Hierarchical models – motivation

James-Stein inference

- Suppose $X \sim N(\theta, 1)$
 - X is admissible (not dominated) for estimating θ with squared error loss
- Now $X_i \sim N(\theta_i, 1), i = 1, \dots, r$
 - $-X = (X_1, \dots, X_r)$ is admissible if r = 1, 2 but not $r \ge 3$
 - for $r \ge 3$

$$\delta_i = \left(1 - \frac{r - 2}{\sum_i X_i^2}\right) X_i$$

yields better estimates

- known as James-Stein estimation

Hierarchical models – motivation

James-Stein inference (cont'd)

- Bayes view: $X_i \sim N(\theta_i, 1)$ and $\theta_i \sim N(0, a)$
 - posterior distn: $\theta_i | X_i \sim N$
 - posterior mean is $(1 \frac{1}{a+1})X_i$
 - need to estimate a; one natural approach yields James-Stein

• Summary

- estimation results depend on loss function
- squared-error loss do well on avg but maybe poor for one component
- powerful lesson about combining related problems to get improved inferences

Hierarchical Models

Suppose we have data

$$Y_{ij}$$
 $j = 1, \dots, J$
 $i = 1, \dots, n_j$

such that Y_{ij} $i = 1, ..., n_j$ are independent given θ_j with distribution $p(Y|\theta_j)$. e.g.

 \underbrace{scores}_{Y} for $\underbrace{students}_{(i)}$ in $\underbrace{classrooms}_{(j)}$ It might be reasonable to expect θ_j 's to be "similar" (but not necessarily identical).

to expect θ_j 's to be "similar" (but not necessarily identical) Therefore, we may perhaps try to estimate population distribution of θ_j 's. This is achieved in a natural way if we use a prior distribution in which the θ_j 's are viewed as a sample from a common population distribution.

Hierarchical Models

- **Key:** The observed data, y_{ij} , with units indexed by i within groups indexed by j, can be used to estimate aspects of the population distribution of the θ_j 's even though the values of θ_j are not themselves observed.
- **How?** It is natural to model such a problem hierarchically
 - observable outcomes modeled conditionally on parameters θ
 - $-\theta$ given a probabilistic specification in terms of other parameters, ϕ , known as hyperparameters.

Hierarchical Models

- Nonhierarchical models are usually inappropriate for hierarchical data.
 - a single θ (i.e. $\theta_j \equiv \theta \ \forall j$) may be inadequate to fit a combined data set.
 - separate unrelated θ_j are likely to "overfit" data.
 - information about one θ_j can be obtained from others' data.
- Hierarchical model uses many parameters but population distribution induces enough structure to avoid overfitting.

Exchangeability

Recall: A set of random variables $(\theta_1, \ldots, \theta_k)$ is **exchangeable** if the joint distribution is invariant to permutations of the indexes $(1, \ldots, k)$. The indexes contain no information about the values of the random variables.

- hierarchical models often use exchangeable models for the prior distribution of model parameters
- iid random variables are one example
- seemingly non-exchangeable r.v.'s may become exchangeable if we condition on all available information (e.g., regression analysis)

Exchangeable models

- Basic form of exchangeable model
 - $-\theta = (\theta_1, \dots, \theta_k)$ are independent conditional on additional parameters ϕ (known as hyperparameters)

$$p(\theta|\phi) = \prod_{j=1}^{k} p(\theta_j|\phi)$$

- ϕ referred to as hyperparameter(s) with hyperprior distn $p(\phi)$
- implies $p(\theta) = \int p(\theta|\phi)p(\phi)d\phi$
- work with joint posterior distribution, $p(\theta, \phi|y)$
- One objection to exchangeable model is that we may have other information, say (X_j) . In that case may take

$$p(\theta_1, \dots, \theta_J | X_1, \dots, X_J) = \prod_{i=1}^J p(\theta_i | \phi, X_i)$$

- Model is specified in nested stages
 - sampling distribution $p(y|\theta)$ (first level of hierarchy)
 - prior (or population) distribution for θ : $p(\theta|\phi)$ (second level of hierarchy)
 - prior distribution for ϕ (hyperprior): $p(\phi)$
 - Note: more levels are possible
 - hyperprior at highest level is often diffuse but improper priors must be checked carefully to avoid improper posterior distributions.

- Inference
 - Joint distn:

$$p(y, \theta, \phi) = p(y|\theta, \phi)p(\theta|\phi)p(\phi)$$
$$= p(y|\theta)p(\theta|\phi)p(\phi)$$

- Posterior distribution

$$p(\theta, \phi|y) \propto p(\phi)p(\theta|\phi)p(y|\theta)$$
$$= p(\theta|y, \phi)p(\phi|y)$$

- * often $p(\theta|\phi)$ is conjugate for $p(y|\theta)$
- * if we know (or fix) ϕ : $p(\theta|y,\phi)$ follows from conjugacy
- * then need inference for ϕ : $p(\phi|y)$

Computational approaches for hierarchical models

• Marginal model

$$p(y|\phi) = \int p(y|\theta)p(\theta|\phi)d\theta$$

do inference only for ϕ (e.g. marginal maximum likelihood)

• Empirical Bayes

$$p(\theta|y,\hat{\phi}) \propto p(y|\theta)p(\theta|\hat{\phi})$$

do inference for θ

• Hierarchical Bayes (a.k.a. full Bayes)

$$p(\theta, \phi|y) \propto p(y|\theta)p(\theta|\phi)p(\phi)$$

inference for θ and ϕ

Hierarchical models and random effects

Animal breeding example

Consider the following mixed linear model commonly used in animal breeding studies

$$Y = X\beta + Zu + e$$

X = design matrix for fixed effects

Z = design matrix for random effects

 $\beta = \text{fixed effects parameters}$

u = random effects parameters

 $e = \text{individual variation} \sim N(0, \sigma_e^2 I)$

$$Y|\beta, u, \sigma_e^2 \sim N(X\beta + Zu, \sigma_e^2 I)$$

$$u|\sigma_a^2 \sim N(0, \sigma_a^2 A)$$

(can also think of β as random with $p(\beta) \propto 1$)

Hierarchical models and random effects

Animal breeding example

• Marginal model (after integrating out u)

$$Y|\beta, \sigma_a^2, \sigma_e^2 \sim N(X\beta, \sigma_a^2 ZAZ' + \sigma_e^2 I)$$

- Note: the separation of parameters into θ and ϕ is somewhat ambiguous here:
 - model specification suggests $\phi = \{\sigma_a^2\}$ and $\theta = \{\beta, u, \sigma^e\}$
 - marginal model suggests $\phi = \{\beta, \sigma_a^2, \sigma_e^2\}$ and $\theta = \{u\}$

Hierarchical models and random effects

Animal breeding example

• Empirical Bayes (known as REML/BLUP)

We can estimate σ_a^2 , σ_e^2 by marginal (restricted?) maximum likelihood $(\hat{\sigma}_a^2, \hat{\sigma}_e^2)$.

Then

$$p(u, \beta|y, \hat{\sigma}_a^2, \hat{\sigma}_e^2) \propto p(y|\beta, u, \hat{\sigma}_e^2) p(u|\hat{\sigma}_a^2)$$

(a joint normal distn)

• Hierarchical Bayes

$$p(\beta, \sigma_a^2, \sigma_e^2, \mu|y) \propto p(y|\beta, u, \sigma_e^2) P(u|\sigma_a^2) p(\beta, \sigma_a^2, \sigma_e^2)$$

Computation with hierarchical models

- Two cases
 - conjugate case $(p(\theta|\phi)$ conjugate prior for $p(y|\theta)$
 - * approach described below
 - non-conjugate case
 - * requires more advanced computing
 - * problem-specific implementations
- Computational strategy for conjugate case
 - write $p(\theta, \phi|y) = p(\phi|y)p(\theta|\phi, y)$
 - identify conditional posterior density of θ given ϕ , $p(\theta|\phi, y)$ (easy for conjugate models)
 - obtain marginal posterior distribution of ϕ , $p(\phi|y)$
 - simulate from $p(\phi|y)$ and then $p(\theta|\phi,y)$

Computation with hierarchical models

The marginal posterior distribution $p(\phi|y)$

- Approaches for obtaining $p(\phi|y)$
 - integration $p(\phi|y) = \int p(\theta, \phi|y) d\theta$
 - algebra for a convenient value of θ

$$p(\phi|y) = \frac{p(\theta, \phi|y)}{p(\theta|\phi, y)}$$

- Sampling from $p(\phi|y)$
 - easy if known distribution
 - grid if ϕ is low-dimensional
 - more sophisticated methods (later)

- Series of toxicology studies
- Study j: n_j exchangeable individuals y_j develop tumors
- Model specification:

$$-y_j|\theta_j \sim \text{Bin}(n_j, \theta_j), j = 1, \dots, J \text{ (indep)}$$

$$-\theta_j, j = 1, \dots, J \mid \alpha, \beta \sim \text{Beta}(\alpha, \beta) \text{ (iid)}$$

- $-p(\alpha,\beta)$ to be specified later, hopefully "non-informative"
- Marginal model:
 - can integrate out $\theta_j, j = 1, \ldots, J$ in this case

$$p(y|\alpha,\beta) = \int \cdot \int \prod_{j=1}^{J} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta_{j}^{\alpha-1} (1-\theta_{j})^{\beta-1} {n_{j} \choose y_{j}} \theta_{j}^{y_{j}} (1-\theta_{j})^{n_{j}-y_{j}} d\theta_{1} \cdot d\theta_{J}$$

$$= \prod_{j=1}^{J} {n_{j} \choose y_{j}} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+y_{j})\Gamma(\beta+n_{j}-y_{j})}{\Gamma(\alpha+\beta+n_{j})}$$

- $-y_j, j=1,\ldots,J$ are ind
- distn of y_j is known as beta-binomial distn

- Conditional distn of θ 's given α, β, y
 - $-p(\theta|\alpha,\beta,y) = \prod_{j} \text{Beta}(\alpha + y_j,\beta + n_j y_j)$
 - independent conjugate analyses
 - find this by algebra or by inspection of $p(\theta, \alpha, \beta|y)$
 - analysis is thus reduced to finding (and simulating from) $p(\alpha, \beta|y)$
- Marginal posterior distn of α, β

$$p(\alpha, \beta|y) \propto p(\alpha, \beta) \prod_{j=1}^{J} \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha + y_j)\Gamma(\beta + n_j - y_j)}{\Gamma(\alpha + \beta + n_j)}$$

- could derive from marginal distn on previous slide
- could also derive from joint posterior distn
- not a known distn (on α, β) but easy to evaluate

- Hyperprior distin $p(\alpha, \beta)$
 - First try: $p(\alpha, \beta) \propto 1$ (flat, noninformative?)
 - * equivalent to $p(\alpha/(\alpha+\beta), \alpha+\beta) \propto (\alpha+\beta)$
 - * equivalent to $p(\log(\alpha/\beta), \log(\alpha+\beta)) \propto \alpha\beta$
 - * check to see if posterior is proper
 - · consider diff't cases (e.g., $\alpha \to 0, \beta$ fixed)
 - · if $\alpha, \beta \to \infty$ with $\alpha/(\alpha + \beta) = c$, then $p(\alpha, \beta|y) \propto \text{constant (not integrable)}$
 - · this is an improper distn
 - · contour plot would also show this (lots of probability extending out towards infinity)

- Hyperprior disting $p(\alpha, \beta)$
 - Second try: $p(\alpha/(\alpha + \beta), \alpha + \beta) \propto 1$ (flat on prior mean and precision)
 - * more intuitive, these two params are plausibly independent
 - * equivalent to $p(\alpha, \beta) \propto 1/(\alpha + \beta)$
 - * still leads to improper posterior distn
 - Third try: $p(\log(\alpha/\beta), \log(\alpha+\beta)) \propto 1$ (flat on natural transformation of prior mean and variance)
 - * equivalent to $p(\alpha, \beta) \propto 1/(\alpha\beta)$
 - * still leads to improper posterior distn
 - Fourth try: $p(\alpha/(\alpha+\beta), (\alpha+\beta)^{-1/2}) \propto 1$ (flat on prior s.d. and prior mean)
 - * equivalent to $p(\alpha, \beta) \propto (\alpha + \beta)^{-5/2}$
 - \ast "final answer" proper posterior distn
 - * equivalent to $p(\log(\alpha/\beta), \log(\alpha+\beta)) \propto \alpha\beta(\alpha+\beta)^{-5/2} \text{ (this will come up later)}$

- Computing
 - later consider more sophisticated approaches
 - for now, use grid approach
 - * simulate α, β from grid approx to posterior distn
 - * then simulate θ 's using conjugate beta posterior distn
 - convenient to use $(\log(\alpha/\beta), \log(\alpha+\beta))$ scale because contours "look better" and we can get away with smaller grid
- Illustrate with rat tumor data (separate handout)

- Data model
 - $-y_j|\theta_j \sim N(\theta_j, \sigma_j^2), j = 1, \dots, J \text{ (indep)}$
 - $-\sigma_j^2$'s are assumed known (can release this assumption later)
 - motivation: y_j could be a summary statistic with (approx) normal distn from the j-th study (e.g., regression coefficient, sample mean)
- Prior distn
 - need a prior distn $p(\theta_1, \ldots, \theta_J)$
 - if exchangeable, then model θ 's as iid given parameters ϕ
 - some additional comments follow

• Constructing a prior distribution

Can think of this data model as a one-way ANOVA model (especially if y_j is a sample mean of n_j obs in group j). Typical ANOVA analysis begins by testing:

$$H_0: \theta_1 = \ldots = \theta_J$$

$$H_a$$
: not H_0

- If we don't reject H_0 , we might prefer to estimate each θ_j by the pooled estimate,

$$\bar{y}_{..} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2} y_j}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2}}$$

- If we reject H_0 , we might use separate estimates, $\hat{\theta}_j = y_j$ for each j.
- Alternative: compromise between complete pooling and none at all,

e.g., a weighted combination,

$$\theta_j = \lambda_j y_j + (1 - \lambda) \bar{y}_{..}$$
 where $\lambda_j \in (0, 1)$

- Constructing a prior distribution (Cont'd)
 - (a) The pooled estimate $\hat{\theta} = \bar{y}_{..}$ is the posterior mean if the J values θ_j are restricted to be equal, with a uniform prior density on the common θ ; i.e. $p(\theta) \propto 1$.
 - (b) The unpooled estimate $\hat{\theta}_j = y_j$ is the posterior mean if the J values θ_j have independent uniform prior densities on $(-\infty, \infty)$; i.e. $p(\theta_1, \dots, \theta_J) \propto 1$.
 - (c) The weighted combination is the posterior mean if the J values θ_j are iid $N(\mu, \tau^2)$.
 - Note: (a) corresponds to (c) with $\tau^2 = 0$
 - (b) corresponds to (c) with $\tau^2 \to \infty$

- Data model $p(y_j|\theta_j) \sim N(\theta_j, \sigma_j^2), j = 1, \dots, J$ σ_j^2 's assumed known
- Prior model for θ_j 's is normal (conjugate)

$$p(\theta_1, \dots, \theta_J | \mu, \tau) = \prod_{j=1}^J N(\theta_j | \mu, \tau^2)$$

$$p(\theta_1, \dots, \theta_J) = \int \left[\prod_{j=1}^J N(\theta_j | \mu, \tau^2) \right] p(\mu, \tau) d(\mu, \tau)$$

i.e. θ_j 's conditionally independent given (μ, τ)

- Hyperprior distribution
 - noninformative distribution for μ given τ , i.e., $p(\mu|\tau) \propto 1$ (this won't matter much because the combined data from all J experiments are highly informative about μ)
 - more on $p(\tau)$ later
 - $-p(\mu,\tau) = p(\tau)p(\mu|\tau) \propto p(\tau)$

• Joint posterior distribution:

$$p(\theta, \mu, \tau | y)$$

$$\propto p(\mu, \tau) p(\theta | \mu, \tau) p(y | \theta)$$

$$\propto p(\tau) \prod_{j=1}^{J} N(\theta_j | \mu, \tau^2) \prod_{j=1}^{J} N(y_j | \theta_j, \sigma_j^2)$$

$$\propto p(\tau) \frac{1}{\tau^J} \exp \left[-\frac{1}{2} \sum_j \frac{1}{\tau^2} (\theta_j - \mu)^2 \right] \exp \left[-\frac{1}{2} \sum_j \frac{1}{\sigma_j^2} (y_j - \theta_j)^2 \right]$$

- Factors that depend only on y and $\{\sigma_j\}$ are treated as constants because they are known
- Posterior distn is a distn on J+2 parameters
- Can compute using MCMC (later) or
- Hierarchical computation:
 - 1. $p(\theta_1,\ldots,\theta_J|\mu,\tau,y)$
 - 2. $p(\mu|\tau,y)$
 - 3. $p(\tau|y)$

Normal-normal model: computation Conditional posterior distn of θ given μ, τ, y

- Treat (μ, τ) as fixed in previous expression
- Given (μ, τ) , the J separate parameters θ_j are independent in their posterior distribution
- $\theta_j | y, \mu, \tau \sim N(\hat{\theta}_j, V_j)$ with

$$\hat{\theta}_j = \frac{\frac{1}{\sigma_j^2} y_j + \frac{1}{\tau^2} \mu}{\frac{1}{\sigma_j^2} + \frac{1}{\tau^2}} \text{ and } V_j = \frac{1}{\frac{1}{\sigma_j^2} + \frac{1}{\tau^2}}$$

- Result from simple normal-normal conjugate analysis
- $\hat{\theta}_j$ is weighted average of hyperprior mean and data

Marginal posterior distribution of μ , τ given y

• We can analytically integrate the full posterior disting $p(\theta, \mu, \tau | y)$ over θ

$$p(\mu, \tau | y) = \int p(\theta, \mu, \tau | y) d\theta$$

- An alternative is to use the marginal model $p(\mu, \tau | y) \propto p(y | \mu, \tau) p(\mu, \tau)$
- Marginal model

$$p(y|\mu,\tau) = \prod_{j=1}^{J} \int \underbrace{N(\theta_{j}|\mu,\tau)N(\bar{y}_{.j}|\theta_{j},\sigma_{j}^{2})}_{\text{quadratic in }y_{j}} d\theta_{j}$$

$$\Rightarrow y_{j}|\mu,\tau \sim \text{Normal}$$

$$E(y_{j}|\mu,\tau) = E(E(y_{j}|\theta_{j},\mu,\tau)) = E(\theta_{j}) = \mu$$

$$Var(y_{j}|\mu,\tau) = E(Var(y_{j}|\mu,\tau,\theta_{j})) + Var(E(y_{j}|\mu,\tau,\theta_{j})) = E(\sigma_{j}^{2}) + Var(\theta_{j}) = \sigma_{j}^{2} + \tau^{2}$$

Marginal posterior distribution of μ, τ given y

• End result is

$$p(\mu, \tau | y) \propto p(\tau) \prod_{j=1}^{J} N(y_j | \mu, \sigma_j^2 + \tau^2)$$

 $\propto p(\tau) \prod_{j=1}^{J} (\sigma_j^2 + \tau^2)^{-1/2} \exp\left(-\frac{(y_j - \mu)^2}{2(\sigma_j^2 + \tau^2)}\right)$

• Note: in non-normal models, it is not generally possible to integrate over θ and rely on the marginal model, so that more elaborate computational methods are needed

Posterior distribution of μ given τ, y

- Instead of sampling (μ, τ) on a grid, factor the distribution: $p(\mu, \tau|y) = p(\tau|y)p(\mu|\tau, y)$
- $p(\mu|\tau, y)$ is obtained by looking at $p(\mu, \tau|y)$ and thinking of τ as known:

$$\Rightarrow$$
 $p(\mu|\tau,y) \propto \prod_{j=1}^{J} N(y_j|\mu,\sigma_j^2 + \tau^2)$

- This is the posterior distribution with a noninformative prior density on μ
- Result: $\mu | \tau, y \sim N(\hat{\mu}, V_{\mu})$ with

$$\hat{\mu} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2} y_j}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}} \quad \text{and} \quad V_{\mu} = \frac{1}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2 + \tau^2}}$$

Posterior distribution of τ given y

- $p(\tau|y)$ can be found in two equivalent ways
 - integrate $p(\mu, \tau|y)$ over μ
 - use algebraic form $p(\tau|y) = p(\mu, \tau|y)/p(\mu|\tau, y)$, which must hold for any μ
- Choose the second option, and evaluate at $\mu = \hat{\mu}$ (for simplicity):

$$p(\tau|y) \propto \frac{\prod_{j=1}^{J} N(y_j|\hat{\mu}, \sigma_j^2 + \tau^2)}{N(\hat{\mu}|\hat{\mu}, V_{\mu})}$$

$$\propto V_{\mu}^{1/2} \prod_{j=1}^{J} (\sigma_j^2 + \tau^2)^{-1/2} \exp\left(-\frac{(y_j - \hat{\mu})^2}{2(\sigma_j^2 + \tau^2)}\right)$$

- Note that V_{μ} and $\hat{\mu}$ are both functions of τ
- Compute $p(\tau|y)$ on a grid of values of τ

Normal-normal model: computation Summary

- To simulate from joint posterior distribution $p(\theta, \mu, \tau | y)$:
 - 1. draw τ from $p(\tau|y)$ (grid approximation)
 - 2. draw μ from $p(\mu|\tau,y)$ (normal distribution)
 - 3. draw $\theta = (\theta_1, \dots, \theta_J)$ from $p(\theta|\tau, y)$ (independent normal distribution for each θ_j)
- Choice of $p(\tau)$
 - $-p(\tau) \propto 1$ proper posterior distribution
 - $p(\log \tau) \propto 1$ improper posterior distribution (equivalent to $p(\tau^2) \propto 1/\tau^2$)
 - alternative family for informative prior distn is scaled inverse- χ^2 family
- Illustrate with SAT coaching example (separate handout)

Introduction

- Goal: Posterior inference for parameters, missing data (if any), and predictions
- Thus far:
 - analytic results or exact simulation in small problems
 - normal approximation
 - grid approximation
 - use hierarchical structure (e.g., μ , $\tau | y$, then $\theta | y, \mu, \tau$, then $\tilde{y} | y, \theta, \mu, \tau$)
- Now consider additional tools:
 - iterative simulation (Markov chain Monte Carlo)
 - importance sampling (covered later in robust models section)
- A mini statistical computing course

Motivation for additional tools

- Examples from first part of the course have obvious extensions for which computation becomes difficult:
 - logistic regression
 - * more than one predictor
 - * incorporating random effects
 - normal-normal hierarchical model
 - * may use non-normal distn at either level (t-distn for population distn or Poisson distn for count data)
 - * nontrivial covariance matrix in prior distn (spatial models, time series models)

- An overall computation strategy
 - initial (perhaps crude) estimates of parameters
 - direct simulation when possible
 - if direct simulation is not possible
 - * approximations based at the posterior mode
 - * iterative simulation (e.g., Gibbs sampler, Metropolis algorithm)
 - importance sampling for robustness checks and sensitivity analysis
- Next
 - review/discuss these ideas

Some helpful ideas we have met

- Compute posterior distn on log scale (to avoid underflows or overflows)
- Factoring the posterior distribution (e.g., $p(\theta_1, \theta_2|y) = p(\theta_1|\theta_2, y)p(\theta_2|y)$)
 - reduce to easier, lower-dimensional problems
 - isolate the parameters most influenced by prior distribution (e.g., τ in 8 schools example)
 - difficulties:
 - * can't generally find marginal distn easily
 - * hard to use a grid with a high-dimensional marginal distn
- Transformations
 - create more understandable parameters
 - make prior independence plausible
 - improve normal approximation (e.g., log of scale parameter)
 - speed/simplify iterative simulation

Notation/Notes

- $p(\theta|y)$ is the posterior distn
 - $-\theta$ now includes all parameters (even in hierarchical model)
 - often we only know the unnormalized posterior distn $q(\theta|y)$
 - * i.e., $p(\theta|y) \propto p(y|\theta)p(\theta) = q(\theta|y)$
 - * more formally, $p(\theta|y) = c(y)q(\theta|y)$
 - our computation discussion will generally use $p(\theta|y)$ and I will point out whether it matters whether the posterior distn is normalized

Initial estimation

- Starting point for subsequent approaches
- Serves as a check for other approaches
- Problem-specific methods are required
 - use results from other methods
 (e.g., maximum likelihood estimates in bioassay logistic regression)
 - fix hyperparameters at crude estimates (e.g., separate and pooled estimates for the 8 schools are equivalent to $\tau=\infty$ and $\tau=0$)

Direct simulation

- We have already seen that simulation is a powerful approach for studying the posterior distn in a Bayesian analysis
- Brief discussion of simulation tools
 - useful in simpler (low dimensional) problems
 - same tools are useful as components for more advanced simulations
- Simulation analysis
 - report number of draws
 - report summary statistics (mean, sd, percentiles)
 - graphs
 - how many draws? depends on desired accuracy (e.g., if we have iid simulations then std error of posterior mean is equal to posterior s.d. divided by \sqrt{n})
- Direct simulation is not usually possible in high dimensions but direct simulation techniques can be useful tools within more sophisticated algorithms

Direct simulation approaches

- Exact simulation
 - standard algorithms for drawing from standard distns (uniform, normal, Poisson, gamma, etc.)
 - available in most software including S-plus
- Grid approximation
 - discrete (evenly spaced) grid $\theta_1, \theta_2, \dots, \theta_N$,

$$\Pr_{grid}(\theta = \theta_j) = p(\theta_j|y) / (\sum_i p(\theta_i|y))$$

- we have already seen this approach
- works for normalized or unnormalized posterior distn
- hard in 2 or more dimensions
- choice of grid can affect the answer

Direct simulation approaches

- Probability integral transform
 - consider posterior distn $p(\theta|y)$ with corresponding cdf $F(\theta|y)$
 - recall probability result: if $U \sim \text{Unif}(0,1)$, then $\theta = F^{-1}(U)$ is a r.v. with distn $p(\theta|y)$
 - e.g., if $\theta|y \sim N(\mu, \tau^2)$, then $\theta = \mu + \tau \Phi^{-1}(U)$
 - discrete r.v.'s are possible but harder to program
 - can use this to improve grid to trapezoidal approximation

Direct simulation approaches

- Rejection sampling
 - suppose we find $g(\theta)$ we can sample from with $p(\theta|y)/g(\theta) \leq M$ (with M known)
 - algorithm:
 - * draw $\theta \sim g(\theta)$
 - * accept θ with prob $p(\theta|y)/(Mg(\theta))$, otherwise reject and draw a new candidate
 - * for log-concave densities this approach can be used with trapezoids defining rejection function (Gilks and Wild, 1992, Applied Statistics)
- Many other useful methods for direct simulation that we don't have time to discuss here

Iterative simulation

- Basic idea: to sample from $p(\theta|y)$ create a Markov chain with $p(\theta|y)$ as stationary distribution
- Algorithms:
 - Gibbs sampler (full conditionals)
 - Metropolis-Hastings algorithm (jumping distn)
 - combinations of Gibbs and M-H
- Implementation issues (later)

Gibbs sampler

- Key features
 - break problem into lower-dimensional pieces using conditional distributions
 - conditional posterior distributions often have simple form
- Start by drawing an initial $\theta = (\theta_1, \dots, \theta_k)$ from an approximation to $p(\theta|y)$.
- Repeat the following steps using most recently drawn values for variables in conditioning set:
 - draw θ_1 from $p(\theta_1 \mid \theta_2, \dots, \theta_k, y)$
 - draw θ_2 from $p(\theta_2 \mid \theta_1, \theta_3, \dots, \theta_k, y)$

. . .

- draw θ_k from $p(\theta_k \mid \theta_1, \dots, \theta_{k-1}, y)$
- Can update parameters one at a time (as above) or in blocks

Plan of attack

- We have glossed over some details
 - non-standard distributions come up in Gibbs sampling
 - starting values
 - monitoring convergence
 - inference from iterative simulation
 - software availability
 - efficiency considerations
- Return to these after an example

Non-standard distributions

- It may happen that one or more of the Gibbs sampling distns is not a known distn
- What then?
 - can go back to previous direct simulation discussion
 - * grid approximation
 - * rejection sampling, etc.
 - Metropolis (or (Metropolis-Hastings) algorithm
 - * let's meet this important subject now

Metropolis-Hastings (M-H) algorithm

- Replaces "conditional draws" of Gibbs sampler with "jumps" around the parameter space
- Algorithm:
 - given current draw θ (scalar or vector)
 - sample a candidate point θ^* from jumping distribution $J(\theta^*|\theta)$
 - accept candidate or stay in place with
 probabilities determined by importance ratio

$$r = \frac{p(\theta^*|y)/J(\theta^*|\theta)}{p(\theta|y)/J(\theta|\theta^*)}$$

- Simplifies if J is symmetric (Metropolis algorithm)
- Combining M-H and Gibbs: M-H steps can be used in place of one conditional distn in a Gibbs sampler, or a single M-H step can replace several (or even all) of the conditional distns

Starting values

- Markov chain will converge to stationary distribution from **any** starting value assuming
 - chain has a nonzero probability of eventually getting from any point to any other point (i.e., parameter space is not divided into separate regions)
 - chain does not drift off to infinity (can happen if the posterior distribution is improper – which means the model is wrong!)
- Assessing when this convergence has occurred is best done using multiple chains with overdispersed starting points

Starting values

- An algorithm for choosing starting values:
 - find posterior mode (or modes)(marginal distn usually better than joint distn)
 - create overdispersed approximation to posterior (e.g., t_4 instead of normal)
 - sample 1000 points from approximation
 - resample 5 or 10 starting values
 (using importance ratios as described later)

Monitoring convergence

- Run several sequences in parallel
- Can use graphical displays to monitor convergence or semi-formal approach of Gelman and Rubin (described now)
- Two estimates of $sd(\theta|y)$
 - underestimate from sd within each sequence
 - overestimate from sd of mixture of sequences
- Potential scale reduction factor:

$$\sqrt{\widehat{R}} = \frac{\text{mixture-of-sequences estimate of } \operatorname{sd}(\theta|y)}{\text{within-sequence estimate of } \operatorname{sd}(\theta|y)}$$

- Initially $\sqrt{\widehat{R}}$ is large (because we use overdispersed starting points)
- At convergence, $\sqrt{\hat{R}} = 1$ (each sequence has made a complete tour)
- Monitor $\sqrt{\hat{R}}$ for all parameters and quantities of interest; stop simulations when they are all near 1 (e.g., below 1.2)

Inference from posterior simulations

- At approximate convergence we have many draws from the posterior distribution
- The draws are **not** independent
- This means that obtaining standard errors to assess simulation noise is difficult (can use between-chain info, batching,)
- Note there is a distinction here between posterior uncertainty about θ and Monte Carlo uncertainty about some summary of the posterior distn (e.g., std error of $E(\theta|y)$)
- Good news: Simulation noise is generally minor compared to posterior uncertainty about θ

Software availability

- Variety of packages (more in development)
- One popular package is BUGS/CODA
 - BUGS (Bayesian analysis Using Gibbs Sampling)
 - CODA (Convergence Diagnosis and Output Analysis)
 - available on the web at http://www.mrc-bsu.cam.ac.uk/ bugs/welcome.shtml
- Other software described by Carlin and Louis (1996)
- Create new models write your own software

Efficiency considerations

- Theory under construction but some things are known:
 - Gibbs sampling
 - * works best if we can create independent or nearly independent blocks of parameters
 - * partition parameters into groups
 - * transform parameters
 - Metropolis-Hastings algorithms
 - * choice of jumping distn is key

- How do we choose the jumping distribution $J(\theta|\theta^{(t-1)})$?
- Optimal J is $p(\theta|y)$ independent of current value $\theta^{(t-1)}$
 - this always accepts (r=1)
 - but if we could do this we wouldn't need M-H
- Goals in choosing J:
 - J should be easy to sample from
 - it should be easy to compute r
 - jumps should go far (so we move around the parameter space) but not too far (so they are not always rejected)

- Three primary approaches
 - independence M-H
 - random walk M-H (used most often)
 - approximation M-H
- Independence M-H
 - find a distribution $g(\theta)$ independent of current $\theta^{(t-1)}$ and keep generating candidates from $g(\theta)$
 - requires g be a reasonably good approximation
 - hard to do for M-H within Gibbs

- Random Walk M-H
 - generate candidate using random walk (often normal) centered at current value
 - $-J(\theta|\theta^{(t-1)}) = N(\theta|\theta^{(t-1)}, cV)$
 - note this is symmetric so M-H acceptance calculation simplifies
 - works well if V is chosen to be posterior
 variance (don't know this but can use a pilot run to get some idea)
 - -c is a constant chosen to optimize efficiency
 - theory results indicate optimal acceptance rate for this kind of jumping distn is between .2 and .5 (decreases with dimension)

- Approximation M-H
 - generate candidate using an approximation to target distn (varying from iteration to iteration)
 - e.g., $J(\theta|\theta^{(t-1)}) = N(\theta|\theta^{(t-1)}, V_{\theta^{(t-1)}})$
 - now variance matrix depends on current value this is no longer symmetric
 - idea is to make this a good approximation (high acceptance rate)

Debugging iterative simulation methods

- Checking that programs are correct is crucial (especially if you write your own)
- Can be difficult to check because
 - output is a distribution not a point estimate
 - incorrect output may look reasonable
- Some useful debugging ideas:
 - build up from simple (debugged) models
 - when adding a new parameter, start by setting it to a fixed value, then let it vary
 - simulate fake data (repeat the following steps)
 - * draw "true parameters" from prior distn (must be proper)
 - * simulate data from the model
 - * obtain draws from posterior distn
 - * compare distns of posterior draws and "true parameters"

Debugging iterative simulation methods

- Common problems
 - conceptual flaw in part of model
 - prior is too vague
 - * this may give improper posterior distn
 - * detect by looking for values that don't make substantive sense

Approximation

- Recall results of Chapter 4 ... for large samples $p(\theta|y)$ is approx $N(\theta|\hat{\theta}, I(\hat{\theta})^{-1})$ where $\hat{\theta}$ is the posterior mode
- Often use inverse curvature matrix of log posterior density, $V_{\theta} = \left[-\frac{d^2}{d\theta^2} \log p(\theta|y)|_{\theta=\hat{\theta}} \right]_{,}^{-1}$ as variance matrix for approximation
- Transformations are often used to improve quality of normal approx
- May use t distn with few degrees of freedom in place of normal distn (to protect against long tails)
- Multiple modes can be a problem: $N(\hat{\theta}, V_{\theta})$ or $t_4(\hat{\theta}, V_{\theta})$ approx at each mode (i.e., a mixture)
- Reasons **not** to approximate based on modes:
 - misleading in some problems (e.g., in 8 schools example, mode is $\tau = 0$ which is at edge of parameter space)
 - advances in algorithms have made inference from exact posterior distn possible

Approximation - mode finding

- To apply normal approximation, need posterior mode
- Review traditional stat computing topic of mode finding (optimization)
- Iterative conditional modes

$$- \text{ start at } \theta^{(0)} = (\theta_1^{(0)}, \dots, \theta_d^{(0)})$$

$$- \text{ for } i = 1, \dots$$

$$* \text{ for } j = 1, \dots, d$$

$$\cdot \text{ choose } \theta_j^{(i)} \text{ as the value that maximizes}$$

$$(\text{or even just increases})$$

$$p(\theta_1^{(i)}, \dots, \theta_{j-1}^{(i)}, \theta, \theta_{j+1}^{(i-1)}, \dots, \theta_d^{(i-1)})$$

- leads to a local maximum

Approximation - mode finding

- Newton's method $(L = \log p(\theta|y))$
 - start at $\theta^{(0)}$
 - iterate with $\theta^{(t)} = \theta^{(t-1)} [L''(\theta^{(t-1)})^{-1}L'(\theta^{(t-1)})]$
 - converges fast but is sensitive to starting value
 - can use numerical derivatives
- Other optimization methods
 - steepest ascent $\theta^{(t)} = \theta^{(t-1)} + \alpha L'(\theta^{(t-1)})$
 - quasi-Newton methods
 - simplex/polytope (no derivative methods)

Approximation

- For many problems, especially hierarchical models, the joint mode is not very useful
- Instead may focus on factorization $p(\theta,\phi|y) = p(\phi|y)p(\theta|\phi,y)$
- Often $p(\theta|\phi, y)$ is easy (e.g., conjugate family)
- Normal approximation for marginal posterior disting $p(\phi|y)$
- But need mode of $p(\phi|y)$
 - sometimes this function can be identified and maximized analytically
 - for other situations EM algorithm is helpful

Approximation - The EM algorithm

- EM is an iterative algorithm for maximizing functions (likelihoods or posterior distns) when there is missing data
- Applied here in maximizing $p(\phi|y)$ treating θ as missing data
- Idea:
 - start with initial guess for ϕ
 - given ϕ we can estimate "missing data" θ
 - given estimated θ it may be easy to now maximize for improved ϕ
 - repeat last two steps

Approximation - The EM algorithm

- Iterative algorithm with two steps
- Suppose current value of ϕ is $\phi^{(t)}$
 - E-step
 - * compute $Q(\phi) = E(\log(p(\theta, \phi|y)|\phi = \phi^{(t)}) = \int \log(p(\theta, \phi|y))p(\theta|\phi^{(t)}, y)d\theta$
 - * essentially computes expected value of needed functions of θ rather than estimating the "missing" θ
 - M-step
 - * choose $\phi^{(t+1)}$ as the value of ϕ that maximizes $Q(\phi)$
- Can show that $p(\phi|y)$ increases after each E-M pair of steps

- Historically people often used numerical integration to study posterior distn
- Many quantities of interest can be written as $E(h(\theta)|y) = \int h(\theta)p(\theta|y)d\theta$ (e.g., posterior mean)
- In modern world, simulation is often preferred (but numerical integration still used)
- We focus on useful tools developed in this context

- Traditional quadrature
 - trapezoidal rule (piecewise linear approximation)
 - Simpson's rule (piecewise quadratic)
 - algorithms for iterating
 - Gaussian quadrature

- Integration via direct simulation
 - if we can generate $\theta_1, \dots, \theta_N$ from $p(\theta|y)$ then we can estimate integral as $\sum_i h(\theta_i)/N$
 - of course, this is just our direct simulation approach!
- Importance sampling
 - can write $E(h(\theta)|y) = \int \frac{h(\theta)p(\theta|y)}{g(\theta)}g(\theta)d\theta$
 - if we can generate $\theta_1, \ldots, \theta_N$ from $g(\theta)$, then we can estimate integral as $\frac{1}{N} \sum_i \frac{h(\theta_i)p(\theta_i|y)}{g(\theta_i)}$
 - $w(\theta_i) = p(\theta_i|y)/g(\theta_i)$ is known as the importance ratio
 - improves upon simple MC if we can find g yielding low variability weights

- Importance sampling (cont'd)
 - won't work at all if g's tails are too short
 - can work for unnormalized distn
- Many other techniques for improving Monte Carlo (e.g., antithetic variables) ... see statistical computing texts

- Analytical approximation (Laplace's method)
 - can write $E(h(\theta)|y) = \int e^{\log(h(\theta)p(\theta|y))} d\theta$
 - approximate $u(\theta) = \log(h(\theta)p(\theta|y))$ using a quadratic expansion around the mode θ_o
 - find $E(h(\theta)|y) \approx h(\theta_o)p(\theta_o|y)(2\pi)^{-d/2}|-u''(\theta_o)|^{1/2}$
 - requires large samples
 - need two approximations for unnormalized posterior distn

$$(E(h(\theta)|y) = \int h(\theta)q(\theta|y)d\theta / \int q(\theta|y)d\theta)$$

Summary

- Goal: posterior inference concerning the vector of parameters (and any missing data)
- Simulation is an extremely powerful tool, especially so in complex models
- Basic approach
 - initial estimates
 - direct simulation (if possible)
 - if direct simulation is not possible:
 - * normal or t approximation about posterior mode
 - * iterative simulation (Gibbs, Metropolis-Hastings)
- For iterative simulation
 - inference is conditional on the starting points
 - use multiple sequences and run until they mix

Model checking

Introduction

- So far:
 - build probability models
 - compute/simulate posterior distn
- Now:
 - model checking (does the model fit the data)
 - sensitivity analysis (are conclusions sensitive to assumptions)
 - model selection (which is the best model)
 - robust analysis (are conclusions sensitive to data)

Model checking

General ideas

- Don't ask if the model is true
- Does the model fit and provide useful inferences
- Remember the model includes
 - sampling distribution
 - prior distribution
 - hierarchical structure
 - explanatory variables
- More than one model can fit (sensitivity analysis)

Model checking: types of checks

• Classical ideas

- Check whether parameter estimates make sense
- Check whether predictions make sense
- Does the model generate data like "my data" (simulation approach, residual analysis)
- Embed in a larger model

• Bayesian ideas

- Compare posterior distribution of parameters to substantive knowledge
- Compare posterior predictive distribution of future data to substantive knowledge
- Compare posterior predictive distribution of future data to observed data
- Evaluate sensitivity of inferences to other model specifications (e.g., alternate priors or sampling distributions, embed in larger model)

- y^{rep} = replicate data that might have occurred
- Replicated under same model as original data (e.g., same covariate values) with same values for unknown parameters θ
- Posterior predictive distribution of y^{rep}

$$p(y^{rep}|y) = \int p(y^{rep}, \theta|y) d\theta$$
$$= \int p(y^{rep}|\theta, y) p(\theta|y) d\theta$$
$$=? \int p(y^{rep}|\theta) p(\theta|y) d\theta$$

- Last equality is generally (but not always) true
- Easy to obtain simulations of y^{rep} given posterior simulations of θ
- Other possible definitions of replications (more on this later)

- $T(y,\theta)$ is a test quantity or discrepancy measure
- Compare posterior predictive distribution of $T(y^{rep}, \theta)$ to posterior distribution of $T(y, \theta)$
- One possible summary (but not the only one) is the posterior predictive *P*-value

$$P_b = \Pr(T(y^{rep}, \theta) > T(y, \theta)|y)$$

$$= \int \int I_{[T(y^{rep}, \theta) > T(y, \theta)]} p(y^{rep}|\theta) p(\theta|y) dy^{rep} d\theta$$

- Special case $T(y, \theta) = T(y)$ is a test statistic
 - compare posterior predictive distribution of $T(y^{rep})$ to observed T(y)
- Diagnostics such as plots of residuals are special cases of posterior predictive checks

Relation to traditional tests

• Example:

- suppose y_1, \ldots, y_n are iid $N(\mu, \sigma^2)$
- believe $\mu = 0$, so fit $N(0, \sigma^2)$ model
- want to check fit of $N(0, \sigma^2)$ model
- weak example because obvious model checking approach is to fit the "bigger" $N(\mu, \sigma^2)$ model and check whether $\mu = 0$ is plausible

• Frequentist approach

- test statistic: $T(y) = \bar{y}$
- begin by assuming σ^2 is fixed

p-value =
$$P(\overline{T(y^{rep})} \ge \overline{T(y)} | \sigma^2)$$

= $P(\bar{y}^{rep} \ge \bar{y} | \sigma^2)$
= $P(\frac{\sqrt{n}\bar{y}^{rep}}{S} \ge \frac{\sqrt{n}\bar{y}}{S} | \sigma^2) = P(t_{n-1} \ge \frac{\sqrt{n}\bar{Y}}{S})$

- last equality because dist no longer depends on σ^2
- it is not always possible to get rid of nuisance parameters in this way

Relation to traditional tests (cont'd)

• Posterior predictive approach

p-value =
$$P(T(y^{rep}) \ge T(y)|y)$$

= $\int \int I_{[T(Y^{rep}) \ge T(y)]} p(Y^{rep}|\sigma^2) p(\sigma^2|y) dy^{rep} d\sigma^2$
= $\int \underbrace{P(T(y^{rep}) \ge T(y)|\sigma^2)}_{\text{classical p-value}} p(\sigma^2|y) d\sigma^2$

- if the classical p-value is independent of σ^2 , as for $T(y) = \bar{y}$ in the example, then the posterior predictive p-value is equal to classical p-value
- if not, then formula above shows how the
 Bayesian approach handles nuisance parameters

Defining replications

- Defining replications y^{rep}
 - usually keep features of original data fixed (e.g., sample size)
 - different definitions are possible in hierarchical models
 - * replications of the same units

$$p(\phi|y) \to p(\theta|\phi, y) \to p(y^{rep}|\theta)$$

* replicate data for new units

$$p(\phi|y) \to p(\theta|\phi) \to p(y^{rep}|\theta)$$

Defining test measures

- Defining test statistics or discrepancies
 - measure features of data not directly included in the model (bad to use $T(y) = \bar{y}$ if the model includes a location parameter)
 - may define a number of test measures
 - difficult to speak in general terms because good test measures depend on context
 - examples
 - * to check for autocorrelation in a sequence of Bernoulli trials, use a count of the number of runs
 - * to check for new predictor in regression model, use $corr(y X\beta, x_{new})$
 - * to check for asymmetry in a normal model, use $|y_{.9} \theta| |y_{.1} \theta|$
 - * to check overall fix in a complex model, use $T(y;\theta) = \sum \left[(y_i - E(y_i|\theta))^2 / \text{Var}(y_i|\theta) \right]$ (Note: asympt χ^2 for known θ but here no reliance on asymptotic distn)

Related ideas

- Parametric bootstrap (e.g., Efron, 1979)
 - plug in point estimate $\hat{\theta}$
 - simulated replicate data sets from $p(y|\hat{\theta})$
- Marginal distribution (Box, 1980)
 - reference distribution is $p(y) = \int p(y|\theta)p(\theta)d\theta$
 - note this is prior predictive distribution
 - requires proper prior distribution (even a bit more than that)

Criticisms of pp model checks

- Too conservative ("double-counting(?)" the data)
- pp p-values are not uniform under the null
- Difficult to interpret because of above ... what is an unusually high or low value in practice
- ullet Unobserved data y^{rep} is not relevant for some Bayesians
- Conditional predictive distn or partial posterior predictive distn (Bayarri and Berger in JASA 2000)
 - avoid some of the criticisms by conditioning on "some" of the data but not all
 - can be hard to compute
- Summary: post. pred. checks are conservative but easy to use and easy to interpret

On the conservatism of pp model checks

- Suppose that $Y \sim N(\mu, 1)$ and $\mu \sim N(0, 9)$
- Observe $Y_{obs} = 10$. Is this unusual?
- Prior predictive approach
 - marginal distn of Y is N(0, 10)
 - p-value = $1 \Phi(10/\sqrt{10}) = .008$
 - don't believe model
 - the observed value 10 is not consistent with this prior distn and data model
- Posterior predictive approach
 - posterior distn of μ is $N(0.9Y_{obs}, 0.9) = N(9, .9)$
 - posterior predictive distn of Y is N(9, 1.9)
 - p-value = .23
 - model cares about posterior fit
 (this minimizes the effect of the prior)
 - would this approach ever reject the model (yes, $Y_{obs} = 23$)

Sensitivity analysis

- Generally true that many models can be fit to the same data
- Question is how sensitive the inferences we draw are to the different models
- Different types of inferences may have different sensitivity
 - posterior mean or median for parameter of interest is typically not sensitive
 - extreme percentiles are more sensitive
- Approaches
 - fit different models
 - expand model/embed model in larger family
 - * examp: consider normal distn as part of $t_{\nu}(\mu, \sigma^2)$ family (normal distn corresponds to $\nu = \infty$)

Bayes factors

- Suppose there are two competings models M_1 and M_2 for a data set
 - different prior distributes $p_1(\theta_1)$ and $p_2(\theta_2)$
 - different data models $p_1(y|\theta_1)$ and $p_2(y|\theta_2)$
 - note θ_1 and θ_2 may be of different dimension
- Consider a full Bayesian analysis
 - begin with prior probability $p(M_1) = 1 p(M_2)$
 - then posterior odds of M_1 relative to M_2 are

$$\frac{p(M_1|y)}{p(M_2|y)} = \frac{p(y|M_1)}{p(y|M_2)} \frac{p(M_1)}{p(M_2)}$$

- posterior odds are the product of prior odds and a form of likelihood ratio $p(y|M_1)/p(y|M_2)$
- the ratio $p(y|M_1)/p(y|M_2)$ is known as the Bayes factor
- it is a measure of how much the data changes the odds in favor of M_1 vs M_2

• Bayes factor of model 1 relative to model 2

$$BF_{12} = \frac{p(y|M_1)}{p(y|M_2)} = \frac{\int p(y|\theta_1, M_1)p(\theta_1|M_1) d\theta_1}{\int p(y|\theta_2, M_2)p(\theta_2|M_2) d\theta_2}$$

- notation: M_1 and M_2 are not events they merely identify models
- Bayes factor is only defined when the marginal density of y under each model is proper (requires a proper prior distn)

Bayes factors and model averaging

- Given m models with prior probabilities $P(M_1), \ldots, P(M_m)$
- Posterior probability for model j is

$$p(M_j|y) = \frac{p(y|M_j)p(M_j)}{\sum_k p(y|M_k)p(M_k)}$$

- Note: $p(M_j|y)/p(M_i|y) = BF_{ji} \frac{p(M_j)}{p(M_i)}$ $p(M_j|y) = p(M_j)/(\sum_k BF_{kj}p(M_k))$
- Model averaging instead of relying on a single model we can use all of the models (essentially a "super" model)
 - then to make a prediction \tilde{y} , use $p(\tilde{y}|y) = \sum_{j} p(M_{j}|y)p(\tilde{y}|M_{j},y)$
 - computation a single MCMC incorporating all models (reversible jump MCMC)

Computation

• To compute Bayes factors we need to be able to compute marginal likelihoods

$$p(y) = \int p(y|\theta)p(\theta) d\theta$$

- There are a number of approaches
- Simple Monte Carlo approach
 - simplest concept but doesn't work very well
 - draw G values of θ from $p(\theta)$, call them $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(G)}$
 - $\hat{p}(y) = \frac{1}{G} \sum_{g=1}^{G} p(y|\theta^{(g)})$
 - problem: prior distn may not have probability where $p(y|\theta)$ is substantial \rightarrow poor estimate

Computation (cont'd)

- Alternative Monte Carlo approach
 - consider following identity (true for any pdf $h(\theta)$)

$$p(y)^{-1} = \int \frac{h(\theta)}{p(y|\theta)p(\theta)} p(\theta|y) d\theta$$

- draw G values of θ from $p(\theta|y)$
- $\hat{p}(y) = \left[\frac{1}{G} \sum_{g=1}^{G} \frac{h(\theta^{(g)})}{p(y|\theta^{(g)})p(\theta^{(g)})} \right]^{-1}$
- $-h(\theta)$ could be prior distribution or normal approx to the posterior distribution
- problem: not a stable calculation because of the possibility of small numbers in the denom
- Chib's marginal likelihood method
 - note that $p(y) = p(y|\theta)p(\theta)/p(\theta|y)$
 - idea: evaluate above at one value of θ , say the posterior mean or the posterior mode
 - numerator terms are easy
 - need to estimate denominator at chosen θ (crude density estimation approach or Chib's MCMC approach)

Improper prior distributions

• Consider $y|\theta \sim N(\theta, 1)$ with $p(\theta) \propto 1$

$$p(y) \propto \int \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-\theta)^2} d\theta = 1$$

- Looks OK but p(y) = 1 for $y \in (-\infty, \infty)$ is not a valid marginal distn
- Ideas:
 - approx improper prior with proper prior (Unif(-c,c)) but BF is sensitive to choice of c
 - partial Bayes factor: use part of the data to build a proper prior distn and then compute BF on the rest of the data, e.g., use y_1 and flat prior to define "new" prior

$$p(\theta) = N(\theta|y_1, 1)$$

and then can define a Bayes Factor for y_2, \ldots, y_n

- fractional Bayes factor

Asymptotic approximation

• If sample size n is large, then

$$\log(BF) \approx log(p(y|\hat{\theta}_2, M_2)) - log(p(y|\hat{\theta}_1, M_1))$$
$$-\frac{1}{2}(d_1 - d_2)log(n)$$

where

- $-\hat{\theta}_i = \text{posterior mode under } M_i \ (i = 1, 2)$
- $-d_i = \text{dimension of the parameter space of } M_i$
- Equivalent to ranking models based on the BIC (Bayes information criterion)

BIC =
$$-log(p(y|\hat{\theta}, M) + \frac{1}{2}d log(n)$$

• Common non-Bayesian criterion is AIC (Akaike information criterion)

$$AIC = -log(p(y|\hat{\theta}, M) + d)$$

• Both criteria start with log-likelihood and then penalize for additional parameters

- Classical/Bayesian
 - Bayesian = classical for some problems
 (large samples, small number of parameters with noninformative prior distns)
 - Standard methods often correspond to a Bayesian model for some prior (will see this in discussion of hierarchical models)
 - Big differences on some issues (e.g., p-values)

- Asymptotics
 - $\hat{\theta}_{MLE}$ is asymptotic efficient and consistent
 - $\hat{\theta}_{post.mode}$ is asymptotic efficient and consistent
- Point estimation
 - optimal Bayes point estimates depend on the specification of a loss function
 - classical inference relies on MLE
 - Bayes estimators are not generally unbiased
 neither are MLEs

(recall defin of unbiasedness: $E(\hat{\theta}(y)|\theta) = \theta$)

- Confidence intervals
 - interpretation of Bayes and frequentist intervals
 - central posterior intervals or highest posterior density intervals
- Hypothesis testing
 - Frequentist setup:

$$H_0: \theta = \theta_0 \quad \text{vs.} \quad H_a: \theta > \theta_0$$

p-value = $P(\bar{Y} \text{ is unusually large}|H_0 \text{ is true})$

- * only assessing H_0 vs data
- * p-value depends on unobserved values
- * likelihood ratio tests work for nested models only

- Hypothesis testing (cont'd)
 - Bayesian view:
 - * need a prior distn $p(\theta)$ under both hypotheses
 - * Bayes factor $BF = p(y|H_0)/p(y|H_a)$ where $p(y|H) = \int p(y|\theta, H)p(\theta|H)d\theta$
 - * more on Bayes factors later
 - * alternative for simple situation (like previous slide), just compute $\Pr(\theta > \theta_o|y)$

Hypothesis testing - an interesting example

- Discussion due to Morris (JASA 1987)
- Consider binomial sampling: $y|\theta \sim \text{Bin}(n,\theta)$

$$H_0: \theta \le 0.5$$
 $H_a) \theta > 0.5$
 n y $\hat{\theta}$ t p -value

 20 15 0.750 2.03 0.02
 200 115 0.575 2.05 0.02
 2000 1064 0.523 2.03 0.02

- Simple Bayesian analysis
 - model: $\hat{\theta} \sim N(\theta, 0.25/n)$ (normal approximation to binomial)
 - prior: $\theta \sim N(0.5, (0.5)^2)$

$$p(\theta > 0.5|y) = \begin{cases} 0.796 & (n = 20) \\ 0.953 & (n = 200) \\ 0.976 & (n = 2000) \end{cases}$$

- Multiple comparisons
 - e.g., effect of performing many hypothesis tests
 - tempting to say that Bayesian's don't care about multiple comparisons but there is a price to modeling many parameters
- Stopping rules/data collections
 - recall binomial/neg.binomial example
 - more on this towards the end of semester
- Nonparametrics
 - many nonparametric tests/procedures have been developed
 - Bayesian non-parametrics is complex