y) \)
 2. \(p(\mu|\tau, y) \)
 3. \(p(\tau|y) \)
Normal-normal model: computation Conditional posterior distn of θ given μ, τ, y

- Treat (μ, τ) as fixed in previous expression
- Given (μ, τ), the J separate parameters θ_j are independent in their posterior distribution
- $\theta_j \mid y, \mu, \tau \sim N(\hat{\theta}_j, V_j)$ with
 \[
 \hat{\theta}_j = \frac{1}{\sigma_j^2} y_j + \frac{1}{\tau^2} \mu \quad \text{and} \quad V_j = \frac{1}{\sigma_j^2 + \frac{1}{\tau^2}}
 \]
- Result from simple normal-normal conjugate analysis
- $\hat{\theta}_j$ is weighted average of hyperprior mean and data
Normal-normal model: computation

Marginal posterior distribution of μ, τ given y

- We can analytically integrate the full posterior distn $p(\theta, \mu, \tau|y)$ over θ

$$p(\mu, \tau|y) = \int p(\theta, \mu, \tau|y) \, d\theta$$

- An alternative is to use the marginal model

$$p(\mu, \tau|y) \propto p(y|\mu, \tau)p(\mu, \tau)$$

- Marginal model

$$p(y|\mu, \tau) = \prod_{j=1}^{J} \int \frac{N(\theta_j|\mu, \tau)N(\bar{y}_j|\theta_j, \sigma_j^2)}{\text{quadratic in } y_j} \, d\theta_j$$

$$\Rightarrow \quad y_j|\mu, \tau \sim \text{Normal}$$

$$E(y_j|\mu, \tau) = E(E(y_j|\theta_j, \mu, \tau)) = E(\theta_j) = \mu$$

$$\text{Var}(y_j|\mu, \tau) = E(\text{Var}(y_j|\mu, \tau, \theta_j)) +$$

$$+ \text{Var}(E(y_j|\mu, \tau, \theta_j)) =$$

$$= E(\sigma_j^2) + \text{Var}(\theta_j) = \sigma_j^2 + \tau^2$$
Normal-normal model: computation

Marginal posterior distribution of μ, τ given y

- End result is

$$p(\mu, \tau | y) \propto p(\tau) \prod_{j=1}^{J} N(y_j | \mu, \sigma_j^2 + \tau^2)$$

$$\propto p(\tau) \prod_{j=1}^{J} (\sigma_j^2 + \tau^2)^{-1/2} \exp \left(-\frac{(y_j - \mu)^2}{2(\sigma_j^2 + \tau^2)} \right)$$

- Note: in non-normal models, it is not generally possible to integrate over θ and rely on the marginal model, so that more elaborate computational methods are needed
Normal-normal model: computation

Posterior distribution of μ given τ, y

- Instead of sampling (μ, τ) on a grid, factor the distribution: $p(\mu, \tau|y) = p(\tau|y)p(\mu|\tau, y)$

- $p(\mu|\tau, y)$ is obtained by looking at $p(\mu, \tau|y)$ and thinking of τ as known:

 \[\Rightarrow \quad p(\mu|\tau, y) \propto \prod_{j=1}^{J} N(y_j|\mu, \sigma_j^2 + \tau^2) \]

- This is the posterior distn corresponding to a normal sampling distribution with a noninformative prior density on μ

- Result: $\mu|\tau, y \sim N(\hat{\mu}, V_\mu)$ with

 \[\hat{\mu} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2} y_j}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}} \quad \text{and} \quad V_\mu = \frac{1}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}} \]
Normal-normal model: computation

Posterior distribution of τ given y

- $p(\tau|y)$ can be found in two equivalent ways
 - integrate $p(\mu, \tau|y)$ over μ
 - use algebraic form $p(\tau|y) = p(\mu, \tau|y)/p(\mu|\tau, y)$, which must hold for any μ

- Choose the second option, and evaluate at $\mu = \hat{\mu}$ (for simplicity):

$$
p(\tau|y) \propto \prod_{j=1}^{J} \frac{N(y_j|\mu, \sigma_j^2 + \tau^2)}{N(\hat{\mu} | \hat{\mu}, V_{\mu})} \propto V_{\mu}^{1/2} \prod_{j=1}^{J} (\sigma_j^2 + \tau^2)^{-1/2} \exp \left(-\frac{(y_j - \hat{\mu})^2}{2(\sigma_j^2 + \tau^2)} \right)
$$

- Note that V_{μ} and $\hat{\mu}$ are both functions of τ

- Compute $p(\tau|y)$ on a grid of values of τ
Normal-normal model: computation Summary

• To simulate from joint posterior distribution $p(\theta, \mu, \tau | y)$:

 1. draw τ from $p(\tau | y)$ (grid approximation)
 2. draw μ from $p(\mu | \tau, y)$ (normal distribution)
 3. draw $\theta = (\theta_1, \ldots, \theta_J)$ from $p(\theta | \tau, y)$
 (independent normal distribution for each θ_j)

• Choice of $p(\tau)$

 $- p(\tau) \propto 1$ - proper posterior distribution
 $- p(\log \tau) \propto 1$ - improper posterior distribution
 (equivalent to $p(\tau^2) \propto 1/\tau^2$)
 $- \text{alternative family for informative prior distn is}
 \text{scaled inverse-} \chi^2 \text{ family}$

• Illustrate with SAT coaching example
 (separate handout)
Computation
Introduction

- Goal: Posterior inference for parameters, missing data (if any), and predictions

- Thus far:
 - analytic results or exact simulation in small problems
 - normal approximation
 - grid approximation
 - use hierarchical structure
 (e.g., $\mu, \tau | y$, then $\theta | y, \mu, \tau$, then $\tilde{y} | y, \theta, \mu, \tau$)

- Now consider additional tools:
 - iterative simulation (Markov chain Monte Carlo)
 - importance sampling (covered later in robust models section)

- A mini statistical computing course
Computation
Motivation for additional tools

• Examples from first part of the course have obvious extensions for which computation becomes difficult:
 – logistic regression
 * more than one predictor
 * incorporating random effects
 – normal-normal hierarchical model
 * may use non-normal distn at either level
 (t-distn for population distn or Poisson distn for count data)
 * nontrivial covariance matrix in prior distn
 (spatial models, time series models)
Computation

- An overall computation strategy
 - initial (perhaps crude) estimates of parameters
 - direct simulation when possible
 - if direct simulation is not possible
 * approximations based at the posterior mode
 * iterative simulation (e.g., Gibbs sampler, Metropolis algorithm)
 - importance sampling for robustness checks and sensitivity analysis

- Next
 - review/discuss these ideas
Computation
Some helpful ideas we have met

- Compute posterior distn on log scale (to avoid underflows or overflows)

- Factoring the posterior distribution
 \(p(\theta_1, \theta_2|y) = p(\theta_1|\theta_2, y)p(\theta_2|y) \)
 - reduce to easier, lower-dimensional problems
 - isolate the parameters most influenced by prior distribution (e.g., \(\tau \) in 8 schools example)
 - difficulties:
 * can’t generally find marginal distn easily
 * hard to use a grid with a high-dimensional marginal distn

- Transformations
 - create more understandable parameters
 - make prior independence plausible
 - improve normal approximation
 (e.g., log of scale parameter)
 - speed/simplify iterative simulation
Computation
Notation/Notes

• \(p(\theta|y) \) is the posterior distn
 – \(\theta \) now includes all parameters (even in hierarchical model)
 – often we only know the unnormalized posterior distn \(q(\theta|y) \)
 * i.e., \(p(\theta|y) \propto p(y|\theta)p(\theta) = q(\theta|y) \)
 * more formally, \(p(\theta|y) = c(y)q(\theta|y) \)
 – our computation discussion will generally use \(p(\theta|y) \)
 and I will point out whether it matters whether the posterior distn is normalized
Computation
Initial estimation

• Starting point for subsequent approaches
• Serves as a check for other approaches
• Problem-specific methods are required
 – use results from other methods
 (e.g., maximum likelihood estimates in bioassay logistic regression)
 – fix hyperparameters at crude estimates
 (e.g., separate and pooled estimates for the 8 schools are equivalent to $\tau = \infty$ and $\tau = 0$)
Computation

Direct simulation

- We have already seen that simulation is a powerful approach for studying the posterior distn in a Bayesian analysis

- Brief discussion of simulation tools
 - useful in simpler (low dimensional) problems
 - same tools are useful as components for more advanced simulations

- Simulation analysis
 - report number of draws
 - report summary statistics (mean, sd, percentiles)
 - graphs
 - how many draws? depends on desired accuracy (e.g., if we have iid simulations then std error of posterior mean is equal to posterior s.d. divided by \sqrt{n})

- Direct simulation is not usually possible in high dimensions but direct simulation techniques can be useful tools within more sophisticated algorithms
Computation
Direct simulation approaches

• Exact simulation
 – standard algorithms for drawing from standard distns (uniform, normal, Poisson, gamma, etc.)
 – available in most software including S-plus

• Grid approximation
 – discrete (evenly spaced) grid $\theta_1, \theta_2, \ldots, \theta_N$,
 \[
 \Pr_{\text{grid}}(\theta = \theta_j) = p(\theta_j|y) / \left(\sum_i p(\theta_i|y) \right)
 \]
 – we have already seen this approach
 – works for normalized or unnormalized posterior distn
 – hard in 2 or more dimensions
 – choice of grid can affect the answer
Computation
Direct simulation approaches

• Probability integral transform
 – consider posterior distn $p(\theta|y)$ with
 corresponding cdf $F(\theta|y)$
 – recall probability result: if $U \sim \text{Unif}(0, 1)$, then
 $\theta = F^{-1}(U)$ is a r.v. with distn $p(\theta|y)$
 – e.g., if $\theta|y \sim N(\mu, \tau^2)$, then $\theta = \mu + \tau \Phi^{-1}(U)$
 – discrete r.v.’s are possible but harder
 to program
 – can use this to improve grid to trapezoidal approximation
Computation
Direct simulation approaches

• Rejection sampling
 – suppose we find $g(\theta)$ we can sample from with
 $p(\theta | y)/g(\theta) \leq M$ (with M known)
 – algorithm:
 * draw $\theta \sim g(\theta)$
 * accept θ with prob $p(\theta | y)/(M g(\theta))$, otherwise
 reject and draw a new candidate
 * for log-concave densities this approach can be used with trapezoids defining rejection
 function (Gilks and Wild, 1992, Applied Statistics)

• Many other useful methods for direct simulation that we don’t have time to discuss here
Computation
Iterative simulation

• Basic idea: to sample from $p(\theta|y)$ create a Markov chain with $p(\theta|y)$ as stationary distribution

• Algorithms:
 – Gibbs sampler (full conditionals)
 – Metropolis-Hastings algorithm (jumping distn)
 – combinations of Gibbs and M-H

• Implementation issues (later)
Iterative simulation

Gibbs sampler

• Key features
 – break problem into lower-dimensional pieces using conditional distributions
 – conditional posterior distributions often have simple form

• Start by drawing an initial $\theta = (\theta_1, \ldots, \theta_k)$ from an approximation to $p(\theta|y)$.

• Repeat the following steps using most recently drawn values for variables in conditioning set:
 – draw θ_1 from $p(\theta_1 | \theta_2, \ldots, \theta_k, y)$
 – draw θ_2 from $p(\theta_2 | \theta_1, \theta_3, \ldots, \theta_k, y)$
 ...
 – draw θ_k from $p(\theta_k | \theta_1, \ldots, \theta_{k-1}, y)$

• Can update parameters one at a time (as above) or in blocks
Iterative simulation

Plan of attack

• We have glossed over some details
 – non-standard distributions come up in Gibbs sampling
 – starting values
 – monitoring convergence
 – inference from iterative simulation
 – software availability
 – efficiency considerations

• Return to these after an example
Iterative simulation

Non-standard distributions

- It may happen that one or more of the Gibbs sampling distns is not a known distn

- What then?
 - can go back to previous direct simulation discussion
 * grid approximation
 * rejection sampling, etc.
 - Metropolis (or (Metropolis-Hastings) algorithm
 * let’s meet this important subject now
Iterative simulation
Metropolis-Hastings (M-H) algorithm

• Replaces “conditional draws” of Gibbs sampler with “jumps” around the parameter space

• Algorithm:
 – given current draw θ (scalar or vector)
 – sample a candidate point θ^* from jumping distribution $J(\theta^*|\theta)$
 – accept candidate or stay in place with probabilities determined by importance ratio

$$r = \frac{p(\theta^*|y)/J(\theta^*|\theta)}{p(\theta|y)/J(\theta|\theta^*)}$$

• Simplifies if J is symmetric (Metropolis algorithm)

• Combining M-H and Gibbs: M-H steps can be used in place of one conditional distn in a Gibbs sampler, or a single M-H step can replace several (or even all) of the conditional distns
Iterative simulation

Starting values

- Markov chain will converge to stationary distribution from any starting value assuming
 - chain has a nonzero probability of eventually getting from any point to any other point (i.e., parameter space is not divided into separate regions)
 - chain does not drift off to infinity (can happen if the posterior distribution is improper – which means the model is wrong!)

- Assessing when this convergence has occurred is best done using multiple chains with overdispersed starting points
Iterative simulation
Starting values

• An algorithm for choosing starting values:
 – find posterior mode (or modes)
 (marginal distn usually better than joint distn)
 – create overdispersed approximation to posterior
 (e.g., t_4 instead of normal)
 – sample 1000 points from approximation
 – resample 5 or 10 starting values
 (using importance ratios as described later)
Iterative simulation
Monitoring convergence

• Run several sequences in parallel

• Can use graphical displays to monitor convergence or
 semi-formal approach of Gelman and Rubin (described
 now)

• Two estimates of $\text{sd}(\theta|y)$
 - underestimate from sd within each sequence
 - overestimate from sd of mixture of sequences

• Potential scale reduction factor:
 \[\sqrt{\hat{R}} = \frac{\text{mixture-of-sequences estimate of } \text{sd}(\theta|y)}{\text{within-sequence estimate of } \text{sd}(\theta|y)} \]

• Initially $\sqrt{\hat{R}}$ is large (because we use
 overdispersed starting points)

• At convergence, $\sqrt{\hat{R}} = 1$ (each sequence
 has made a complete tour)

• Monitor $\sqrt{\hat{R}}$ for all parameters and quantities
 of interest; stop simulations when they are all
 near 1 (e.g., below 1.2)
Iterative simulation
Inference from posterior simulations

- At approximate convergence we have many draws from the posterior distribution
- The draws are not independent
- This means that obtaining standard errors to assess simulation noise is difficult (can use between-chain info, batching,)
- Note there is a distinction here between posterior uncertainty about θ and Monte Carlo uncertainty about some summary of the posterior distn (e.g., std error of $E(\theta|y)$)
- Good news: Simulation noise is generally minor compared to posterior uncertainty about θ
Iterative simulation
Software availability

- Variety of packages (more in development)

- One popular package is BUGS/CODA
 - BUGS (Bayesian analysis Using Gibbs Sampling)
 - CODA (Convergence Diagnosis and Output Analysis)
 - available on the web at
 http://www.mrc-bsu.cam.ac.uk/
 bugs/welcome.shtml

- Other software described by Carlin and Louis (1996)

- Create new models – write your own software
Iterative simulation
Efficiency considerations

• Theory under construction but some things are known:
 – Gibbs sampling
 * works best if we can create independent or nearly independent blocks of parameters
 * partition parameters into groups
 * transform parameters
 – Metropolis-Hastings algorithms
 * choice of jumping distn is key
Iterative simulation
Efficiency considerations - M-H

- How do we choose the jumping distribution $J(\theta|\theta^{(t-1)})$?
- Optimal J is $p(\theta|y)$ independent of current value $\theta^{(t-1)}$
 - this always accepts ($r = 1$)
 - but if we could do this we wouldn’t need M-H
- Goals in choosing J:
 - J should be easy to sample from
 - it should be easy to compute r
 - jumps should go far (so we move around the parameter space) but not too far (so they are not always rejected)
Iterative simulation
Efficiency considerations - M-H

• Three primary approaches
 – independence M-H
 – random walk M-H (used most often)
 – approximation M-H

• Independence M-H
 – find a distribution $g(\theta)$ independent of current $\theta^{(t-1)}$ and keep generating candidates from $g(\theta)$
 – requires g be a reasonably good approximation
 – hard to do for M-H within Gibbs
Iterative simulation
Efficiency considerations - M-H

• Random Walk M-H
 - generate candidate using random walk (often normal) centered at current value
 - \(J(\theta|\theta^{(t-1)}) = N(\theta|\theta^{(t-1)}, cV) \)
 - note this is symmetric so M-H acceptance calculation simplifies
 - works well if \(V \) is chosen to be posterior variance (don’t know this but can use a pilot run to get some idea)
 - \(c \) is a constant chosen to optimize efficiency
 - theory results indicate optimal acceptance rate for this kind of jumping distn is between .2 and .5 (decreases with dimension)
Iterative simulation
Efficiency considerations - M-H

- Approximation M-H
 - generate candidate using an approximation to target distn (varying from iteration to iteration)
 - e.g., \(J(\theta | \theta^{(t-1)}) = N(\theta | \theta^{(t-1)}, V_{\theta^{(t-1)}}) \)
 - now variance matrix depends on current value this is no longer symmetric
 - idea is to make this a good approximation (high acceptance rate)
Computation
Debugging iterative simulation methods

• Checking that programs are correct is crucial (especially if you write your own)

• Can be difficult to check because
 – output is a distribution not a point estimate
 – incorrect output may look reasonable

• Some useful debugging ideas:
 – build up from simple (debugged) models
 – when adding a new parameter, start by setting it to a fixed value, then let it vary
 – simulate fake data (repeat the following steps)
 * draw “true parameters” from prior distn (must be proper)
 * simulate data from the model
 * obtain draws from posterior distn
 * compare distns of posterior draws and “true parameters”
Computation
Debugging iterative simulation methods

• Common problems
 – conceptual flaw in part of model
 – prior is too vague
 * this may give improper posterior distn
 * detect by looking for values that don’t make substantive sense
Computation
Approximation

• Recall results of Chapter 4 ... for large samples $p(\theta|y)$ is approx $N(\theta|\hat{\theta}, I(\hat{\theta})^{-1})$ where $\hat{\theta}$ is the posterior mode

• Often use inverse curvature matrix of log posterior density, $V_\theta = \left[-\frac{d^2}{d\theta^2} \log p(\theta|y)|_{\theta=\hat{\theta}} \right]^{-1}$, as variance matrix for approximation

• Transformations are often used to improve quality of normal approx

• May use t distn with few degrees of freedom in place of normal distn (to protect against long tails)

• Multiple modes can be a problem: $N(\hat{\theta}, V_\theta)$ or $t_4(\hat{\theta}, V_\theta)$ approx at each mode (i.e., a mixture)

• Reasons not to approximate based on modes:
 – misleading in some problems
 (e.g., in 8 schools example, mode is $\tau = 0$
 which is at edge of parameter space)
 – advances in algorithms have made inference from exact posterior distn possible
Computation
Approximation - mode finding

- To apply normal approximation, need posterior mode

- Review traditional stat computing topic of mode finding (optimization)

- Iterative conditional modes
 - start at $\theta^{(0)} = (\theta_1^{(0)}, \ldots, \theta_d^{(0)})$
 - for $i = 1, \ldots$
 * for $j = 1, \ldots, d$
 - choose $\theta_j^{(i)}$ as the value that maximizes
 (or even just increases)
 $p(\theta_1^{(i)}, \ldots, \theta_j^{(i)}, \theta, \theta_{j+1}^{(i-1)}, \ldots, \theta_d^{(i-1)})$
 - leads to a local maximum
Computation
Approximation - mode finding

• Newton’s method \(L = \log p(\theta|y) \)
 - start at \(\theta^{(0)} \)
 - iterate with \(\theta^{(t)} = \theta^{(t-1)} - [L''(\theta^{(t-1)})]^{-1} L'(\theta^{(t-1)}) \)
 - converges fast but is sensitive to starting value
 - can use numerical derivatives

• Other optimization methods
 - steepest ascent \(\theta^{(t)} = \theta^{(t-1)} + \alpha L'(\theta^{(t-1)}) \)
 - quasi-Newton methods
 - simplex/polytope (no derivative methods)
Computing

Approximation

- For many problems, especially hierarchical models, the joint mode is not very useful
- Instead may focus on factorization
 \[p(\theta, \phi|y) = p(\phi|y)p(\theta|\phi, y) \]
- Often \(p(\theta|\phi, y) \) is easy (e.g., conjugate family)
- Normal approximation for marginal posterior distn \(p(\phi|y) \)
- But need mode of \(p(\phi|y) \)
 - sometimes this function can be identified and maximized analytically
 - for other situations EM algorithm is helpful
Computation
Approximation - The EM algorithm

• EM is an iterative algorithm for maximizing functions (likelihoods or posterior distns) when there is missing data

• Applied here in maximizing $p(\phi | y)$ treating θ as missing data

• Idea:
 – start with initial guess for ϕ
 – given ϕ we can estimate ”missing data” θ
 – given estimated θ it may be easy to now maximize for improved ϕ
 – repeat last two steps
Computation
Approximation - The EM algorithm

• Iterative algorithm with two steps
• Suppose current value of ϕ is $\phi^{(t)}$

 – E-step
 * compute $Q(\phi) = E(\log(p(\theta, \phi|y)|\phi = \phi^{(t)}) = \int \log(p(\theta, \phi|y))p(\theta|\phi^{(t)}, y)d\theta$
 * essentially computes expected value of needed functions of θ rather than estimating the ”missing” θ

 – M-step
 * choose $\phi^{(t+1)}$ as the value of ϕ that maximizes $Q(\phi)$

• Can show that $p(\phi|y)$ increases after each E-M pair of steps
Computation
Numerical integration

• Historically people often used numerical integration to study posterior distn

• Many quantities of interest can be written as
 \[E(h(\theta)|y) = \int h(\theta)p(\theta|y)d\theta \]
 (e.g., posterior mean)

• In modern world, simulation is often preferred (but numerical integration still used)

• We focus on useful tools developed in this context
Computation
Numerical integration

- Traditional quadrature
 - trapezoidal rule (piecewise linear approximation)
 - Simpson’s rule (piecewise quadratic)
 - algorithms for iterating
 - Gaussian quadrature
Computation
Numerical integration

• Integration via direct simulation
 – if we can generate $\theta_1, \ldots, \theta_N$ from $p(\theta|y)$ then we can estimate integral as $\sum_i h(\theta_i)/N$
 – of course, this is just our direct simulation approach!

• Importance sampling
 – can write $E(h(\theta)|y) = \int \frac{h(\theta)p(\theta|y)}{g(\theta)} g(\theta) d\theta$
 – if we can generate $\theta_1, \ldots, \theta_N$ from $g(\theta)$, then we can estimate integral as $\frac{1}{N} \sum_i \frac{h(\theta_i)p(\theta_i|y)}{g(\theta_i)}$
 – $w(\theta_i) = p(\theta_i|y)/g(\theta_i)$ is known as the importance ratio
 – improves upon simple MC if we can find g yielding low variability weights
Computation
Numerical integration

• Importance sampling (cont’d)
 – won’t work at all if g’s tails are too short
 – can work for unnormalized distn

• Many other techniques for improving Monte Carlo (e.g., antithetic variables) ... see statistical computing texts
Computation
Numerical integration

• Analytical approximation (Laplace’s method)

 - can write \(E(h(\theta)|y) = \int e^{\log(h(\theta)p(\theta|y))} d\theta \)

 - approximate \(u(\theta) = \log(h(\theta)p(\theta|y)) \) using a quadratic expansion around the mode \(\theta_o \)

 - find \(E(h(\theta)|y) \approx h(\theta_o)p(\theta_o|y)(2\pi)^{-d/2} | - u''(\theta_o)|^{1/2} \)

 - requires large samples

 - need two approximations for unnormalized posterior distn

 \[
 (E(h(\theta)|y) = \int h(\theta)q(\theta|y)d\theta / \int q(\theta|y)d\theta) \]
Computation

Summary

• Goal: posterior inference concerning the vector of parameters (and any missing data)

• Simulation is an extremely powerful tool, especially so in complex models

• Basic approach
 – initial estimates
 – direct simulation (if possible)
 – if direct simulation is not possible:
 * normal or t approximation about posterior mode
 * iterative simulation (Gibbs, Metropolis-Hastings)

• For iterative simulation
 – inference is conditional on the starting points
 – use multiple sequences and run until they mix
Model checking
Introduction

• So far:
 – build probability models
 – compute/simulate posterior distn

• Now:
 – model checking (does the model fit the data)
 – sensitivity analysis (are conclusions sensitive to assumptions)
 – model selection (which is the best model)
 – robust analysis (are conclusions sensitive to data)
Model checking
General ideas

• Don’t ask if the model is true
• Does the model fit and provide useful inferences
• Remember the model includes
 – sampling distribution
 – prior distribution
 – hierarchical structure
 – explanatory variables
• More than one model can fit (sensitivity analysis)
Model checking: types of checks

• Classical ideas
 – Check whether parameter estimates make sense
 – Check whether predictions make sense
 – Does the model generate data like “my data”
 (simulation approach, residual analysis)
 – Embed in a larger model

• Bayesian ideas
 – Compare posterior distribution of parameters to substantive knowledge
 – Compare posterior predictive distribution of future data to substantive knowledge
 – Compare posterior predictive distribution of future data to observed data
 – Evaluate sensitivity of inferences to other model specifications (e.g., alternate priors or sampling distributions, embed in larger model)
Posterior predictive model checking

- y^{rep} = replicate data that might have occurred
- Replicated under same model as original data (e.g., same covariate values) with same values for unknown parameters θ
- Posterior predictive distribution of y^{rep}
 \[
 p(y^{rep}|y) = \int p(y^{rep}, \theta|y) \, d\theta \\
 = \int p(y^{rep}|\theta, y)p(\theta|y)\,d\theta \\
 = \int p(y^{rep}|\theta)p(\theta|y)\,d\theta
 \]
- Last equality is generally (but not always) true
- Easy to obtain simulations of y^{rep} given posterior simulations of θ
- Other possible definitions of replications (more on this later)
Posterior predictive model checking

- $T(y, \theta)$ is a test quantity or discrepancy measure
- Compare posterior predictive distribution of $T(y^{rep}, \theta)$ to posterior distribution of $T(y, \theta)$
- One possible summary (but not the only one) is the posterior predictive P-value

$$P_b = \Pr(T(y^{rep}, \theta) > T(y, \theta) | y)$$
$$= \int \int I_{[T(y^{rep}, \theta) > T(y, \theta)]} p(y^{rep} | \theta) p(\theta | y) dy^{rep} d\theta$$

- Special case $T(y, \theta) = T(y)$ is a test statistic
 - compare posterior predictive distribution of $T(y^{rep})$ to observed $T(y)$
- Diagnostics such as plots of residuals are special cases of posterior predictive checks
Posterior predictive model checking

Relation to traditional tests

- Example:
 - suppose y_1, \ldots, y_n are iid $N(\mu, \sigma^2)$
 - believe $\mu = 0$, so fit $N(0, \sigma^2)$ model
 - want to check fit of $N(0, \sigma^2)$ model
 - weak example because obvious model checking approach is to fit the "bigger" $N(\mu, \sigma^2)$ model and check whether $\mu = 0$ is plausible

- Frequentist approach
 - test statistic: $T(y) = \bar{y}$
 - begin by assuming σ^2 is fixed

 \[
 \text{p-value} = P\left(T(y^{rep}) \geq \bar{y} | \sigma^2 \right) = P\left(\bar{y}^{rep} \geq \bar{y} | \sigma^2 \right) = P\left(\frac{\sqrt{n} \bar{y}^{rep}}{S} \geq \frac{\sqrt{n} \bar{y}}{S} | \sigma^2 \right) = P\left(t_{n-1} \geq \frac{\sqrt{n} \bar{Y}}{S} \right)
 \]

 - last equality because distn no longer depends on σ^2
 - it is not always possible to get rid of nuisance parameters in this way
Posterior predictive model checking
Relation to traditional tests (cont’d)

- Posterior predictive approach

\[p\text{-value} = P(T(y^{rep}) \geq T(y)|y) \]

\[= \int \int I_{[T(Y^{rep}) \geq T(y)]} p(Y^{rep}|\sigma^2)p(\sigma^2|y) dy^{rep} d\sigma^2 \]

\[= \int P(T(y^{rep}) \geq T(y)|\sigma^2) p(\sigma^2|y) d\sigma^2 \]

- if the classical \(p \)-value is independent of \(\sigma^2 \),
 as for \(T(y) = \bar{y} \) in the example,
 then the posterior predictive \(p \)-value
 is equal to classical \(p \)-value

- if not, then formula above shows how the
 Bayesian approach handles nuisance parameters
Posterior predictive model checking
Defining replications

- Defining replications y^{rep}
 - usually keep features of original data fixed (e.g., sample size)
 - different definitions are possible in hierarchical models
 * replications of the same units
 \[p(\phi|y) \rightarrow p(\theta|\phi, y) \rightarrow p(y^{rep}|\theta) \]
 * replicate data for new units
 \[p(\phi|y) \rightarrow p(\theta|\phi) \rightarrow p(y^{rep}|\theta) \]
Posterior predictive model checking

Defining test measures

- Defining test statistics or discrepancies
 - measure features of data not directly included in the model (bad to use $T(y) = \bar{y}$ if the model includes a location parameter)
 - may define a number of test measures
 - difficult to speak in general terms because good test measures depend on context
 - examples
 * to check for autocorrelation in a sequence of Bernoulli trials, use a count of the number of runs
 * to check for new predictor in regression model, use $\text{corr}(y - X\beta, x_{new})$
 * to check for asymmetry in a normal model, use $|y_{.9} - \theta| - |y_{.1} - \theta|$
 * to check overall fix in a complex model, use $T(y; \theta) = \sum \left[(y_i - E(y_i|\theta))^2 / \text{Var}(y_i|\theta) \right]$
 (Note: asympt χ^2 for known θ but here no reliance on asymptotic distn)
Related ideas

- Parametric bootstrap (e.g., Efron, 1979)
 - plug in point estimate $\hat{\theta}$
 - simulated replicate data sets from $p(y|\hat{\theta})$

- Marginal distribution (Box, 1980)
 - reference distribution is $p(y) = \int p(y|\theta)p(\theta)d\theta$
 - note this is prior predictive distribution
 - requires proper prior distribution
 (even a bit more than that)
Criticisms of pp model checks

- Too conservative ("double-counting(?)" the data)
- pp p-values are not uniform under the null
- Difficult to interpret because of above ... what is an unusually high or low value in practice
- Unobserved data y^{rep} is not relevant for some Bayesians
- Conditional predictive distn or partial posterior predictive distn (Bayarri and Berger in JASA 2000)
 - avoid some of the criticisms by conditioning on "some" of the data but not all
 - can be hard to compute
- Summary: post. pred. checks are conservative but easy to use and easy to interpret
On the conservatism of pp model checks

• Suppose that $Y \sim N(\mu, 1)$ and $\mu \sim N(0, 9)$

• Observe $Y_{obs} = 10$. Is this unusual?

• Prior predictive approach
 – marginal distn of Y is $N(0, 10)$
 – p-value $= 1 - \Phi(10/\sqrt{10}) = .008$
 – don’t believe model
 – the observed value 10 is not consistent with this prior distn and data model

• Posterior predictive approach
 – posterior distn of μ is $N(0.9Y_{obs}, 0.9) = N(9, .9)$
 – posterior predictive distn of Y is $N(9, 1.9)$
 – p-value $= .23$
 – model cares about posterior fit
 (this minimizes the effect of the prior)
 – would this approach ever reject the model
 (yes, $Y_{obs} = 23$)
Sensitivity analysis

• Generally true that many models can be fit to the same data

• Question is how sensitive the inferences we draw are to the different models

• Different types of inferences may have different sensitivity
 – posterior mean or median for parameter of interest is typically not sensitive
 – extreme percentiles are more sensitive

• Approaches
 – fit different models
 – expand model/embed model in larger family
 * examp: consider normal distn as part of $t_\nu(\mu, \sigma^2)$ family (normal distn corresponds to $\nu = \infty$)
Bayes factors

• Suppose there are two competing models M_1 and M_2 for a data set
 – different prior distns $p_1(\theta_1)$ and $p_2(\theta_2)$
 – different data models $p_1(y|\theta_1)$ and $p_2(y|\theta_2)$
 – note θ_1 and θ_2 may be of different dimension

• Consider a full Bayesian analysis
 – begin with prior probability $p(M_1) = 1 - p(M_2)$
 – then posterior odds of M_1 relative to M_2 are
 $$\frac{p(M_1|y)}{p(M_2|y)} = \frac{p(y|M_1)}{p(y|M_2)} \frac{p(M_1)}{p(M_2)}$$
 – posterior odds are the product of prior odds and a form of likelihood ratio $p(y|M_1)/p(y|M_2)$
 – the ratio $p(y|M_1)/p(y|M_2)$ is known as the Bayes factor
 – it is a measure of how much the data changes the odds in favor of M_1 vs M_2
Bayes Factors

• Bayes factor of model 1 relative to model 2

\[BF_{12} = \frac{p(y|M_1)}{p(y|M_2)} = \frac{\int p(y|\theta_1, M_1)p(\theta_1|M_1) d\theta_1}{\int p(y|\theta_2, M_2)p(\theta_2|M_2) d\theta_2} \]

– notation: \(M_1 \) and \(M_2 \) are not events they merely identify models

– Bayes factor is only defined when the marginal density of \(y \) under each model is proper
 (requires a proper prior distn)
Bayes Factors
Bayes factors and model averaging

- Given m models with prior probabilities $P(M_1), \ldots, P(M_m)$

- Posterior probability for model j is

$$p(M_j|y) = \frac{p(y|M_j)p(M_j)}{\sum_k p(y|M_k)p(M_k)}$$

- Note: $p(M_j|y)/p(M_i|y) = BF_{ji} \frac{p(M_j)}{p(M_i)}$

$$p(M_j|y) = p(M_j) / (\sum_k BF_{kj} p(M_k))$$

- Model averaging - instead of relying on a single model we can use all of the models (essentially a ”super” model)
 - then to make a prediction \tilde{y}, use
 $$p(\tilde{y}|y) = \sum_j p(M_j|y)p(\tilde{y}|M_j, y)$$
 - computation - a single MCMC incorporating all models (reversible jump MCMC)
Bayes Factor
Computation

• To compute Bayes factors we need to be able to compute marginal likelihoods

\[p(y) = \int p(y|\theta)p(\theta) \, d\theta \]

• There are a number of approaches

• Simple Monte Carlo approach
 – simplest concept but doesn’t work very well
 – draw G values of \(\theta \) from \(p(\theta) \), call them \(\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(G)} \)
 – \(\hat{p}(y) = \frac{1}{G} \sum_{g=1}^{G} p(y|\theta^{(g)}) \)
 – problem: prior distn may not have probability where \(p(y|\theta) \) is substantial \(\rightarrow \) poor estimate
Bayes Factor
Computation (cont’d)

• Alternative Monte Carlo approach
 – consider following identity (true for any pdf \(h(\theta) \))
 \[
 p(y)^{-1} = \int \frac{h(\theta)}{p(y|\theta)p(\theta)}p(\theta|y)d\theta
 \]
 – draw G values of \(\theta \) from \(p(\theta|y) \)
 – \(\hat{p}(y) = \left[\frac{1}{G} \sum_{g=1}^{G} \frac{h(\theta^{(g)})}{p(y|\theta^{(g)})p(\theta^{(g)})} \right]^{-1} \)
 – \(h(\theta) \) could be prior distribution or normal approx to the posterior distn
 – problem: not a stable calculation because of the possibility of small numbers in the denom

• Chib’s marginal likelihood method
 – note that \(p(y) = p(y|\theta)p(\theta)/p(\theta|y) \)
 – idea: evaluate above at one value of \(\theta \), say the posterior mean or the posterior mode
 – numerator terms are easy
 – need to estimate denominator at chosen \(\theta \)
 (crude density estimation approach or Chib’s MCMC approach)
Bayes Factor
Improper prior distributions

• Consider $y|\theta \sim N(\theta, 1)$ with $p(\theta) \propto 1$

$$p(y) \propto \int \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-\theta)^2} d\theta = 1$$

• Looks OK but $p(y) = 1$ for $y \in (-\infty, \infty)$ is not a valid marginal distn

• Ideas:
 – approx improper prior with proper prior (Unif($-c, c$)) but BF is sensitive to choice of c
 – partial Bayes factor: use part of the data to build a proper prior distn and then compute BF on the rest of the data, e.g., use y_1 and flat prior to define “new” prior

$$p(\theta) = N(\theta|y_1, 1)$$

and then can define a Bayes Factor for y_2, \ldots, y_n
 – fractional Bayes factor
Bayes Factor
Asymptotic approximation

• If sample size n is large, then
 \[
 \log(\text{BF}) \approx \log(p(y|\hat{\theta}_2, M_2)) - \log(p(y|\hat{\theta}_1, M_1)) \\
 - \frac{1}{2}(d_1 - d_2)\log(n)
 \]
 where
 - $\hat{\theta}_i$ = posterior mode under M_i ($i = 1, 2$)
 - d_i = dimension of the parameter space of M_i

• Equivalent to ranking models based on the BIC (Bayes information criterion)
 \[
 \text{BIC} = -\log(p(y|\hat{\theta}, M)) + \frac{1}{2}d \log(n)
 \]

• Common non-Bayesian criterion is AIC (Akaike information criterion)
 \[
 \text{AIC} = -\log(p(y|\hat{\theta}, M)) + d
 \]

• Both criteria start with log-likelihood and then penalize for additional parameters
Classical ideas and Bayesian Inference

- Classical/Bayesian
 - Bayesian = classical for some problems
 (large samples, small number of parameters with noninformative prior distns)
 - Standard methods often correspond to a Bayesian model for some prior (will see this in discussion of hierarchical models)
 - Big differences on some issues (e.g., p-values)
Classical ideas and Bayesian Inference

- **Asymptotics**
 - $\hat{\theta}_{MLE}$ is asymptotic efficient and consistent
 - $\hat{\theta}_{post.mode}$ is asymptotic efficient and consistent

- **Point estimation**
 - optimal Bayes point estimates depend on the specification of a loss function
 - classical inference relies on MLE
 - Bayes estimators are not generally unbiased neither are MLEs
 (recall defn of unbiasedness: $E(\hat{\theta}(y)|\theta) = \theta$)
Classical ideas and Bayesian Inference

• Confidence intervals
 – interpretation of Bayes and frequentist intervals
 – central posterior intervals or highest posterior density intervals

• Hypothesis testing
 – Frequentist setup:
 \[H_0 : \theta = \theta_0 \quad \text{vs.} \quad H_a : \theta > \theta_0 \]

 \[p\text{-value} \quad = \quad P(\bar{Y} \text{ is unusually large} | H_0 \text{ is true}) \]

 * only assessing \(H_0 \) vs data
 * \(p\)-value depends on unobserved values
 * likelihood ratio tests work for nested models only
Classical ideas and Bayesian Inference

- Hypothesis testing (cont’d)
 - Bayesian view:
 * need a prior distn $p(\theta)$ under both hypotheses
 * Bayes factor $BF = \frac{p(y|H_0)}{p(y|H_a)}$ where
 $p(y|H) = \int p(y|\theta, H)p(\theta|H)d\theta$
 * more on Bayes factors later
 * alternative for simple situation (like previous slide), just compute $\Pr(\theta > \theta_o|y)$
Classical ideas and Bayesian Inference
Hypothesis testing - an interesting example

• Discussion due to Morris (JASA 1987)

• Consider binomial sampling: $y|\theta \sim \text{Bin}(n, \theta)$

 \[H_0 : \theta \leq 0.5 \quad H_a : \theta > 0.5 \]

<table>
<thead>
<tr>
<th>n</th>
<th>y</th>
<th>$\hat{\theta}$</th>
<th>t</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>15</td>
<td>0.750</td>
<td>2.03</td>
<td>0.02</td>
</tr>
<tr>
<td>200</td>
<td>115</td>
<td>0.575</td>
<td>2.05</td>
<td>0.02</td>
</tr>
<tr>
<td>2000</td>
<td>1064</td>
<td>0.523</td>
<td>2.03</td>
<td>0.02</td>
</tr>
</tbody>
</table>

• Simple Bayesian analysis

 - model: $\hat{\theta} \sim N(\theta, 0.25/n)$ (normal approximation to binomial)

 - prior: $\theta \sim N(0.5, (0.5)^2)$

 \[
p(\theta > 0.5|y) = \begin{cases}
 0.796 & (n = 20) \\
 0.953 & (n = 200) \\
 0.976 & (n = 2000)
\end{cases}
\]
Classical ideas and Bayesian Inference

- Multiple comparisons
 - e.g., effect of performing many hypothesis tests
 - tempting to say that Bayesian’s don’t care about multiple comparisons but there is a price to modeling many parameters

- Stopping rules/data collections
 - recall binomial/neg.binomial example
 - more on this towards the end of semester

- Nonparametrics
 - many nonparametric tests/procedures have been developed
 - Bayesian non-parametrics is complex