CHAPTER 9

Causal inference using regression on the treatment variable

9.1 Causal inference and predictive comparisons

So far, we have been interpreting regressions predictively: given the values of several inputs, the fitted model allows us to predict \(y \), considering the \(n \) data points as a simple random sample from a hypothetical infinite “superpopulation” or probability distribution. Then we can make comparisons across different combinations of values for these inputs.

This chapter and the next consider causal inference, which concerns what would happen to an outcome \(y \) as a result of a hypothesized “treatment” or intervention. In a regression framework, the treatment can be written as a variable \(T \):\(^1\)

\[
T_i = \begin{cases}
1 & \text{if unit } i \text{ receives the “treatment”} \\
0 & \text{if unit } i \text{ receives the “control,”}
\end{cases}
\]

or, for a continuous treatment,

\[
T_i = \text{level of the “treatment” assigned to unit } i.
\]

In the usual regression context, predictive inference relates to comparisons between units, whereas causal inference addresses comparisons of different treatments if applied to the same units. More generally, causal inference can be viewed as a special case of prediction in which the goal is to predict what would have happened under different treatment options. We shall discuss this theoretical framework more thoroughly in Section 9.2. Causal interpretations of regression coefficients can only be justified by relying on much stricter assumptions than are needed for predictive inference.

To motivate the detailed study of regression models for causal effects, we present two simple examples in which predictive comparisons do not yield appropriate causal inferences.

Hypothetical example of zero causal effect but positive predictive comparison

Consider a hypothetical medical experiment in which 100 patients receive the treatment and 100 receive the control condition. In this scenario, the causal effect represents a comparison between what would have happened to a given patient had he or she received the treatment compared to what would have happened under control. We first suppose that the treatment would have no effect on the health status of any given patient, compared with what would have happened under the control. That is, the causal effect of the treatment is zero.

However, let us further suppose that treated and control groups systematically differ, with healthier patients receiving the treatment and sicker patients receiving

\(^1\) We use a capital letter for the vector \(T \) (violating our usual rule of reserving capitals for matrices) in order to emphasize the treatment as a key variable in causal analyses, and also to avoid potential confusion with \(t \), which we sometimes use for “time.”
Figure 9.1 *Hypothetical scenario of zero causal effect of treatment*: for any value of previous health status, the distributions of potential outcomes are identical under control and treatment. However, the predictive comparison between treatment and control could be positive, if healthier patients receive the treatment and sicker patients receive the control condition.

Figure 9.2 *Hypothetical scenario of positive causal effect of treatment*: for any value of previous health status, the distributions of potential outcomes are centered at higher values for treatment than for control. However, the predictive comparison between treatment and control could be zero, if sicker patients receive the treatment and healthier patients receive the control condition. Compare to Figure 9.1.

Conversely, it is possible for a truly nonzero treatment effect to not show up in the predictive comparison. Figure 9.2 illustrates. In this scenario, the treatment has a positive effect for all patients, whatever their previous health status, as displayed.
by outcome distributions that for the treatment group are centered one point to the right of the corresponding (same previous health status) distributions in the control group. So, for any given unit, we would expect the outcome to be better under treatment than control. However, suppose that this time, sicker patients are given the treatment and healthier patients are assigned to the control condition, as illustrated by the different heights of these distributions. It is then possible to see equal average outcomes of patients in the two groups, with sick patients who received the treatment canceling out healthy patients who received the control.

Previous health status plays an important role in both these scenarios because it is related both to treatment assignment and future health status. If a causal estimate is desired, simple comparisons of average outcomes across groups that ignore this variable will be misleading because the effect of the treatment will be “confounded” with the effect of previous health status. For this reason, such predictors are sometimes called confounding covariates.

Adding regression predictors; “omitted” or “lurking” variables

The preceding theoretical examples illustrate how a simple predictive comparison is not necessarily an appropriate estimate of a causal effect. In these simple examples, however, there is a simple solution, which is to compare treated and control units conditional on previous health status. Intuitively, the simplest way to do this is to compare the averages of the current health status measurements across treatment groups only within each previous health status category; we discuss this kind of subclassification strategy in Section 10.2.

Another way to estimate the causal effect in this scenario is to regress the outcome on two inputs: the treatment indicator and previous health status. If health status is the only confounding covariate—that is, the only variable that predicts both the treatment and the outcome—and if the regression model is properly specified, then the coefficient of the treatment indicator corresponds to the average causal effect in the sample. In this example a simple way to avoid possible misspecification would be to discretize health status using indicator variables rather than including it as a single continuous predictor.

In general, then, causal effects can be estimated using regression if the model includes all confounding covariates (predictors that can affect treatment assignment or the outcome) and if the model is correct. If the confounding covariates are all observed (as in this example), then accurate estimation comes down to proper modeling and the extent to which the model is forced to extrapolate beyond the support of the data. If the confounding covariates are not observed (for example, if we suspect that healthier patients received the treatment, but no accurate measure of previous health status is included in the model), then they are “omitted” or “lurking” variables that complicate the quest to estimate causal effects.

We consider these issues in more detail in the rest of this chapter and the next, but first we will provide some intuition in the form of an algebraic formula.

Formula for omitted variable bias

We can quantify the bias incurred by excluding a confounding covariate in the context where a simple linear regression model is appropriate and there is only one confounding covariate. First define the “correct” specification as

\[y_i = \beta_0 + \beta_1 T_i + \beta_2 x_i + \epsilon_i \] \hspace{1cm} (9.1)
where T_i is the treatment and x_i is the covariate for unit i.

If instead the confounding covariate, x_i, is ignored, one can fit the model

$$y_i = \beta_0^* + \beta_1^* T_i + \epsilon_i^*$$

What is the relation between these models? To understand, it helps to define a third regression,

$$x_i = \gamma_0 + \gamma_1 T_i + \nu_i$$

If we substitute this representation of x into the original, correct, equation, and rearrange terms, we get

$$y_i = \beta_0 + \beta_2 \gamma_0 + (\beta_1 + \beta_2 \gamma_1) T_i + \epsilon_i + \beta_2 \nu_i$$

(9.2)

Equating the coefficients of T in (9.1) and (9.2) yields

$$\beta_1^* = \beta_1 + \beta_2^* \gamma_1$$

This correspondence helps demonstrate the definition of a confounding covariate. If there is no association between the treatment and the purported confounder (that is, $\gamma_1 = 0$) or if there is no association between the outcome and the confounder (that is, $\beta_2 = 0$) then the variable is not a confounder because there will be no bias ($\beta_2^* \gamma_1 = 0$).

This formula is commonly presented in regression texts as a way of describing the bias that can be incurred if a model is specified incorrectly. However, this term has little meaning outside of a context in which one is attempting to make causal inferences.

9.2 The fundamental problem of causal inference

We begin by considering the problem of estimating the causal effect of a treatment compared to a control, for example in a medical experiment. Formally, the causal effect of a treatment T on an outcome y for an observational or experimental unit i can be defined by comparisons between the outcomes that would have occurred under each of the different treatment possibilities. With a binary treatment T taking on the value 0 (control) or 1 (treatment), we can define potential outcomes, y_i^0 and y_i^1 for unit i as the outcomes that would be observed under control and treatment conditions, respectively.\(^2\) (These ideas can also be directly generalized to the case of a treatment variable with multiple levels.)

The problem

For someone assigned to the treatment condition (that is, $T_i = 1$), y_i^1 is observed and y_i^0 is the unobserved counterfactual outcome—it represents what would have happened to the individual if assigned to control. Conversely, for control units, y_i^0 is observed and y_i^1 is counterfactual. In either case, a simple treatment effect for unit i can be defined as

$$\text{treatment effect for unit } i = y_i^1 - y_i^0$$

Figure 9.3 displays hypothetical data for an experiment with 100 units (and thus 200 potential outcomes). The top panel displays the data we would like to be able to see in order to determine causal effects for each person in the dataset—that is, it includes both potential outcomes for each person.

\(^2\) The word “counterfactual” is sometimes used here, but we follow Rubin (1990) and use the term “potential outcome” because some of these potential data are actually observed.
THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE

(Hypothetical) complete data:

<table>
<thead>
<tr>
<th>Unit, i</th>
<th>Pre-treatment inputs</th>
<th>Treatment indicator</th>
<th>Potential outcomes</th>
<th>Treatment effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X_i</td>
<td>T_i</td>
<td>y_i^0</td>
<td>$y^1_i - y^0_i$</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>98</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>80</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>98</td>
<td>112</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>1</td>
<td>104</td>
<td>111</td>
</tr>
</tbody>
</table>

Observed data:

<table>
<thead>
<tr>
<th>Unit, i</th>
<th>Pre-treatment inputs</th>
<th>Treatment indicator</th>
<th>Potential outcomes</th>
<th>Treatment effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X_i</td>
<td>T_i</td>
<td>y_i^0</td>
<td>$y^1_i - y^0_i$</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>98</td>
<td>111</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>80</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>98</td>
<td>?</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>1</td>
<td>104</td>
<td>?</td>
</tr>
</tbody>
</table>

Figure 9.3 Illustration of the fundamental problem of causal inference. For each unit, we have observed some pre-treatment inputs, and then the treatment ($T_i = 1$) or control ($T_i = 0$) is applied. We can then observe only one of the potential outcomes, (y_i^0, y_i^1). As a result, we cannot observe the treatment effect, $y^1_i - y^0_i$, for any of the units. The top table shows what the complete data might look like, if it were possible to observe both potential outcomes on each unit. For each pair, the observed outcome is displayed in boldface. The bottom table shows what would actually be observed.

The so-called fundamental problem of causal inference is that at most one of these two potential outcomes, y_i^0 and y_i^1, can be observed for each unit i. The bottom panel of Figure 9.3 displays the data that can actually be observed. The y_i^1 values are “missing” for those in the control group and the y_i^0 values are “missing” for those in the treatment group.

Ways of getting around the problem

We cannot observe both what happens to an individual after taking the treatment (at a particular point in time) and what happens to that same individual after not taking the treatment (at the same point in time). Thus we can never measure a causal effect directly. In essence, then, we can think of causal inference as a prediction of what would happen to unit i if $T_i = 0$ or $T_i = 1$. It is thus predictive inference in the potential-outcome framework. Viewed this way, estimating causal effects requires one or some combination of the following: close substitutes for the potential outcomes, randomization, or statistical adjustment. We discuss the basic strategies here and go into more detail in the remainder of this chapter and the next.
Close substitutes. One might object to the formulation of the fundamental problem of causal inference by noting situations where it appears one can actually measure both y^0_i and y^1_i on the same unit. Consider, for example drinking tea one evening and milk another evening, and then measuring the amount of sleep each time. A careful consideration of this example reveals the implicit assumption that there are no systematic differences between days that could also affect sleep. An additional assumption is that applying the treatment on one day has no effect on the outcome on another day.

More pristine examples can generally be found in the natural and physical sciences. For instance, imagine dividing a piece of plastic into two parts and then exposing each piece to a corrosive chemical. In this case, the hidden assumption is that pieces are identical in how they would respond with and without treatment, that is, $y^0_1 = y^0_2$ and $y^1_1 = y^1_2$.

As a third example, suppose you want to measure the effect of a new diet by comparing your weight before the diet and your weight after. The hidden assumption here is that the pre-treatment measure can act as a substitute for the potential outcome under control, that is, $y^0_i = x_i$.

It is not unusual to see studies that attempt to make causal inferences by substituting values in this way. It is important to keep in mind the strong assumptions often implicit in such strategies.

Randomization and experimentation. A different approach to causal inference is the “statistical” idea of using the outcomes observed on a sample of units to learn about the distribution of outcomes in the population.

The basic idea is that since we cannot compare treatment and control outcomes for the same units, we try to compare them on similar units. Similarity can be attained by using randomization to decide which units are assigned to the treatment group and which units are assigned to the control group. We will discuss this strategy in depth in the next section.

Statistical adjustment. For a variety of reasons, it is not always possible to achieve close similarity between the treated and control groups in a causal study. In observational studies, units often end up treated or not based on characteristics that are predictive of the outcome of interest (for example, men enter a job training program because they have low earnings and future earnings is the outcome of interest). Randomized experiments, however, can be impractical or unethical, and even in this context imbalance can arise from small-sample variation or from unwillingness or inability of subjects to follow the assigned treatment.

When treatment and control groups are not similar, modeling or other forms of statistical adjustment can be used to fill in the gap. For instance, by fitting a regression (or more complicated model), we may be able to estimate what would have happened to the treated units had they received the control, and vice versa. Alternately, one can attempt to divide the sample into subsets within which the treatment/control allocation mimics an experimental allocation of subjects. We discuss regression approaches in this chapter. We discuss imbalance and related issues more thoroughly in Chapter 10 along with a description of ways to help observational studies mimic randomized experiments.

9.3 Randomized experiments

We begin with the cleanest scenario, an experiment with units randomly assigned to receive treatment and control, and with the units in the study considered as a random sample from a population of interest. The random sampling and random
treatment assignment allow us to estimate the average causal effect of the treatment in the population, and regression modeling can be used to refine this estimate.

Average causal effects and randomized experiments

Although we cannot estimate individual-level causal effects (without making strong assumptions, as discussed previously), we can design studies to estimate the population average treatment effect:

$$\text{average treatment effect} = \text{avg} \left(y^1_i - y^0_i \right),$$

for the units i in a larger population. The cleanest way to estimate the population average is through a randomized experiment in which each unit has a positive chance of receiving each of the possible treatments. If this is set up correctly, with treatment assignment either entirely random or depending only on recorded data that are appropriately modeled, the coefficient for T in a regression corresponds to the causal effect of the treatment, among the population represented by the n units in the study.

Considered more broadly, we can think of the control group as a group of units that could just as well have ended up in the treatment group, they just happened not to get the treatment. Therefore, on average, their outcomes represent what would have happened to the treated units had they not been treated; similarly, the treatment group outcomes represent what might have happened to the control group had they been treated. Therefore the control group plays an essential role in a causal analysis.

For example, if n_0 units are selected at random from the population and given the control, and n_1 other units are randomly selected and given the treatment, then the observed sample averages of y for the treated and control units can be used to estimate the corresponding population quantities, $\text{avg}(y^0)$ and $\text{avg}(y^1)$, with their difference estimating the average treatment effect (and with standard error $\sqrt{s_0^2/n_0 + s_1^2/n_1}$; see Section 2.3). This works because the y^0_i’s for the control group are a random sample of the values of y^0_i in the entire population. Similarly, the y^1_i’s for the treatment group are a random sample of the y^1_i’s in the population.

Equivalently, if we select $n_0 + n_1$ units at random from the population, and then randomly assign n_0 of them to the control and n_1 to the treatment, we can think of each of the sample groups as representing the corresponding population of control or treated units. Therefore the control group mean can act as a counterfactual for the treatment group (and vice versa).

What if the $n_0 + n_1$ units are selected nonrandomly from the population but then the treatment is assigned at random within this sample? This is common practice, for example, in experiments involving human subjects. Experiments in medicine, for instance, are conducted on volunteers with specified medical conditions who are willing to participate in such a study, and experiments in psychology are often conducted on university students taking introductory psychology courses. In this case, causal inferences are still justified, but inferences no longer generalize to the entire population. It is usual instead to consider the inference to be appropriate to a hypothetical superpopulation from which the experimental subjects were drawn. Further modeling is needed to generalize to any other population. A study

3 Ideally, each unit should have a nonzero probability of receiving each of the treatments, because otherwise the appropriate counterfactual (potential) outcome cannot be estimated for units in the corresponding subset of the population. In practice, if the probabilities are highly unequal, the estimated population treatment effect will have a high standard error due to the difficulty of reliably estimating such a rare event.
in which causal inferences are merited for a specific sample or population is said to have *internal validity*, and when those inferences can be generalized to a broader population of interest the study is said to have *external validity*.

We illustrate with a simple binary treatment (that is, two treatment levels, or a comparison of treatment to control) in an educational experiment. We then briefly discuss more general categorical, continuous, and multivariate treatments.

Example: showing children an educational television show

Figure 9.4 summarizes data from an educational experiment performed around 1970 on a set of elementary school classes. The treatment in this experiment was exposure to a new educational television show called The Electric Company. In each of four grades, the classes were randomized into treated and control groups. At the end of the school year, students in all the classes were given a reading test, and the average test score within each class was recorded. Unfortunately, we do not have data on individual students, and so our entire analysis will be at the classroom level.

Figure 9.4 displays the distribution of average post-treatment test scores in the control and treatment group for each grade. (The experimental treatment was applied to classes, not to schools, and so we treat the average test score in each class as
a single measurement.) We break up the data by grade for convenience and because it is reasonable to suppose that the effects of this show could vary by grade.

Analysis as a completely randomized experiment. The experiment was performed in two cities (Fresno and Youngstown). For each city and grade, the experimenters selected a small number of schools (10–20) and, within each school, they selected the two poorest reading classes of that grade. For each pair, one of these classes was randomly assigned to continue with its regular reading course and the other was assigned to view the TV program.

This is called a *paired comparisons* design (which in turn is a special case of a *randomized block* design, with exactly two units within each block). For simplicity, however, we shall analyze the data here as if the treatment assignment had been completely randomized within each grade. In a *completely randomized experiment* on n units (in this case, classrooms), one can imagine the units mixed together in a bag, completely mixed, and then separated into two groups. For example, the units could be labeled from 1 to n, and then permuted at random, with the first n1 units receiving the treatment and the others receiving the control. Each unit has the same probability of being in the treatment group and these probabilities are independent of each other.

Again, for the rest of this chapter we pretend that the Electric Company experiment was completely randomized within each grade. In Section 23.1 we return to the example and present an analysis appropriate to the paired design that was actually used.

Basic analysis of a completely randomized experiment

When treatments are assigned completely at random, we can think of the different treatment groups (or the treatment and control groups) as a set of random samples from a common population. The population average under each treatment, \(\text{avg}(y^0) \) and \(\text{avg}(y^1) \), can then be estimated by the sample average, and the population average difference between treatment and control, \(\text{avg}(y^1) - \text{avg}(y^0) \)—that is, the average causal effect—can be estimated by the difference in sample averages, \(\bar{y}_1 - \bar{y}_0 \).

Equivalently, the average causal effect of the treatment corresponds to the coefficient \(\theta \) in the regression, \(y_i = \alpha + \theta T_i + \text{error}_i \). We can easily fit the four regressions (one for each grade) in R:

```r
for (k in 1:4) {
  display (lm (post.test ~ treatment, subset=(grade==k)))
}
```

R code

The estimates and uncertainty intervals for the Electric Company experiment are graphed in the left panel of Figure 9.5. The treatment appears to be generally effective, perhaps more so in the low grades, but it is hard to be sure given the large standard errors of estimation.

Controlling for pre-treatment predictors

In this study, a pre-test was given in each class at the beginning of the school year (before the treatment was applied). In this case, the treatment effect can also be estimated using a regression model: \(y_i = \alpha + \theta T_i + \beta x_i + \text{error}_i \) on the pre-treatment predictor \(x \).\(^4\) Figure 9.6 illustrates for the Electric Company experiment. For each

\(^4\) We avoid the term *confounding covariates* when describing adjustment in the context of a randomized experiment. Predictors are included in this context to increase precision. We expect...
Subpopulation	Regression on treatment indicator	Regression on treatment indicator, controlling for pre-test
Grade 1 | |
Grade 2 | |
Grade 3 | |
Grade 4 | |

Figure 9.5 Estimates, 50%, and 95% intervals for the effect of the Electric Company television show (see data in Figures 9.4 and 9.6) as estimated in two ways: first, from a regression on treatment alone, and second, also controlling for pre-test data. In both cases, the coefficient for treatment is the estimated causal effect. Including pre-test data as a predictor increases the precision of the estimates. Displaying these coefficients and intervals as a graph facilitates comparisons across grades and across estimation strategies (controlling for pre-test or not). For instance, the plot highlights how controlling for pre-test scores increases precision and reveals decreasing effects of the program for the higher grades, a pattern that would be more difficult to see in a table of numbers.

Sample sizes are approximately the same in each of the grades. The estimates for higher grades have lower standard errors because the residual standard deviations of the regressions are lower in these grades; see Figure 9.6.

Figure 9.6 Pre-test/post-test data for the Electric Company experiment. Treated and control classes are indicated by circles and dots, respectively, and the solid and dotted lines represent parallel regression lines fit to the treatment and control groups, respectively. The solid lines are slightly higher than the dotted lines, indicating slightly positive estimated treatment effects. Compare to Figure 9.4, which displays only the post-test data.

grade, the difference between the regression lines for the two groups represents the treatment effect as a function of pre-test score. Since we have not included any interaction in the model, this treatment effect is assumed constant over all levels of the pre-test score.

For grades 2–4, the pre-test was the same as the post-test, and so it is no surprise that all the classes improved whether treated or not (as can be seen from the plots). For grade 1, the pre-test was a subset of the longer test, which explains why the pre-test scores for grade 1 are so low. We can also see that the distribution of post-test scores for each grade is similar to the next grade’s pre-test scores, which makes sense.

In any case, for estimating causal effects (as defined in Section 9.2) we are interested in the difference between treatment and control conditions, not in the simple improvement from pre-test to post-test. The pre-post improvement is not a them to be related to the outcome but not to the treatment assignment due to the randomization. Therefore they are not confounding covariates.
causal effect (except under the assumption, unreasonable in this case, that under the control there would be no change from pre-post change).

In the regression

\[y_i = \alpha + \theta T_i + \beta x_i + \text{error}_i \] (9.3)

the coefficient for the treatment indicator still represents the average treatment effect, but controlling for pre-test can improve the efficiency of the estimate. (More generally, the regression can control for multiple pre-treatment predictors, in which case the model has the form \(y_i = \alpha + \theta T_i + X_i\beta + \text{error}_i \), or alternatively \(\alpha \) can be removed from the equation and considered as a constant term in the linear predictor \(X\beta \).)

The estimates for the Electric Company study appear in the right panel of Figure 9.5. It is now clear that the treatment is effective, and it appears to be more effective in the lower grades. A glance at Figure 9.6 suggests that in the higher grades there is less room for improvement; hence this particular test might not be the most effective for measuring the benefits of The Electric Company in grades 3 and 4.

It is only appropriate to control for pre-treatment predictors, or, more generally, predictors that would not be affected by the treatment (such as race or age). This point will be illustrated more concretely in Section 9.7.

Gain scores

An alternative way to specify a model that controls for pre-test measures is to use these measures to transform the response variable. A simple approach is to subtract the pre-test score, \(x_i \), from the outcome score, \(y_i \), thereby creating a “gain score,” \(g_i \). Then this score can be regressed on the treatment indicator (and other predictors if desired), \(g_i = \alpha + \theta T_i + \text{error}_i \). (In the simple case with no other predictors, the regression estimate is simply \(\hat{\theta} = \bar{g}_T - \bar{g}_C \), the average difference of gain scores in the treatment and control groups.)

In some cases the gain score can be more easily interpreted than the original outcome variable \(y \). Using gain scores is most effective if the pre-treatment score is comparable to the post-treatment measure. For instance, in our Electric Company example it would not make sense to create gain scores for the classes in grade 1 since their pre-test measure was based on only a subset of the full test.

One perspective on this model is that it makes an unnecessary assumption, namely, that \(\beta = 1 \) in model (9.3). On the other hand, if this assumption is close to being true then \(\theta \) may be estimated more precisely. One way to resolve this concern about misspecification would simply be to include the pre-test score as a predictor as well, \(g_i = \alpha + \theta T_i + \gamma x_i + \text{error}_i \). However, in this case, \(\hat{\theta} \), the estimate of the coefficient for \(T \), is equivalent to the estimated coefficient from the original model, \(y_i = \alpha + \theta T_i + \beta x_i + \text{error}_i \) (see Exercise 9.7).

More than two treatment levels, continuous treatments, and multiple treatment factors

Going beyond a simple treatment-and-control setting, multiple treatment effects can be defined relative to a baseline level. With random assignment, this simply follows general principles of regression modeling.

If treatment levels are numerical, the treatment level can be considered as a continuous input variable. To conceptualize randomization with a continuous treatment variable, think of choosing a random number that falls anywhere in the continuous range. As with regression inputs in general, it can make sense to fit more compli-
Figure 9.7 Pre-test/post-test data for the Electric Company experiment. Treated and control classes are indicated by circles and dots, respectively, and the solid and dotted lines represent separate regression lines fit to the treatment and control groups, respectively. For each grade, the difference between the solid and dotted lines represents the estimated treatment effect as a function of pre-test score.

9.4 Treatment interactions and poststratification

Interactions of treatment effect with pre-treatment inputs

Once we include pre-test in the model, it is natural to allow it to interact with treatment effect. The treatment is then allowed to affect both the intercept and the slope of the pre-test/post-test regression. Figure 9.7 shows the Electric Company
data with separate regression lines estimated for the treatment and control groups. As with Figure 9.6, for each grade the difference between the regression lines is the estimated treatment effect as a function of pre-test score.

We illustrate in detail for grade 4. First, we fit the simple model including only the treatment indicator:

\[
\text{lm(formula = post.test ~ treatment, subset=(grade==4))}
\]

```
  (Intercept) 110.4  1.3
treatment  3.7   1.8
```

n = 42, k = 2
residual sd = 6.0, R-Squared = 0.09

The estimated treatment effect is 3.7 with a standard error of 1.8. We can improve the efficiency of the estimator by controlling for the pre-test score:

\[
\text{lm(formula = post.test ~ treatment + pre.test, subset=(grade==4))}
\]

```
  (Intercept)  42.0  4.3
treatment    1.7   0.7
pre.test     0.7   0.0
```

n = 42, k = 3
residual sd = 2.2, R-Squared = 0.88

The new estimated treatment effect is 1.7 with a standard error of 0.7. In this case, controlling for the pre-test reduced the estimated effect. Under a clean randomization, controlling for pre-treatment predictors in this way should reduce the standard errors of the estimates.\(^5\) (Figure 9.5 shows the estimates for the Electric Company experiment in all four grades.)

Complicated arise when we include the interaction of treatment with pre-test:

\[
\text{lm(formula = post.test ~ treatment + pre.test + treatment:pre.test, subset=(grade==4))}
\]

```
  (Intercept)   37.84  4.90
treatment     17.37  9.60
pre.test      0.70  0.05
treatment:pre.test -0.15  0.09
```

n = 42, k = 4
residual sd = 2.1, R-Squared = 0.89

The estimated treatment effect is now \(17 - 0.15x\), which is difficult to interpret without knowing the range of \(x\). From Figure 9.7 we see that pre-test scores range from approximately 80 to 120; in this range, the estimated treatment effect varies from \(17 - 0.15 \cdot 80 = 5\) for classes with pre-test scores of 80 to \(17 - 0.15 \cdot 120 = -1\) for classes with pre-test scores of 120. This range represents the variation in estimated treatment effects as a function of pre-test score, not uncertainty in the estimated treatment effect.

To get a sense of the uncertainty, we can plot the estimated treatment effect as a function of \(x\), overlaying random simulation draws to represent uncertainty:

\(^5\) Under a clean randomization, controlling for pre-treatment predictors in this way does not change what we are estimating. If the randomization was less than pristine, however, the addition of predictors to the equation may help us control for unbalanced characteristics across groups. Thus, this strategy has the potential to move us from estimating a noncausal estimand (due to lack of randomization) to estimating a causal estimand by in essence “cleaning” the randomization.
Figure 9.8 Estimate and uncertainty for the effect of viewing *The Electric Company* (compared to the control treatment) for fourth-graders. Compare to the data in the rightmost plot in Figure 9.7. The dark line here—the estimated treatment effect as a function of pre-test score—is the difference between the two regression lines in the grade 4 plot in Figure 9.7. The gray lines represent 20 random draws from the uncertainty distribution of the treatment effect.

R code

```r
lm.4 <- lm (post.test ~ treatment + pre.test + treatment:pre.test, 
             subset=(grade==4))
lm.4.sim <- sim (lm.4)
plot (0, 0, xlim=range (pre.test[grade==4]), ylim=c(-5,10),
     xlab="pre-test", ylab="treatment effect",
     main="treatment effect in grade 4")
abline (0, 0, lwd=.5, lty=2)
for (i in 1:20){
  curve (lm.4.sim$beta[i,2] + lm.4.sim$beta[i,4]*x, lwd=.5, col="gray",
         add=TRUE)
}
curve (coef(lm.4)[2] + coef(lm.4)[4]*x, lwd=.5, add=TRUE)
```

This produces the graph shown in Figure 9.8.

Finally, we can estimate a mean treatment effect by averaging over the values of \(x\) in the data. If we write the regression model as \(y_i = \alpha + \theta_1 T_i + \beta x_i + \theta_2 T_i x_i + \text{error}_i\), then the treatment effect is \(\theta_1 + \theta_2 x_i\), and the summary treatment effect in the sample is \(\frac{1}{n} \sum_{i=1}^{n} (\theta_1 + \theta_2 x_i)\), averaging over the \(n\) fourth-grade classrooms in the data. We can compute the average treatment effect as follows:

R code

```r
n.sims <- nrow(lm.4.sim$beta)
effect <- array (NA, c(n.sims, sum(grade==4)))
for (i in 1:n.sims){
  effect[i,] <- lm.4.sim$beta[i,2] + lm.4.sim$beta[i,4]*pre.test[grade==4]
}
avg.effect <- rowMeans (effect)
```

The `rowMeans()` function averages over the grade 4 classrooms, and the result of this computation, `avg эффект`, is a vector of length `n.sims` representing the uncertainty in the average treatment effect. We can summarize with the mean and standard error:

R code

```r
print (c (mean(avg.effect), sd(avg.effect)))
```

The result is 1.8 with a standard deviation of 0.7—quite similar to the result from the model controlling for pre-test but with no interactions. In general, for a linear regression model, the estimate obtained by including the interaction, and then averaging over the data, reduces to the estimate with no interaction. The motivation for including the interaction is thus to get a better idea of how the treatment effect varies with pre-treatment predictors, not simply to estimate an average effect.
We have discussed how treatment effects interact with pre-treatment predictors (that is, regression inputs). To estimate an average treatment effect, we can post-stratify—that is, average over the population. For example, suppose we have treatment variable T and pre-treatment control variables x_1, x_2, and our regression predictors are x_1, x_2, T, and the interactions $x_1 T$ and $x_2 T$, so that the linear model is: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 T + \beta_4 x_1 T + \beta_5 x_2 T + \text{error}$. The estimated treatment effect is then $\beta_3 + \beta_4 x_1 + \beta_5 x_2$, and its average, in a linear regression, is simply $\beta_3 + \beta_4 \mu_1 + \beta_5 \mu_2$, where μ_1 and μ_2 are the averages of x_1 and x_2 in the population. These population averages might be available from another source, or else they can be estimated using the averages of x_1 and x_2 in the data at hand. Standard errors for summaries such as $\beta_3 + \beta_4 \mu_1 + \beta_5 \mu_2$ can be determined analytically, but it is easier to simply compute them using simulations.

Modeling interactions is important when we care about differences in the treatment effect for different groups, and poststratification then arises naturally if a population average estimate is of interest.

9.5 Observational studies

In theory, the simplest solution to the fundamental problem of causal inference is, as we have described, to randomly sample a different set of units for each treatment group assignment from a common population, and then apply the appropriate treatments to each group. An equivalent approach is to randomly assign the treatment conditions among a selected set of units. Either of these approaches ensures that, on average, the different treatment groups are balanced or, to put it another way, that the \bar{y}_0 and \bar{y}_1 from the sample are estimating the average outcomes under control and treatment for the same population.

In practice, however, we often work with observational data because, compared to experiments, observational studies can be more practical to conduct and can have more realism with regard to how the program or treatment is likely to be “administered” in practice. As we have discussed, however, in observational studies treatments are observed rather than assigned (for example, comparisons of smokers to nonsmokers), and it is not at all reasonable to consider the observed data under different treatments as random samples from a common population. In an observational study, there can be systematic differences between groups of units that receive different treatments—differences that are outside the control of the experimenter—and they can affect the outcome, y. In this case we need to rely on more data than just treatments and outcomes and implement a more complicated analysis strategy that will rely upon stronger assumptions. The strategy discussed in this chapter, however, is relatively simple and relies on controlling for confounding covariates through linear regression. Some alternative approaches are described in Chapter 10.

6 In survey sampling, stratification refers to the procedure of dividing the population into disjoint subsets (strata), sampling separately within each stratum, and then combining the stratum samples to get a population estimate. Poststratification is the analysis of an unstratified sample, breaking the data into strata and reweighting as would have been done had the survey actually been stratified. Stratification can adjust for potential differences between sample and population using the survey design; poststratification makes such adjustments in the data analysis.
CAUSAL INFERENCE USING DIRECT REGRESSION

Figure 9.9 Estimates, 50%, and 95% intervals for the effect of The Electric Company as a supplement rather than a replacement, as estimated by a regression on the supplement/replacement indicator also controlling for pre-test data. For each grade, the regression is performed only on the treated classes; this is an observational study embedded in an experiment.

Electric Company example

Here we illustrate an observational study for which a simple regression analysis, controlling for pre-treatment information, may yield reasonable causal inferences.

The educational experiment described in Section 9.3 actually had an embedded observational study. Once the treatments had been assigned, the teacher for each class assigned to the Electric Company treatment chose to either replace or supplement the regular reading program with the Electric Company television show. That is, all the classes in the treatment group watched the show, but some watched it instead of the regular reading program and others got it in addition.7

The simplest starting point to analyzing these observational data (now limited to the randomized treatment group) is to consider the choice between the two treatment options—"replace" or "supplement"—to be randomly assigned conditional on pre-test scores. This is a strong assumption but we use it simply as a starting point. We can then estimate the treatment effect by regression, as with an actual experiment. In the R code, we create a variable called supp that equals 0 for the replacement form of the treatment, 1 for the supplement, and NA for the controls. We then estimate the effect of the supplement, as compared to the replacement, for each grade:

R code

```r
for (k in 1:4) {
  ok <- (grade==k) & (!is.na(supp))
  lm.supp <- lm (post.test ~ supp + pre.test, subset=ok)
}
```

The estimates are graphed in Figure 9.9. The uncertainties are high enough that the comparison is inconclusive except in grade 2, but on the whole the pattern is consistent with the reasonable hypothesis that supplementing is more effective than replacing in the lower grades.

Assumption of ignorable treatment assignment

As opposed to making the same assumption as the completely randomized experiment, the key assumption underlying the estimate is that, conditional on the confounding covariates used in the analysis (here as inputs in the regression analysis), the distribution of units across treatment conditions is, in essence, "random"

7 This procedural detail reveals that the treatment effect for the randomized experiment is actually more complicated than described earlier. As implemented, the experiment estimated the effect of making the program available, either as a supplement or replacement for the current curriculum.
(in this case, pre-test score) with respect to the potential outcomes. To help with the intuition here, one could envision units being randomly assigned to treatment conditions conditional on the confounding covariates; however, of course, no actual randomized assignment need take place.

Ignorability is often formalized by the conditional independence statement,

\[y^0, y^1 \perp T \mid X. \]

This says that the distribution of the potential outcomes, \((y^0, y^1)\), is the same across levels of the treatment variable, \(T\), once we condition on confounding covariates \(X\).

This assumption is referred to as \textit{ignorability} of the treatment assignment in the statistics literature and \textit{selection on observables} in econometrics. Said another way, we would not necessarily expect any two classes to have had the same probability of receiving the supplemental version of the treatment. However, we expect any two classes at the same levels of the confounding covariates (that is, pre-treatment variables; in our example, average pre-test score) to have had the same probability of receiving the supplemental version of the treatment. A third way to think about the ignorability assumption is that it requires that we control for all confounding covariates, the pre-treatment variables that are associated with both the treatment and the outcome.

If ignorability holds, then causal inferences can be made without modeling the treatment assignment process— that is, we can \textit{ignore} this aspect of the model as long as analyses regarding the causal effects condition on the predictors needed to satisfy ignorability. Randomized experiments represent a simple case of ignorability. Completely randomized experiments need not condition on any pre-treatment variables—this is why we can use a simple difference in means to estimate causal effects. Randomized experiments that block or match satisfy ignorability conditional on the design variables used to block or match, and therefore these variables need to be included when estimating causal effects.

In the Electric Company supplement/replacement example, an example of a \textit{non-ignorable assignment mechanism} would be if the teacher of each class chose the treatment that he or she believed would be more effective for that particular class based on unmeasured characteristics of the class that were related to their subsequent test scores. Another nonignorable assignment mechanism would be if, for example, supplementing was more likely to be chosen by more “motivated” teachers, with teacher motivation also associated with the students’ future test scores.

For ignorability to hold, it is not necessary that the two treatments be equally likely to be picked, but rather that the probability that a given treatment is picked should be equal, conditional on our confounding covariates.\(^8\) In an experiment, one can control this at the design stage by using a random assignment mechanism. In an observational study, the “treatment assignment” is not under the control of the statistician, but one can aim for ignorability by conditioning in the analysis stage on as much pre-treatment information in the regression model as possible. For example, if teachers’ motivation might affect treatment assignment, it would be advisable to have a pre-treatment measure of teacher motivation and include this as an input in the regression model. This would increase the plausibility of the ignorability assumption. Realistically, this may be a difficult characteristic to

\(^8\) As further clarification, consider two participants of a study for which ignorability holds. If we define the probability of treatment participation as \(\Pr(T = 1 \mid X)\), then this probability must be equal for these two individuals. However, suppose there exists another variable, \(w\), that is associated with treatment participation (conditional on \(X\)) but not with the outcome (conditional on \(X\)). We do not require that \(\Pr(T = 1 \mid X, W)\) be the same for these two participants.
measure, but other teacher characteristics such as years of experience and schooling might act as partial proxies.

In general, one can never prove that the treatment assignment process in an observational study is ignorable—it is always possible that the choice of treatment depends on relevant information that has not been recorded. In an educational study this information could be characteristics of the teacher or school that are related both to treatment assignment and to post-treatment test scores. Thus, if we interpret the estimates in Figure 9.9 as causal effects, we do so with the understanding that we would prefer to have further pre-treatment information, especially on the teachers, in order to be more confident in ignorability.

If we believe that treatment assignments depend on information not included in the model, then we should choose a different analysis strategy. We discuss some options at the end of the next chapter.

Judging the reasonableness of regression as a modeling approach, assuming ignorability

Even if the ignorability assumption appears to be justified, this does not mean that simple regression of our outcomes on confounding covariates and a treatment indicator is necessarily the best modeling approach for estimating treatment effects. There are two primary concerns related to the distributions of the confounding covariates across the treatment groups: lack of complete overlap and lack of balance. For instance, consider our initial hypothetical example of a medical treatment that is supposed to affect subsequent health measures. What if there were no treatment observations among the group of people whose pre-treatment health status was highest? Arguably, we could not make any causal inferences about the effect of the treatment on these people because we would have no empirical evidence regarding the counterfactual state. Lack of overlap and balance forces stronger reliance on our modeling than if covariate distributions were the same across treatment groups. We provide a brief illustration in this chapter and discuss in greater depth in Chapter 10.

Suppose we are interested in the effect of a supplementary educational activity (such as viewing The Electric Company) that was not randomly assigned. Suppose, however, that only one predictor, pre-test score, is necessary to satisfy ignorability—that is, there is only one confounding covariate. Suppose further, though, that those individuals who participate in the supplementary activity tend to have higher pre-
test scores, on average, than those who do not participate. One realization of this
hypothetical scenario is illustrated in Figure 9.10. The dark line represents the
true relation between pre-test scores (x-axis) and post-test scores (y-axis) for those
who receive the supplement. The lighter line represents the true relation between
pre-test scores and post-test scores for those who do not receive the supplement.
Estimated linear regression lines are superimposed for these data. The linear model
has problems fitting the true nonlinear regression relation—a problem that is com-
bounded by the lack of overlap of the two groups in the data. Because there are no
“control” children with high test scores and virtually no “treatment” children with
low test scores, these linear models, to create counterfactual predictions, are forced
to extrapolate over portions of the space where there are no data to support them.
These two problems combine to create, in this case, a substantial underestimate of
the true average treatment effect. Allowing for an interaction, as illustrated in the
right panel, does not solve the problem.

In the region of pre-test scores where there are observations from both treatment
groups, however, even the incorrectly specified linear regression lines do not provide
such a bad fit to the data. And no model extrapolation is required, so diagnosing
this lack of fit would be possible. This is demonstrated in the left panel of Figure
9.11 by restricting the plot from the left panel of Figure 9.10 to the area of overlap.
Furthermore, if the regression lines are fit only using this restricted sample they fit
quite well in this region, as is illustrated in the right panel of Figure 9.11. Some
of the strategies discussed in the next chapter use this idea of limiting analyses to
observations with the region of complete overlap.

Experiencing overlap in the Electric Company embedded observational study

For the Electric Company data we can use plots such as in Figure 9.10–9.11 to assess
the appropriateness of the modeling assumptions and the extent to which we are
relying on unsupported model extrapolations. For the most part, Figure 9.12 reveals
a reasonable amount of overlap in pre-test scores across treatment groups within
each grade. Grade 3, however, has some classrooms with average pre-test scores
that are lower than the bulk of the sample, all of which received the supplement. It
might be appropriate to decide that no counterfactual classrooms exist in our data
for these classrooms and thus the data cannot support causal inferences for these
Figure 9.12 Pre-test/post-test data examining the overlap in pre-test scores across treatment groups as well as the extent to which models are being extrapolated to regions where there is no support in the data. Classrooms that watched The Electric Company as a supplement are represented by the dark points and regression line; classrooms that watched The Electric Company as a replacement are represented by the lighter points and regression line. No interactions were included when estimating the regression lines.

classrooms. The sample sizes for each grade make it difficult to come to any firm conclusions one way or another, however.

Therefore, we must feel confident in the (probably relatively minor) degree of model extrapolation relied upon by these estimates in order to trust a causal interpretation.

9.6 Understanding causal inference in observational studies

Sometimes the term “observational study” refers to a situation in which a specific intervention was offered nonrandomly to a population or in which a population was exposed nonrandomly to a well-defined treatment. The primary characteristic that distinguishes causal inference in these settings from causal inference in randomized experiments is the inability to identify causal effects without making assumptions such as ignorability. (Other sorts of assumptions will be discussed in the next chapter.)

Often, however, observational studies refer more broadly to survey data settings where no intervention has been performed. In these settings, there are other aspects of the research design that need to be carefully considered as well. The first is the mapping between the “treatment” variable in the data and a policy or intervention. The second considers whether it is possible to separately identify the effects of multiple treatment factors. When attempting causal inference using observational data, it is helpful to formalize exactly what the experiment might have been that would have generated the data, as we discuss next.

Defining a “treatment” variable

A causal effect needs to be defined with respect to a cause, or an intervention, on a particular set of experimental units. We need to be able to conceive of each unit as being able to experience each level of the treatment variable for which causal effects will be defined for that unit. Thus, the “effect” of height on earnings is ill-defined without reference to a treatment that could change one’s height. Otherwise what does it mean to define a potential outcome for a person that would occur if he or she had been shorter or taller?

More subtly, consider the effect of single-motherhood on children’s outcomes. We might be able to envision several different kinds of interventions that could change
a mother's marital status either before or after birth: changes in tax laws, participation in a marriage encouragement program for unwed parents, new child support enforcement policies, divorce laws, and so on. These potential "treatments" vary in the timing of marriage relative to birth and even the strength of the marriages that might result, and consequently might be expected to have different effects on the children involved. Therefore, this conceptual mapping to a hypothetical intervention can be important for choice of study design, analysis, and interpretation of results.

Consider, for instance, a study that examines Korean children who were randomly assigned to American families for adoption. This "natural experiment" allows for fair comparisons across conditions such as being raised in one-parent versus two-parent households. However, this is a different kind of treatment altogether than considering whether a couple should get married. There is no attempt to compare parents who are similar to each other; instead, it is the children who are similar on average at the outset. The treatment in question then has to do with the child's placement in a family. This addresses an interesting although perhaps less policy-relevant question (at least in terms of policies that affect incentives for marriage formation or dissolution).

Multiple treatment factors

It is difficult to directly interpret more than one input variable causally in an observational study. Suppose we have two variables, \(A\) and \(B\), whose effects we would like to estimate from a single observational study. To estimate causal effects, we must consider implicit treatments—and to estimate both effects at once, we would have to imagine a treatment that affects \(A\) while leaving \(B\) unchanged, and a treatment that affects \(B\) while leaving \(A\) unchanged. In examples we have seen, it is generally difficult to envision both these interventions: if \(A\) comes before \(B\) in time or logical sequence, then we can estimate the effect of \(B\) controlling for \(A\) but not the reverse (because of the problem with controlling for post-treatment variables, which we discuss in greater detail in the next section).

More broadly, for many years a common practice when studying a social problem (for example, poverty) was to compare people with different outcomes, throwing many inputs into a regression to see which was the strongest predictor. As opposed to the way we have tried to frame causal questions thus far in this chapter, as the effect of causes, this is a strategy that searches for the causes of an effect. This is an ill-defined notion that we will avoid for exactly the kind of reasons discussed in this chapter.\(^9\)

Thought experiment: what would be an ideal randomized experiment?

If you find yourself confused about what can be estimated and how the various aspects of your study should be defined, a simple strategy is to try to formalize the randomized experiment you would have liked to have done to answer your causal question. A perfect mapping rarely exists between this experimental ideal and your data so often you will be forced instead to figure out, given the data you have, what randomized experiment could be thought to have generated such data.

\(^9\) Also, philosophically, looking for the most important cause of an outcome is a confusing framing for a research question because one can always find an earlier cause that affected the "cause" you determine to be the strongest from your data. This phenomenon is sometimes called the "infinite regress of causation."
For instance, if you were interested in the effect of breastfeeding on children’s cognitive outcomes, what randomized experiment would you want to perform assuming no practical, legal, or moral barriers existed? We could imagine randomizing mothers to either breastfeed their children exclusively or bottle-feed them formula exclusively. We would have to consider how to handle those who do not adhere to their treatment assignment, such as mothers and children who are not able to breastfeed, and children who are allergic to standard formula. Moreover, what if we want to separately estimate the physiological effects of the breast milk from the potential psychological implications (to both mother and child) of nursing at the breast and the more extended physical contact that is often associated with breastfeeding? In essence, then, we think that perhaps breastfeeding represents several concurrent treatments. Perhaps we would want to create a third treatment group of mothers who feed their babies with bottles of expressed breast milk. This exercise of considering the randomized experiment helps to clarify what the true nature of the intervention is that we are using our treatment variable to represent.

Just as in a randomized experiment, all causal inference requires a comparison of at least two treatments (counting “control” as a treatment). For example, consider a study of the effect on weight loss of a new diet. The treatment (following the diet) may be clear but the control is not. Is it to try a different diet? To continue eating “normally”? To exercise more? Different control conditions imply different counterfactual states and thus induce different causal effects.

Finally, thinking about hypothetical randomized experiments can help with problems of trying to establish a causal link between two variables when neither has temporal priority and when they may have been simultaneously determined. For instance, consider a regression of crime rates in each of 50 states using a cross section of data, where the goal is to determine the “effect” of the number of police officers while controlling for the social, demographic, and economic features of each state as well as characteristics of the state (such as the crime rate) that might affect decisions to increase the size of the police force. The problem is that it may be difficult (if not impossible) to disentangle the “effect” of the size of the police force on crime from the “effect” of the crime rate on the size of the police force.

If one is interested in figuring out policies that can affect crime rates, it might be more helpful to conceptualize both “number of police officers” and “crime rate” as outcome variables. Then one could imagine different treatments (policies) that could affect these outcomes. For example, the number of police officers could be affected by a bond issue to raise money earmarked for hiring new police, or a change in the retirement age, or a reallocation of resources within local and state government law enforcement agencies. These different treatments could have different effects on the crime rate.

9.7 Do not control for post-treatment variables

As illustrated in the examples of this chapter, we recommend controlling for pre-treatment covariates when estimating causal effects in experiments and observational studies. However, it is generally not a good idea to control for variables measured after the treatment. In this section and the next we explain why controlling for a post-treatment variable messes up the estimate of total treatment effect, and also the difficulty of using regression on “mediators” or “intermediate outcomes” (variables measured post-treatment but generally prior to the primary outcome of interest) to estimate so-called mediating effects.

Consider a hypothetical study of a treatment that incorporates a variety of social
Figure 9.13 Hypothetical example illustrating the problems with regressions that control on a continuous intermediate outcome. If we control for z when regressing y on T, we will be essentially making comparisons between units such as 1 and 2 above, which differ in T but are identical in z. The trouble is that such units are not, in fact, comparable, as can be seen by looking at the potential outcomes, z^0_i and z^1_i (which can never both be observed, but which we can imagine for the purposes of understanding this comparison).

Unit 1, which received the control, has higher potential outcomes than unit 2, which received the treatment. Matching on the observed z inherently leads to misleading comparisons as measured by the potential outcomes, which are the more fundamental quantity.

The coefficient θ in regression (9.6) thus in general represents an inappropriate comparison of units that fundamentally differ. See Figure 9.14 for a similar example with a discrete intermediate outcome.

We label y as the child’s IQ score, z as the parenting quality, T as the randomly assigned binary treatment, and x as a pre-treatment background variable (which could in general be a vector). The goal here is to measure the effect of T on y, and we shall explain why it is not a good idea to control for the intermediate outcome, z, in making this estimate.

To keep things clean, we shall assume a linear regression for the intermediate outcome:

$$z = 0.3 + 0.2T + \gamma x + \text{error}, \quad (9.4)$$

with independent errors.10 We further suppose that the pre-treatment variable x has been standardized to have mean 0. Then, on average, we would see parenting quality at 0.3 for the controls and 0.5 for the treated parents. Thus the causal effect of the treatment on parenting quality is 0.2. An interaction of T and x could be easily added and interpreted as well if it is desired to estimate systematic variation of treatment effects.

Similarly, a model for y given T and x—excluding z—is straightforward, with the coefficient of T representing the total effect of the treatment on the child’s cognitive outcome:

$$y = \theta T + \beta x + \epsilon. \quad (9.5)$$

The difficulty comes if z is added to this model. Adding z as a predictor could improve the model fit, explaining much of the variation in y:

$$y = \theta^* T + \beta^* x + \delta^* z + \epsilon^*. \quad (9.6)$$

We add the asterisks here because adding a new predictor changes the interpretation of each of the parameters. Unfortunately, the new coefficient θ^* does not, in general, estimate the effect of T.

Figure 9.13 illustrates the problem with controlling for an intermediate outcome.

10 We use the notation γ for the coefficient of x because we are saving β for the regression of y; see model (9.5).
The coefficient of T in regression (9.6) corresponds to a comparison of units that are identical in x and z but differ in T. The trouble is, they will then automatically differ in their potential outcomes, z^0 and z^1. For example, consider two families, one with $z = 0.5$ but one with $T = 0$ and one with $T = 1$. Under the (simplifying) assumption that the effect of T is to increase z by exactly 0.2 (recall the assumed model (9.4)), the first family has potential outcomes $z^0 = 0.5$, $z^1 = 0.7$, and the second family has potential outcomes $z^0 = 0.3$, $z^1 = 0.5$. Thus, given two families with the same intermediate outcome z, the one that received the treatment has lower underlying parenting skills. Thus, in the regression of y on (x, T, z), the coefficient of T represents a comparison of families that differ in their underlying characteristics. This is an inevitable consequence of controlling for an intermediate outcome.

This reasoning suggests a strategy of estimating treatment effects conditional on the potential outcomes—in this example, including both z^0 and z^1, along with T and x, in the regression. The practical difficulty here (as usual) is that we observe at most one potential outcome for each observation, and thus such a regression would require imputation of z^0 or z^1 for each case (perhaps, informally, by using pre-treatment variables as proxies for z^0 and z^1), and correspondingly strong assumptions.

9.8 Intermediate outcomes and causal paths

Randomized experimentation is often described as a “black box” approach to causal inference. We see what goes into the box (treatments) and we see what comes out (outcomes), and we can make inferences about the relation between these inputs and outputs, without the ability to see what happens inside the box. This section discusses what happens when we use standard techniques to try to ascertain the role of post-treatment, or mediating variables, in the causal path between treatment and outcomes. We present this material at the end of this chapter because the discussion relies on concepts from the analysis of both randomized experiments and observational studies.

Hypothetical example of a binary intermediate outcome

Continuing the hypothetical experiment on child care, suppose that the randomly assigned treatment increases children’s IQ points after three years by an average of 10 points (compared to the outcome under usual care). We would additionally like to know to what extent these positive results were the result of improved parenting practices. This question is sometimes phrased as: “What is the ‘direct’ effect of the treatment, net the effect of parenting?” Does the experiment allow us to evaluate this question? The short answer is no. At least not without making further assumptions.

Yet it would not be unusual to see such a question addressed by simply running a regression of the outcome on the randomized treatment variable along with a predictor representing (post-treatment) “parenting” added to the equation; recall that this is often called a mediating variable or mediator. Implicitly, the coefficient on the treatment variable then creates a comparison between those randomly assigned to treatment and control, within subgroups defined by post-treatment parenting practices. Let us consider what is estimated by such a regression.

For simplicity, assume these parenting practices are measured by a simple categorization as “good” or “poor.” The simple comparison of the two groups can mislead, because parents who demonstrate good practices after the treatment is applied are likely to be different, on average, from the parents who would have been classified
<table>
<thead>
<tr>
<th>Parenting potential</th>
<th>Parenting quality after assigned to control</th>
<th>Parenting quality after assigned to treat</th>
<th>Child’s IQ score after assigned to control</th>
<th>Child’s IQ score after assigned to treat</th>
<th>Proportion of sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor parenting either way</td>
<td>Poor</td>
<td>Poor</td>
<td>60</td>
<td>70</td>
<td>0.1</td>
</tr>
<tr>
<td>Good parenting if treated</td>
<td>Poor</td>
<td>Good</td>
<td>65</td>
<td>80</td>
<td>0.7</td>
</tr>
<tr>
<td>Good parenting either way</td>
<td>Good</td>
<td>Good</td>
<td>90</td>
<td>100</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Figure 9.14 *Hypothetical example illustrating the problems with regressions that control on intermediate outcomes.* The table shows, for three categories of parents, their potential parenting behaviors and the potential outcomes for their children under the control and treatment conditions. The proportion of the sample falling into each category is also provided. In actual data, we would not know which category was appropriate for each individual parent—it is the fundamental problem of causal inference that we can observe at most one treatment condition for each person—but this theoretical setup is helpful for understanding the properties of statistical estimates. See Figure 9.13 for a similar example with a continuous intermediate outcome.

Regression controlling for intermediate outcomes cannot, in general, estimate “mediating” effects

Some researchers who perform these analyses will claim that these models are still useful because, if the estimate of the coefficient on the treatment variable goes to zero after including the mediating variable, then we have learned that the entire effect of the treatment acts through the mediating variable. Similarly, if the treatment effect is cut in half, they might claim that half of the effect of the treatment acts through better parenting practices or, equivalently, that the effect of treatment net the effect of parenting is half the total value. This sort of conclusion is not generally appropriate, however, as we illustrate with a hypothetical example.

Hypothetical scenario with direct and indirect effects. Figure 9.14 displays potential outcomes of the children of the three different kinds of parents in our sample: those who will demonstrate poor parenting practices with or without the intervention, those whose parenting will get better if they receive the intervention, and those who will exhibit good parenting practices with or without the intervention. We can think of these categories as reflecting parenting potential. For simplicity, we have defined the model deterministically, with no individual variation within the three categories of family.

Here the effect of the intervention is 10 IQ points on children whose parents’ parenting practices were unaffected by the treatment. For those parents who would improve their parenting due to the intervention, the children get a 15-point improvement. In some sense, philosophically, it is difficult (some would say impossible) to even define questions such as “what percentage of the treatment effect can be attributed to improved parenting practices” since treatment effects (and fractions attributable to various causes) can differ across people. How can we ever say for those families that have good parenting, if treated, what portion of their treatment effect can be attributed to differences in parenting practices as compared to the effects experienced by the families whose parenting practices would not change based on their treatment assignment? If we assume, however, that the effect on children
due to sources other than parenting practices stays constant over different types of people (10 points), then we might say that, at least for those with the potential to have their parenting improved by the intervention, this improved parenting accounts for about \((15 - 10)/15 = 1/3\) of the effect.

A regression controlling for the intermediate outcome does not generally work. However, if one were to try to estimate this effect using a regression of the outcome on the randomized treatment variable and observed parenting behavior, the coefficient on the treatment indicator will be \(-1.5\), falsely implying that the treatment has some sort of negative “direct effect” on IQ scores!

To see what is happening here, recall that this coefficient is based on comparisons of treated and control groups within groups defined by observed parenting behavior. Consider, for instance, the comparison between treated and control groups within those observed to have poor parenting behavior. The group of parents who did not receive the treatment and are observed to have poor parenting behavior is a mixture of those who would have exhibited poor parenting either way and those who exhibited poor parenting simply because they did not get the treatment. Those in the treatment group who exhibited poor parenting are all those who would have exhibited poor parenting either way. Those whose poor parenting is not changed by the intervention have children with lower test scores on average—under either treatment condition—than those whose parenting would have been affected by the intervention.

The regression controlling for the intermediate outcome thus implicitly compares unlike groups of people and underestimates the treatment effect, because the treatment group in this comparison is made up of lower-performing children, on average. A similar phenomenon occurs when we make comparisons across treatment groups among those who exhibit good parenting. Those in the treatment group who demonstrate good parenting are a mixture of two groups (good parenting if treated and good parenting either way) whereas the control group is simply made up of the parents with the highest-performing children (good parenting either way). This estimate does not reflect the effect of the intervention net the effect of parenting. It does not estimate any causal effect. It is simply a mixture of some nonexperimental comparisons.

This example is an oversimplification, but the basic principles hold in more complicated settings. In short, randomization allows us to calculate causal effects of the variable randomized, but not other variables unless a whole new set of assumptions is made. Moreover, the benefits of the randomization for treatment effect estimation are generally destroyed by including post-treatment variables. These assumptions and the strategies that allow us to estimate the effects conditional on intermediate outcomes in certain situations will be discussed at the end of Chapter 10.

What can be estimated: principal stratification

We noted earlier that questions such as “What proportion of the treatment effect works through variable A?” are in some sense, inherently unanswerable. What can we learn about the role of intermediate outcomes or mediating variables? As we discussed in the context of Figure 9.14, treatment effects can vary depending on the extent to which the mediating variable (in this example, parenting practices) is affected by the treatment. The key theoretical step here is to divide the population into categories based on their potential outcomes for the mediating variable—what would happen under each of the two treatment conditions. In statistical parlance, these categorizations are sometimes called principal strata. The problem is that
the principal stratum labels are generally unobserved. It is theoretically possible to statistically infer principal-stratum categories based on covariates, especially if the treatment was randomized—because then at least we know that the distribution of principal strata is the same across the randomized groups. In practice, however, this reduces to making the same kinds of assumptions as are made in typical observational studies when ignorability is assumed.

Principal strata are important because they can define, even if only theoretically, the categories of people for whom the treatment effect can be estimated from available data. For example, if treatment effects were nonzero only for the study participants whose parenting practices had been changed, and if we could reasonably exclude other causal pathways, even stronger conclusions could be drawn regarding the role of this mediating variable. We discuss this scenario of *instrumental variables* in greater detail in Section 10.5.

Intermediate outcomes in the context of observational studies

If trying to control directly for mediating variables is problematic in the context of randomized experiments, it should come as no surprise that it generally is also problematic for observational studies. The concern is nonignorability—systematic differences between groups defined conditional on the post-treatment intermediate outcome. In the example above if we could control for the true parenting potential designations, the regression would yield the correct estimate for the treatment effect if we are willing to assume constant effects across groups (or willing to posit a model for how effects change across groups). One conceivably can obtain the same result by controlling sufficiently for covariates that adequately proxy this information.

In observational studies, researchers often already know to control for many predictors. So it is possible that these predictors will mitigate some of the problems we have discussed. On the other hand, studying intermediate outcomes in an observational study involves two ignorability problems to deal with rather than just one, making it all the more challenging to obtain trustworthy results.

Well-switching example. As an example where the issues discussed in this and the previous section come into play, consider one of the logistic regressions from Chapter 5:

$$\Pr(\text{switch}) = \logit^{-1}(-0.21 - 0.90 \cdot \text{dist}100 + 0.47 \cdot \text{arsenic} + 0.17 \cdot \text{educ}4),$$

predicting the probability that a household switches drinking-water wells as a function of distance to the nearest safe well, arsenic level of the current well, and education of head of household.

This model can simply be considered as data description, but it is natural to try to interpret it causally: being further from a safe well makes one less likely to switch, having a higher arsenic level makes switching more likely, and having more education makes one more likely to switch. Each of these coefficients is interpreted with the other two inputs held constant—and this is what we want to do, in isolating the “effects” (as crudely interpreted) of each variable. For example, households that are farther from safe wells turn out to be more likely to have high arsenic levels, and in studying the “effect” of distance, we would indeed like to compare households that are otherwise similar, including in their arsenic level. This fits with a psychological or decision-theoretic model in which these variables affect the perceived costs and benefits of the switching decision (as outlined in Section 6.8).

However, in the well-switching example as in many regression problems, additional assumptions beyond the data are required to justify the convenient interpre-
tation of multiple regression coefficients as causal effects—what would happen to \(y \) if a particular input were changed, with all others held constant—and it is rarely appropriate to give more than one coefficient such an interpretation, and then only after careful consideration of ignorability. Similarly, we cannot learn about causal pathways from observational data without strong assumptions.

For example, a careful estimate of the effect of a potential intervention (for example, digging new, safe wells in close proximity to existing high-arsenic households) should include, if not an actual experiment, a model of what would happen in the particular households being affected, which returns us to the principles of observational studies discussed earlier in this chapter.

9.9 Bibliographic note

The fundamental problem of causal inference and the potential outcome notation were introduced by Rubin (1974, 1978). Related earlier work includes Neyman (1923) and Cox (1958). For other approaches to causal inference, see Pearl (2000) along with many of the references in Section 10.8.

The stable unit treatment value assumption was defined by Rubin (1978); see also Sobel (2006) for a more recent discussion in the context of a public policy intervention and evaluation. Ainsley, Dyke, and Jenkyn (1995) and Besag and Higdon (1999) discuss spatial models for interference between units in agricultural experiments. Gelman (2004d) discusses treatment interactions in before/after studies.

Modeling strategies also exist that rely on ignorability but loosen the relatively strict functional form imposed by linear regression. Examples include Hahn (1998), Heckman, Ichimura and Todd (1998), Hirano, Imbens, and Ridder (2003), and Hill and McCulloch (2006).

The example regarding the Korean babies up for adoption was inspired by Sacerdote (2004). The Electric Company experiment is described by Ball and Bogatz (1972) and Ball et al. (1972).

Rosenbaum (1984) provides a good discussion of the dangers outlined in Section 9.8 involved in trying to control for post-treatment outcomes. Raudenbush and Sampson (1999), Rubin (2000), and Rubin (2004) discuss direct and indirect effects for multilevel designs. We do not attempt here to review the vast literature on structural equation modeling; Kenny, Kashy, and Bolger (1998) is a good place to start.

The term “principal stratification” was introduced by Frangakis and Rubin (2002); examples of its application include Frangakis et al. (2003) and Barnard et al. (2003). Similar ideas appear in Robins (1989, 1994).

9.10 Exercises

1. Suppose you are interested in the effect of the presence of vending machines in schools on childhood obesity. What randomized experiment would you want to do (in a perfect world) to evaluate this question?

2. Suppose you are interested in the effect of smoking on lung cancer. What ran-
3. Suppose you are a consultant for a researcher who is interested in investigating the effects of teacher quality on student test scores. Use the strategy of mapping this question to a randomized experiment to help define the question more clearly. Write a memo to the researcher asking for needed clarifications to this study proposal.

4. The table below describes a hypothetical experiment on 2400 persons. Each row of the table specifies a category of person, as defined by his or her pre-treatment predictor \(x \), treatment indicator \(T \), and potential outcomes \(y^0, y^1 \). (For simplicity, we assume unrealistically that all the people in this experiment fit into these eight categories.)

<table>
<thead>
<tr>
<th>Category</th>
<th># persons in category</th>
<th>(x)</th>
<th>(T)</th>
<th>(y^0)</th>
<th>(y^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>500</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>500</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>200</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>200</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>200</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

In making the table we are assuming omniscience, so that we know both \(y^0 \) and \(y^1 \) for all observations. But the (nonomniscient) investigator would only observe \(x, T, \) and \(y^T \) for each unit. (For example, a person in category 1 would have \(x = 0, T = 0, y = 4 \), and a person in category 3 would have \(x = 0, T = 1, y = 6 \).)

(a) What is the average treatment effect in this population of 2400 persons?
(b) Is it plausible to believe that these data came from a randomized experiment? Defend your answer.
(c) Another population quantity is the mean of \(y \) for those who received the treatment minus the mean of \(y \) for those who did not. What is the relation between this quantity and the average treatment effect?
(d) For these data, is it plausible to believe that treatment assignment is ignorable given sex? Defend your answer.

5. For the hypothetical study in the previous exercise, figure out the estimate and the standard error of the coefficient of \(T \) in a regression of \(y \) on \(T \) and \(x \).

6. You are consulting for a researcher who has performed a randomized trial where the treatment was a series of 26 weekly therapy sessions, the control was no therapy, and the outcome was self-report of emotional state one year later. However, most people in the treatment group did not attend every therapy session. In fact there was a good deal of variation in the number of therapy sessions actually attended. The researcher is concerned that her results represent “watered down” estimates because of this variation and suggests adding in another predictor to the model: number of therapy sessions attended. What would you advise her?

7. Gain-score models: in the discussion of gain-score models in Section 9.3, we noted that if we include the pre-treatment measure of the outcome in a gain score model, the coefficient on the treatment indicator will be the same as if we had just run a standard regression of the outcome on the treatment indicator and the pre-treatment measure. Show why this is true.
8. Assume that linear regression is appropriate for the regression of an outcome, y, on treatment indicator, T, and a single confounding covariate, x. Sketch hypothetical data (plotting y versus x, with treated and control units indicated by circles and dots, respectively) and regression lines (for treatment and control group) that represent each of the following situations:

(a) No treatment effect,
(b) Constant treatment effect,
(c) Treatment effect increasing with x.

9. Consider a study with an outcome, y, a treatment indicator, T, and a single confounding covariate, x. Draw a scatterplot of treatment and control observations that demonstrates each of the following:

(a) A scenario where the difference in means estimate would not capture the true treatment effect but a regression of y on x and T would yield the correct estimate.
(b) A scenario where a linear regression would yield the wrong estimate but a nonlinear regression would yield the correct estimate.

10. The folder sesame contains data from an experiment in which a randomly selected group of children was encouraged to watch the television program Sesame Street and the randomly selected control group was not.

(a) The goal of the experiment was to estimate the effect on child cognitive development of watching more Sesame Street. In the experiment, encouragement but not actual watching was randomized. Briefly explain why you think this was done. (Hint: think of practical as well as statistical reasons.)

(b) Suppose that the investigators instead had decided to test the effectiveness of the program simply by examining how test scores changed from before the intervention to after. What assumption would be required for this to be an appropriate causal inference? Use data on just the control group from this study to examine how realistic this assumption would have been.

11. Return to the Sesame Street example from the previous exercise.

(a) Did encouragement (the variable viewenc in the dataset) lead to an increase in post-test scores for letters (postlet) and numbers (postnumb)? Fit an appropriate model to answer this question.

(b) We are actually more interested in the effect of watching Sesame Street regularly (regular) than in the effect of being encouraged to watch Sesame Street. Fit an appropriate model to answer this question.

(c) Comment on which of the two previous estimates can plausibly be interpreted causally.

12. Messy randomization: the folder cows contains data from an agricultural experiment that was conducted on 50 cows to estimate the effect of a feed additive on six outcomes related to the amount of milk fat produced by each cow.

Four diets (treatments) were considered, corresponding to different levels of the additive, and three variables were recorded before treatment assignment: lactation number (seasons of lactation), age, and initial weight of cow.

Cows were initially assigned to treatments completely at random, and then the distributions of the three covariates were checked for balance across the treatment groups; several randomizations were tried, and the one that produced the
“best” balance with respect to the three covariates was chosen. The treatment assignment is ignorable (because it depends only on fully observed covariates and not on unrecorded variables such as the physical appearances of the cows or the times at which the cows entered the study) but unknown (because the decisions whether to rerandomize are not explained).

We shall consider different estimates of the effect of additive on the mean daily milk fat produced.

(a) Consider the simple regression of mean daily milk fat on the level of additive. Compute the estimated treatment effect and standard error, and explain why this is not a completely appropriate analysis given the randomization used.

(b) Add more predictors to the model. Explain your choice of which variables to include. Compare your estimated treatment effect to the result from (a).

(c) Repeat (b), this time considering additive level as a categorical predictor with four letters. Make a plot showing the estimate (and standard error) of the treatment effect at each level, and also showing the inference the model fit in part (b).

13. The folder congress has election outcomes and incumbency for U.S. congressional election races in the 1900s.

(a) Take data from a particular year, \(t \), and estimate the effect of incumbency by fitting a regression of \(v_{i,t} \), the Democratic share of the two-party vote in district \(i \), on \(v_{i,t-2} \) (the outcome in the previous election, two years earlier), \(I_i \) (the incumbency status in district \(i \) in election \(t \), coded as 1 for Democratic incumbents, 0 for open seats, \(-1\) for Republican incumbents), and \(P_i \) (the incumbent party, coded as 1 if the sitting congressmember is a Democrat and \(-1\) if he or she is a Republican). In your analysis, include only the districts where the congressional election was contested in both years, and do not pick a year ending in “2.” (District lines in the United States are redrawn every ten years, and district election outcomes \(v_{i,t} \) and \(v_{i,t-2} \) are not comparable across redistrictings, for example, from 1970 to 1972.)

(b) Plot the fitted model and the data, and discuss the political interpretation of the estimated coefficients.

(c) What assumptions are needed for this regression to give a valid estimate of the causal effect of incumbency? In answering this question, define clearly what is meant by incumbency as a “treatment variable.”

14. Causal inference based on data from individual choices: our lives involve trade-offs between monetary cost and physical risk, in decisions ranging from how large a car to drive, to choices of health care, to purchases of safety equipment. Economists have estimated people’s implicit balancing of dollars and danger by comparing different jobs that are comparable but with different risks, fitting regression models predicting salary given the probability of death on the job. The idea is that a riskier job should be compensated with a higher salary, with the slope of the regression line corresponding to the “value of a statistical life.”

(a) Set up this problem as an individual choice model, as in Section 6.8. What are an individual’s options, value function, and parameters?
(b) Discuss the assumptions involved in assigning a causal interpretation to these regression models.

Chapter 9 discussed situations in which it is dangerous to use a standard linear regression of outcome on predictors and an indicator variable for estimating causal effects: when there is imbalance or lack of complete overlap or when ignorability is in doubt. This chapter discusses these issues in more detail and provides potential solutions for each.

10.1 Imbalance and lack of complete overlap

In a study comparing two treatments (which we typically label “treatment” and “control”), causal inferences are cleanest if the units receiving the treatment are comparable to those receiving the control. Until Section 10.5, we shall restrict ourselves to ignorable models, which means that we only need to consider observed pre-treatment predictors when considering comparability.

For ignorable models, we consider two sorts of departures from comparability—imbalance and lack of complete overlap. Imbalance occurs if the distributions of relevant pre-treatment variables differ for the treatment and control groups. Lack of complete overlap occurs if there are regions in the space of relevant pre-treatment variables where there are treated units but no controls, or controls but no treated units.

Imbalance and lack of complete overlap are issues for causal inference largely because they force us to rely more heavily on model specification and less on direct support from the data.

When treatment and control groups are unbalanced, the simple comparison of group averages, \(\bar{y}_1 - \bar{y}_0 \), is not, in general, a good estimate of the average treatment effect. Instead, some analysis must be performed to adjust for pre-treatment differences between the groups.

When treatment and control groups do not completely overlap, the data are inherently limited in what they can tell us about treatment effects in the regions of nonoverlap. No amount of adjustment can create direct treatment/control comparisons, and one must either restrict inferences to the region of overlap, or rely on a model to extrapolate outside this region.

Thus, lack of complete overlap is a more serious problem than imbalance. But similar statistical methods are used in both scenarios, so we discuss these problems together here.

Imbalance and model sensitivity

When attempting to make causal inferences by comparing two samples that differ in terms of the “treatment” or causing variable of interest (participation in a program, taking a drug, engaging in some activity) but that also differ in terms of confounding covariates (predictors related both to the treatment and outcome), we can be misled...
if we do not appropriately control for those confounders. The examples regarding the effect of a treatment on health outcomes in Section 9.1 illustrated this point in a simple setting.

Even when all the confounding covariates are measured (hence ignorability is satisfied), however, it can be difficult to properly control for them if the distributions of the predictors are not similar across groups. Broadly speaking, any differences across groups can be referred to as lack of balance across groups. The terms “imbalance” and “lack of balance” are commonly used as a shorthand for differences in averages, but more broadly they can refer to more general differences in distributions across groups. Figure 10.1 provides two examples of imbalance. In the first case the groups have different means (dotted vertical lines) and different skews. In the second case groups have the same mean but different skews. In both examples the standard deviations are the same across groups though differences in standard deviation might be another manifestation of imbalance.

Imbalance creates problems primarily because it forces us to rely more on the correctness of our model than we would have to if the samples were balanced. To see this, consider what happens when we try to make inferences about the effect of a treatment variable, for instance a new reading program, on test score, y, while controlling for a crucial confounding covariate, pre-test score, x. Suppose that the true treatment effect is θ and the relations between the response variable, y, and the sole confounding covariate, x, is quadratic, as indicated by the following regressions, written out separately for the members of each treatment group:

\[
\begin{align*}
\text{treated: } y_i &= \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \theta + \text{error}_i \\
\text{controls: } y_i &= \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \text{error}_i
\end{align*}
\]

Averaging over each treatment group separately, solving the second equation for β_0, plugging back into the first, and solving for θ yields the estimate

\[
\hat{\theta} = \bar{y}_1 - \bar{y}_0 - \beta_1(\bar{x}_1 - \bar{x}_0) - \beta_2(\bar{x}_1^2 - \bar{x}_0^2),
\tag{10.1}
\]

where \bar{y}_1 and \bar{y}_0 denote the average of the outcome test scores in the treatment and control groups respectively, \bar{x}_1 and \bar{x}_0 represent average pre-test scores for treatment and control groups respectively, and \bar{x}_1^2 and \bar{x}_0^2 represent these averages for squared pre-test scores. Ignoring x (that is, simply using the raw treatment/control comparison $\bar{y}_1 - \bar{y}_0$) is a poor estimate of the treatment effect: it will be off by the amount $\beta_1(\bar{x}_1 - \bar{x}_0) + \beta_2(\bar{x}_1^2 - \bar{x}_0^2)$, which corresponds to systematic pre-treatment differences between groups 0 and 1. The magnitude of this bias depends on how different the distribution of x is across treatment and control groups (specifically with regard to variance in this case) and how large β_1 and β_2 are. The closer
Lack of complete overlap and model extrapolation

Overlap describes the extent to which the range of the data is the same across treatment groups. There is complete overlap if this range is the same in the two groups. Figure 10.1 illustrated treatment and control confounder distributions with complete overlap.

As discussed briefly in the previous chapter, lack of complete overlap creates problems because it means that there are treatment observations for which we have no counterfactuals (that is, control observations with the same covariate distribution) and vice versa. A model fitted to data such as these is forced to extrapolate beyond the support of the data. The illustrations in Figure 10.2 display several scenarios that exhibit lack of complete overlap.

If these are distributions for an important confounding covariate, then areas where there is no overlap represent observations about which we may not want to make causal inferences. Observations in these areas have no empirical counterfactuals. Thus, any inferences regarding these observations would have to rely on modeling assumptions in place of direct support from the data. Adhering to this structure would imply that in the setting of Figure 10.2a, it would be impossible to make data-based causal inferences about any of the observations. Figure 10.2b shows a scenario in which data-based inferences are only possible for the region of overlap, which is underscored on the plot. In Figure 10.2c, causal inferences are possible for the full treatment group but only for a subset of the control group (again indicated by the underscored region).

Example: evaluating the effectiveness of high-quality child care

We illustrate with data collected regarding the development of nearly 4500 children born in the 1980s. A subset of 290 of these children who were premature and with low birth weight (between 1500 and 2500 grams) received special services in the first few years of life, including high-quality child care (five full days a week) in the
second and third years of life as part of a formal intervention (the Infant Health and Development Program). We want to evaluate the impact of this intervention on the children’s subsequent cognitive outcomes by comparing the outcomes for children in the intervention group to the outcomes in a comparison group of 4091 children who did not participate in the program. The outcome of interest is test score at age 3; this test is similar to an IQ measure so we simplistically refer to these scores as IQ scores from now on.

Missing data. Incomplete data arise in virtually all observational studies. For this sample dataset, we imputed missing data once, using a model-based random imputation (see Chapter 25 for a general discussion of this approach). We excluded the most severely low-birth-weight children (those at or below 1500 grams) from the sample because they are so different from the comparison sample. For these reasons, results presented here do not exactly match the complete published analysis, which multiply imputed the missing values.

Examining imbalance for several covariates

To illustrate the ways in which the treated and comparison groups differ, the open circles in Figure 10.3 display the standardized differences in mean values (differences in averages divided by the pooled within-group standard deviations for the treatment and control groups) for a set of confounding covariates that we think predict both program participation and subsequent test scores. Many of these differences are large given that they are shown in standard-deviation units.

Setting up the plot to reveal systematic patterns of imbalance. In Figure 10.3, the characteristics of this sample are organized by whether they pertain to the child or to the mother. Additionally, continuous and binary predictors have been coded when possible such that the larger values are typically associated with lower test scores for children. For instance, “negative birth weight” is defined as the child’s birth weight subtracted from 2500 grams, the cutoff for the official designation of
low birth weight. Therefore, high values of this predictor reflect children whom we would expect to have lower test scores than children with lower values for negative birth weight. Categorical variables have been broken out into indicators for each category and organized so that the category associated with lowest test scores comes first.

Displaying the confounders in this way and plotting standardized averages—rather than displaying a table of numbers—facilitate comparisons across predictors and methods (the dark points, to be described later, correspond to results obtained from another strategy) and allow us to more clearly identify trends when they exist. For instance, compared to the control group, the at-risk treatment group generally has characteristics associated with lower test scores—such as low birth weight for the child (coded as high “negative birth weight”), mother unmarried at birth, and mother not a high school graduate.

Figure 10.4, which shows a scatterplot and regression lines of test scores on birth weight, illustrates that, not only do the average birth weights differ in the two groups (lack of balance), but there are many control observations (gray dots) who have birth weights far out of the range of birth weights experienced in the treatment population (black dots). This is an example of lack of complete overlap in this predictor across groups. If birth weight is a confounding covariate that we need to control for to achieve ignorability, Figure 10.4 demonstrates that if we want to make inferences about the effect of the program on children with birth weights above 2500 grams, we will have to rely on model extrapolations that may be inappropriate.

Imbalance is not the same as lack of overlap

Figure 10.5 illustrates the distinction between balance and overlap. Imbalance does not necessarily imply lack of complete overlap; conversely, lack of complete overlap does not necessarily result in imbalance in the sense of different average values in the two groups. Ultimately, lack of overlap is a more serious problem, corresponding to a lack of data that limits the causal conclusions that can be made without uncheckable modeling assumptions.

Figure 10.5a demonstrates complete overlap across groups in terms of mother’s education. Each category includes observations in each treatment group. However,
Figure 10.5 Comparisons of the treatment (black histogram bars) and control (gray histogram bars) groups for the child-intervention study, with respect to two of the pre-treatment variables. There is lack of complete overlap for child age, but the averages are similar across groups. In contrast, mother’s education shows complete overlap, but imbalance exists in that the distributions differ for the two groups.

the percentages falling in each category (and the overall average, were we to code these categories as 1–4) differ when comparing treatment and control groups—thus there is clearly imbalance.

Figure 10.5b shows balance in mean values but without complete overlap. As the histograms show, the averages of children’s ages differ little across treatment groups, but the vast majority of control children have ages that are not represented in the treatment group. Thus there is a lack of complete overlap across groups for this variable. More specifically, there is complete overlap in terms of the treatment observations, but not in terms of the control observations. If we believe age to be a crucial confounding covariate, we probably would not want to make inferences about the full set of controls in this sample.

10.2 Subclassification: effects and estimates for different subpopulations

Assuming we are willing to trust the ignorability assumption, how can we assess whether we are relying too strongly on modeling assumptions? And if we are uncertain of our assumptions, how can we proceed cautiously? Section 9.5 illustrated a check for overlap in one continuous predictor across treatment groups. In this section we demonstrate a check that accommodates many predictors and discuss options for more flexible modeling.

Subclassification

We saw in Chapter 3 that mother’s educational attainment is an important predictor of her child’s test scores. Education level also traditionally is associated with participation in interventions such as this program for children with low birth weights. Let us make the (unreasonable) assumption for the moment that this is the only confounding covariate (that is, the only predictor associated with both participation in this program and test scores). How would we want to estimate causal effects? In this case a simple solution would be to estimate the difference in mean test scores within each subclass defined by mother’s education. These averages as well as the associated standard error and sample size in each subclass are displayed in Figure 10.6. These point to positive effects for all participants, though not all
SUBCLASSIFICATION AND TREATMENT INTERACTIONS

<table>
<thead>
<tr>
<th>Mother’s education</th>
<th>Treatment effect estimate ± s.e.</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not a high school grad</td>
<td>9.3 ± 1.3</td>
<td>126</td>
</tr>
<tr>
<td>High school graduate</td>
<td>4.0 ± 1.8</td>
<td>82</td>
</tr>
<tr>
<td>Some college</td>
<td>7.9 ± 2.3</td>
<td>48</td>
</tr>
<tr>
<td>College graduate</td>
<td>4.6 ± 2.1</td>
<td>34</td>
</tr>
</tbody>
</table>

Figure 10.6 Estimates ± standard errors of the effect on children’s test scores of a child care intervention, for each of four subclasses formed by mother’s educational attainment. The study was of premature infants with low birth weight, most of whom were born to mothers with low levels of education.

effects are statistically significant, with by far the largest effects for the children whose mothers had not graduated from high school.

Recall that there is overlap on this variable across the treatment and control groups as is evidenced by the sample sizes for treated and control observations within each subclass in Figure 10.6. If there were a subclass with observations only from one group, we would not be able to make inferences for this type of person. Also, if there were a subclass with only a small number of observations in either the treatment group or the control group, we would probably be wary of making inferences for these children as well.

To get an estimate of the overall effect for those who participated in the program, the subclass-specific estimates could be combined using a weighted average where the weights are defined by the number of children in each subclass who participated in the program:

\[
\text{Est. effect on the treated} = \frac{9.3 \cdot 126 + 4.0 \cdot 82 + 7.9 \cdot 48 + 4.6 \cdot 34}{126 + 82 + 48 + 34} = 7.0, \quad (10.2)
\]

with a standard error of \(\sqrt{\frac{1.3^2 \cdot 126^2 + 1.8^2 \cdot 82^2 + 2.3^2 \cdot 48^2 + 2.1^2 \cdot 34^2}{(126 + 82 + 48 + 34)^2}} = 0.9\).

This analysis is similar to a regression with interactions between the treatment and mother’s educational attainment. To calculate the average treatment effect for program participants, we would have to poststratify—that is, estimate the treatment effect separately for each category of mother’s education, and then average these effects based on the distribution of mother’s education in the population.

This strategy has the advantage of imposing overlap and, moreover, forcing the control sample to have roughly the same covariate distribution as the treated sample. This reduces reliance on the type of model extrapolations discussed previously. Moreover, one can choose to avoid modeling altogether after subclassifying, and simply can take a difference in averages across treatment and control groups to perform inferences, therefore completely avoiding making assumptions about the parametric relation between the response and the confounding covariates.

One drawback of subclassifying, however, is that when controlling for a continuous variable, some information may be lost when discretizing the variable. A more substantial drawback is that it is difficult to control for many variables at once.

Average treatment effects: whom do we average over?

Figure 10.6 demonstrated how treatment effects can vary over different subpopulations. Why did we weight these subclass-specific estimates by the number of treated children in each subclass rather than the total number of children in each subclass?
For this application, we are interested in the effect of the intervention for the sort of children who would have participated in it. Weighting using the number of treatment children in each subclass forces the estimate implicitly to be representative of the treatment children we observe. The effect we are trying to estimate is sometimes called the *effect of the treatment on the treated*.

If we had weighted instead by the number of control children in each subclass, we could estimate the effect of the treatment on the controls. However, this particular intervention was designed for the special needs of low-birth-weight, premature children—not for typical children—and there is little interest in its effect on comparison children who would not have participated.

The effect of the intervention might vary, for instance, for children with different initial birth weights, and since we know that the mix of children’s birth weights differs in treatment and comparison groups, the average effects across these groups could also differ. Moreover, we saw in Figure 10.4 that there are so many control observations with no counterfactual observations in the treatment group with regard to birth weight that these data are likely inappropriate for drawing inferences about the control group either directly (the effect of the treatment on the controls) or as part of an average effect across the entire sample.

Again, this is related to poststratification. We can think of the estimate of the effect of the treatment on the treated as a poststratified version of the estimate of the average causal effect. As the methods we discuss in this section rely on more and more covariates, however, it can be more attractive to apply methods that more directly estimate the effect of the treatment on the treated, as we discuss next.

10.3 Matching: subsetting the data to get overlapping and balanced treatment and control groups

Matching refers to a variety of procedures that restrict and reorganize the original sample in preparation for a statistical analysis. In the simplest form of matching, one-to-one matching, the data points are divided into pairs—each containing one treated and one control unit—with the two units matched into a pair being as similar as possible on relevant pre-treatment variables. The number of units in the two groups will not in general be equal—typically there are more controls than treated units, as in Figure 10.5, for example—and so there will be some leftover units unmatched. In settings with poor overlap, there can be unmatched units from both groups, so that the matched pairs represent the region of data space where the treatment and control groups overlap.

Once the matched units have been selected out of the larger dataset, they can be analyzed by estimating a simple difference in average outcomes across treatment groups or by using regression methods to estimate the effect of the treatment in the area of overlap.

Matching and subclassification

Matching on one variable is similar to subclassification except that it handles continuous variables more precisely. For instance, a treatment observation might be matched to control observations that had the closest age to their own as opposed to being grouped into subclasses based on broader age categories. Thus, matching has the same advantages of stratification in terms of creating balance and forcing overlap, and may even be able to create slightly better balance. However, many
MATCHING

matching methods discard observations even when they are within the range of overlap, which is likely inefficient.

Matching has some advantages over subclassification when controlling for many variables at once. Exact matching is difficult with many confounders, but “nearest-neighbor” matching is often still possible. This strategy matches treatment units to control units that are “similar” in terms of their confounders where the metric for similarity can be defined in any variety of ways, one of the most popular being the Mahalanobis distance, which is defined in matrix notation as $d(x^{(1)}, x^{(2)}) = (x^{(1)} - x^{(2)})^T \Sigma^{-1} (x^{(1)} - x^{(2)})$, where $x^{(1)}$ and $x^{(2)}$ represent the vectors of predictors for points 1 and 2, and Σ is the covariance of the predictors in the dataset. Recently, other algorithms have been introduced to accomplish this same task—finding similar treatment and control observations—that rely on algorithms originally created for genetic or data mining applications. Another matching approach, which we describe next, compares the input variables for treatment and control cases in order to find an effective scale on which to match.

Propensity score matching

One way to simplify the issue of matching or subclassifying on many confounding covariates at once is to create a one-number summary of all the covariates and then use this to match or subclassify. We illustrate using a popular summary, the propensity score, with our example of the intervention for children with low birth weights. It seems implausible that mother’s education, for example, is the only predictor we need to satisfy the ignorability assumption in our example. We would like to control for as many predictors as possible to allow for the possibility that any of them is a confounding covariate. We also want to maintain the beneficial properties of matching. How can we match on many predictors at once?

Propensity score matching provides a solution to this problem. The propensity score for the i^{th} individual is defined as the probability that he or she receives the treatment given everything we observe before the treatment (that is, all the confounding covariates for which we want to control). Propensity scores can be estimated using standard models such as logistic regression, where the outcome is the treatment indicator and the predictors are all the confounding covariates. Then matches are found by choosing for each treatment observation the control observation with the closest propensity score.

In our example we randomly ordered the treatment observations, and then each time a control observation was chosen as a match for a given treatment observation it could not be used again. More generally, methods have been developed for matching multiple control units to a single treated unit, and vice versa; these ideas can be effective, especially when there is overlap but poor balance (so that, for example, some regions of predictor space contain many controls and few treated units, or the reverse). From this perspective, matching can be thought of as a way of discarding observations so that the remaining data show good balance and overlap.

The goal of propensity score matching is not to ensure that each pair of matched observations is similar in terms of all their covariate values, but rather that the matched groups are similar on average across all their covariate values. Thus, the adequacy of the model used to estimate the propensity score can be evaluated by examining the balance that results on average across the matched groups.
Computation of propensity score matches

The first step in creating matches is to fit a model to predict who got the intervention based on the set of predictors we think are necessary to achieve ignorability (confounding covariates). A natural starting point would be a logistic regression, something like:

```
R code
ps.fit.1 <- glm (treat ~ as.factor(educ) + as.factor(ethnic) + b.marr +
                 work.dur + prenatal + mom.age + sex + first + preterm + age +
                 dayskidh + bw + unemp.rt, data=cc2, family=binomial(link="logit"))
```

In our example, we evaluated several different model fits before settling on one that provided balance that seemed adequate. In each case we evaluated the adequacy of the model by evaluating the balance that resulted from matching on the estimated propensity scores from that model. Model variations tried excluding variables and including interactions and quadratic terms. We finally settled on:

```
R code
ps.fit.2 <- glm (treat ~ bwg + as.factor(educ) + bwg:as.factor(educ) +
                 as.factor(ethnic) + b.marr + as.factor(ethnic):b.marr +
                 work.dur + prenatal + preterm + age + mom.age + sex + first,
                 data=cc2, family=binomial(link="logit"))
```

We then create predicted values:

```
R code
pscores <- predict (ps.fit.2, type="link")
```

The regression model is messy, but we are not concerned with all its coefficients; we are only using it as a tool to construct a balanced comparison between treatment and control groups. We used the estimated propensity scores to create matches, using a little R function called `matching` that finds for each treatment unit in turn the control unit (not previously chosen) with the closest propensity score:

```
R code
matches <- matching (z=cc2$treat, score=pscores)
matched <- cc2[matches$matched,]
```

Then the full dataset was reduced to only the treated observations and only those control observations that were chosen as matches.

The differences between treated and control averages, for the matched subset, are displayed by the solid dots in Figure 10.3. The imbalance has decreased noticeably compared to the unmatched sample. Certain variables (birth weight and the number of days the children were in the hospital after being born) still show imbalance, but none of our models succeeded in balancing those variables. We hope the other variables are more important in predicting future test scores (which appears to be reasonable from the previous literature on this topic).

The process of fitting, assessing, and selecting a model for the propensity scores has completely ignored the outcome variable. We have judged the model solely by the balance that results from subsequent matches on the associated propensity scores. This helps the researcher to be “honest” when fitting the propensity score model because a treatment effect estimate is not automatically produced each time a new model is fit.

1 We use the `type="link"` option to get predictions on the scale of the linear predictor, that is, \(\hat{X}\beta \). If we wanted predictions on the probability scale, we would set `type="response"`. In this example, similar results would arise from using either approach.
2 Here we have performed the matching mostly “manually” in the sense of setting up a regression on the treatment variable and then using the predicted probabilities to select a subset of matched units for the analysis. Various more automatic methods for propensity score estimation, matching, and balancing have be implemented in R and other software packages; see the end of this chapter for references.
Having created and checked appropriateness of the matches by examining balance, we fit a regression model just on the matched data including all the predictors considered so far, along with an indicator to estimate the treatment effect:

```r
reg.ps <- lm (ppvtr.36 ~ treat + hispanic + black + b.marr + lths +
hs + ltcoll + work.dur + prenatal + mom.age + sex + first +
preterm + age + dayskidy + bw, data=matched)
```

Given the balance and overlap that the matching procedure has achieved, we are less concerned than in the standard regression context about issues such as deviations from linearity and model extrapolation. Our estimated treatment effect from the matched dataset is 10.2 (with a standard error of 1.6), which can be compared to the standard regression estimate of 11.7 (with standard error of 1.3) based on the full dataset.

If we fully believed in the linear model and were confident that it could be extrapolated to the areas of poor overlap, we would use the regression based on all the data. Realistically, however, we prefer to construct comparable groups and restrict our attention to the range of overlap.

Insufficient overlap? What happens if there are observations about which we want to make inferences but there are no observations with similar propensity scores in the other group? For instance, suppose we are interested in the effect of the treatment on the treated but there are some treated observations with propensity scores far from the propensity scores of all the control observations. One option is to accept some lack of comparability (and corresponding level of imbalance in covariates). Another option is to eliminate the problematic treated observations. If the latter choice is made it is important to be clear about the change in the population about whom inferences will now generalize. It is also helpful to try “profile” the observations that are omitted from the analysis.

Matched pairs? Although matching often results in pairs of treated and control units, we typically ignore the pairing in the analysis of the matched data. Propensity score matching works well (in appropriate settings) to create matched groups, but it does not necessarily create closely matched pairs. It is not generally appropriate to add the complication of including the pairing in the model, because the pairing in the matching is performed in the analysis, not the data collection. However, pairing in this way does affect variance calculations, as we shall discuss.

The propensity score as a one-number summary used to assess balance and overlap

A quick way of assessing whether matching has achieved increased balance and overlap is to plot histograms of propensity scores across treated and control groups.
Figure 10.7 displays these histograms for unmatched and matched samples. (We plot the propensity scores on the logit scale to better display their variation at the extremes, which correspond to probabilities near 0 and 1.) The decreased imbalance and increased overlap illustrated in the histograms for the matched groups do not ensure that all predictors included in the model will be similarly matched, but they provide some indication that these distribution will have closer balance in general than before matching.

Geographic information

We have excluded some important information from these analyses. We have access to indicators reflecting the state in which each child resides. Given the tremendous variation in test scores and child care quality across states, it seems prudent to control for this variable as well. If we redo the propensity score matching by including state indicators in both the propensity score model and final regression model, we get an estimate of 8.8 (with standard error of 2.1), which is even lower than our original estimate of 10.2. Extending the regression analysis on the full dataset to include state indicators changes the estimate only from 11.7 to 11.6.

We include results from this analyses using classical regression to adjust for states because it would be a standard approach given these data. A better approach would be to include states in a multilevel model, as we discuss in Chapter 23.

Experimental benchmark by which to evaluate our estimates

It turns out that the researchers evaluating this intervention did not need to rely on a comparison group strategy to assess its impact on test scores. The intervention was evaluated using a randomized experiment. In the preceding example, we simply replaced the true experimental control group with a comparison group pulled from the National Longitudinal Survey of Youth. The advantage of this setup as an illustration of propensity score matching is that we can compare the estimates obtained from the observational study that we have “constructed” to the estimates found using the original randomized experiment. For this sample, the experimental estimate is 7.4. Thus, both propensity score estimates are much closer to the best estimate of the true effect than the standard regression estimates.

Subclassification on mother’s education alone yields an estimated treatment effect of 7.0, which happens to be close to the experimental benchmark. However, this does not imply that subclassifying on one variable is generally the best strategy overall. In this example, failure to control for all confounding covariates leads to many biases (some negative and some positive—the geographic variables complicate this picture), and unadjusted differences in average outcomes yield estimates that are lower than the experimental benchmark. Controlling for one variable appears to work well for this example because the biases caused by the imbalances in the other variables just happen to cancel. We would not expect this to happen in general.

Other matching methods, matching on all covariates, and subclassification

The method we have illustrated is called matching without replacement because any given control observation cannot be used as a match for more than one treatment

Variation in quality of child care is important because it reflects one of the most important alternatives that can be chosen by the parents in the control group.
MATCHING

observation. This can work well in situations when there is a large enough control group to provide adequate overlap. It has the advantage of using each control observation only once, which maximizes our sample size (assuming a constraint of one match per treatment unit) and makes variance calculations a bit easier; see the discussion of standard errors at the end of this section.

However, situations arise when there are not enough controls in the overlapping region to fully provide one match per treated unit. In this case it can help to use some control observations as matches for more than one treated unit. This approach is often called matching with replacement, a term which commonly refers to with one-to-one matching but could generalize to multiple control matches for each control. Such strategies can create better balance, which should yield estimates that are closer to the truth on average. Once such data are incorporated into a regression, however, the multiple matches reduce to single data points, which suggests that matching with replacement has limitations as a general strategy.

A limitation of one-to-one matching is that it may end up “throwing away” many informative units if the control group is substantially bigger than the treatment group. One way to make better use of the full sample is simply to subclassify based on values of the propensity score—perhaps discarding some noncomparable units in the tails of the propensity score distribution. Then separate analyses can be performed within each subclass (for example, difference in outcome averages across treatment groups or linear regressions of the outcome on an indicator variable for treatment and other covariates). The estimated treatment effects from each of the subclasses then can either be reported separately or combined in a weighted average with different weights used for different estimands. For instance, when estimating the effect of the treatment on the treated, the number of treated observations in each subclass would be used as the weight, just as we did for the simple subclassification of mother’s education in model (10.2) on page 205.

A special case of subclassification called full matching can be conceptualized as a fine stratification of the units where each stratum has either (1) one treated unit and one control unit, (2) one treated unit and multiple control units, or (3) multiple treated units and one control unit. “Optimal” versions of this matching algorithm have the property of minimizing the average distance between treatment and control units. Strategies with nonoverlapping strata such as subclassification and full matching have the advantage of being more easily incorporated into larger models. This enables strata to be modeled as groups in any number of ways.

Other uses for propensity scores

Some researchers use the propensity score in other ways. For instance, the inverse of estimated propensity scores can be used to create a weight for each point in the data, with the goal that weighted averages of the data should look, in effect, like what would be obtained from a randomized experiment. For instance, to obtain an estimate of an average treatment effect, one would use weights of \(1/p_i\) and \(1/(1-p_i)\) for treated and control observations \(i\), respectively, where the \(p_i\)'s are the estimated propensity scores. To obtain an estimate of the effect of the treatment on the treated, one would use weights of 1 for the treated and \(p_i/(1-p_i)\) for the controls. These weights can be used to calculate simple means or can be included within a regression framework. In our example, this method yielded a treatment effect estimate of 7.8 (when including state information), which is close to the experimental benchmark.

These strategies have the advantage (in terms of precision) of retaining the full
sample. However, the weights may have wide variability and may be sensitive to model specification, which could lead to instability. Therefore, these strategies work best when care is taken to create stable weights and to use robust or nonparametric models to estimate the weights. Such methods are beyond the scope of this book.

More simply, propensity scores can be used in a regression of the outcome on the treatment and the scores rather than the full set of covariates. However, if observations that lie in areas where there is no overlap across treatment groups are not removed, the same problems regarding model extrapolation will persist. Also, this method once again places a great deal of faith in precise and correct estimation of the propensity score.

Finally, generalizations of the binary treatment setup have been formalized to accommodate multiple-category or continuous treatment variables.

Standard errors

The standard errors presented for the analyses fitted to matched samples are not technically correct. First, matching induces correlation among the matched observations. The regression model, however, if correctly specified, should account for this by including the variables used to match. Second, our uncertainty about the true propensity score is not reflected in our calculations. This issue has no perfect solution to date and is currently under investigation by researchers in this field. Moreover, more complicated matching methods (for example, matching with replacement and many-to-one matching methods) generally require more sophisticated approaches to variance estimation. Ultimately, one good solution may be a multilevel model that includes treatment interactions so that inferences explicitly recognize the decreased precision that can be obtained outside the region of overlap.

10.4 Lack of overlap when the assignment mechanism is known: regression discontinuity

Simple regression works to estimate treatment effects under the assumption of ignorable treatment assignment if the model is correct, or if the confounding covariates are well balanced with respect to the treatment variable, so that regression serves as a fine-tuning compared to a simple difference of averages. But if the treated and control groups are very different from each other, it can be more appropriate to identify the subset of the population with overlapping values of the predictor variables for both treatment and control conditions, and to estimate the causal effect (and the regression model) in this region only. Propensity score matching is one approach to lack of overlap.

If the treatment and control groups do not overlap at all in key confounding covariates, it can be prudent to abandon causal inferences altogether. However, sometimes a clean lack of overlap arises from a covariate that itself was used to assign units to treatment conditions. **Regression discontinuity analysis** is an approach for dealing with this extreme case of lack of overlap in which the assignment mechanism is clearly defined.

Regression discontinuity and ignorability

A particularly clear case of imbalance sometimes arises in which there is some pre-treatment variable x, with a cutoff value C so that one of the treatments applies for all units i for which $x_i < C$, and the other treatment applies for all units for
which $x_i > C$. This could occur, for example, in a medical experiment in which a risky new treatment is only given to patients who are judged to be in particularly bad condition. But the usual setting is in observational studies, where a particular event or “treatment” only occurs under certain specified conditions. For example, in a two-candidate election, a candidate wins if and only if he or she receives more than half the vote.

In a setting where one treatment occurs only for $x < C$ and the other only for $x > C$, it is still possible to estimate the treatment effect for units with x in the neighborhood of C, if we assume that the regression function—the average value of the outcome y, given x and the treatment—is a continuous function of x near the cutoff value C.

In this scenario, the mechanism that assigns observations to treatment or control is known, and so we need not struggle to set up a model in which the ignorability assumption is reasonable. All we need to do is control for the input(s) used to determine treatment assignment—these are our confounding covariates. The disadvantage is that, by design, there is no overlap on this covariate across treatment groups. Therefore, to “control for” this variable we must make stronger modeling assumptions because we will be forced to extrapolate our model out of the range of our data. To mitigate such extrapolations, one can limit analyses to observations that fall just above and below the threshold for assignment.

Example: political ideology of congressmembers

Figure 10.8 shows an example, where the goal is to estimate one aspect of the effect of electing a Republican, as compared to a Democrat, in the U.S. House of Representatives. The graph displays political ideologies (as computed using a separate statistical analysis of congressional roll-call votes) for Republican and Democratic congressmembers, plotted versus the vote received by the Republican candidate in the previous election. There is no overlap because the winner in each district nec-
Regression discontinuity analysis. If we wish to consider the effect of the winning party on the political ideology of the district’s congressmember, then a simple regression discontinuity analysis would consider a narrow range—for example, among all the districts where x lies between 0.45 and 0.55, and then fit a model of the form

$$y_i = \beta_0 + \theta T_i + \beta_1 x_i + \text{error}_i$$

where T_i is the “treatment,” which we can set to 1 for Republicans and 0 for Democrats.

Here is the result of the regression:

```
R output
lm(formula = score1 ~ party + x, subset=overlap)

  coef.est  coef.se
(Intercept)  -1.21    0.62
party         0.73    0.07
x             1.65    1.31

n = 68, k = 3
residual sd = 0.15, R-Squared = 0.88
```

The effect of electing a Republican (compared to a Democrat) is 0.73 (on a scale in which the most extreme congressmembers are at ± 1; see Figure 10.8) after controlling for the party strength in the district. The coefficient of x is estimated to be positive—congressmembers in districts with higher Republican votes tend to be more conservative, after controlling for party—but this coefficient is not statistically significant. The large uncertainty in the coefficient for x is no surprise, given that we have restricted our analysis to the subset of data for which x lies in the narrow range from 0.45 to 0.55.

Regression fit to all the data. Alternatively, we could fit the model to the whole dataset:

```
R output
lm(formula = score1 ~ party + x)

  coef.est  coef.se
(Intercept)  -0.68    0.05
party         0.69    0.04
x             0.64    0.13

n = 357, k = 3
residual sd = 0.21, R-Squared = 0.8
```

The coefficient on x is estimated much more precisely, which makes sense given that we have more leverage on x (see Figure 10.8).

Regression with interactions. However, a closer look at the figure suggests different slopes for the two parties, and so we can fit a model interacting x with party:

```
R output
lm(formula = score1 ~ party + x + party:x)

  coef.est  coef.se
(Intercept)  -0.76    0.06
party         1.13    0.16
x             0.87    0.15
party:x    -0.81    0.29

n = 357, k = 4
residual sd = 0.21, R-Squared = 0.81
```

Everything is statistically significant, but it is difficult to interpret these coefficients. We shall reparameterize and define
so that when \(z = 0 \), we are at the point of discontinuity. We then reparameterize the
interaction slope as separate slopes for the Democrats (\texttt{party==0}) and Republicans
(\texttt{party==1}):

\[
\text{R code}
\]

\[
\begin{align*}
\text{R output}
\end{align*}
\]

\[
\begin{align*}
\text{coef.est} & \quad \text{coef.se} \\
\text{(Intercept)} & -0.33 \quad 0.03 \\
party & 0.73 \quad 0.04 \\
I(z * (party == 0)) & 0.87 \quad 0.15 \\
I(z * (party == 1)) & 0.06 \quad 0.24 \\
n = 357, \ k = 4 \\
\text{residual sd} = 0.21, \ R\text{-Squared} = 0.81
\end{align*}
\]

We see a strong positive slope of \(z \) among Democrats but not Republicans, and an
estimate of 0.73 for the effect of party at the discontinuity point.

Comparison of regression discontinuity analysis to the model with interactions us-
ing all the data. In this example, the analysis fit to the entire dataset gives similar
results (but with a much lower standard error) as the regression discontinuity anal-
ysis that focused on the region of near overlap. In general, however, the model fit
just to the area of overlap may be considered more trustworthy.

Partial overlap

What happens when the discontinuity is not so starkly defined? This is sometimes
called a “fuzzy” discontinuity, as opposed to the “sharp” discontinuity discussed
thus far. Consider, for instance, a situation where the decision whether to promote
children to the next grade is made based upon results from a standardized test
(or set of standardized tests). Theoretically this should create a situation with no
overlap in these test scores across those children forced to repeat their grade and
those promoted to the next grade (the treatment and control groups). In reality,
however, there is some “slippage” in the assignment mechanism. Some children may
be granted waivers from the official policy based on any of several reasons, including
parental pressure on school administrators, a teacher who advocates for the child,
and designation of the child as learning-disabled.

This situation creates partial overlap between the treatment and control groups
in terms of the supposed sole confounding covariate, promotion test scores. Unfor-
tunately, this overlap arises from deviations from the stated assignment mechanism.
If the reasons for these deviations are well defined (and measurable), then ignora-
bility can be maintained by controlling for the appropriate child, parent, or school
characteristics. Similarly, if the reasons for these deviations are independent of the
potential outcomes of interest, there is no need for concern. If not, inferences could
be compromised by failure to control for important omitted confounders.

10.5 Estimating causal effects indirectly using instrumental variables

There are situations when the ignorability assumption seems inadequate because
the dataset does not appear to capture all inputs that predict both the treatment
and the outcomes. In this case, controlling for observed confounding covariates
through regression, subclassification, or matching will not be sufficient for calculat-
ing valid causal estimates because unobserved variables could be driving differences
in outcomes across groups.
When ignorability is in doubt, the method of instrumental variables (IV) can sometimes help. This method requires a special variable, the instrument, which is predictive of the treatment and brings with it a new set of assumptions.

Example: a randomized-encouragement design

Suppose we want to estimate the effect of watching an educational television program (this time the program is Sesame Street) on letter recognition. We might consider implementing a randomized experiment where the participants are preschool children, the treatment of interest is watching Sesame Street, the control condition is not watching, and the outcome is the score on a test of letter recognition. It is not possible here for the experimenter to force children to watch a TV show or to refrain from watching (the experiment took place while Sesame Street was on the air). Thus watching cannot be randomized. Instead, when this study was actually performed, what was randomized was encouragement to watch the show—this is called a randomized encouragement design.

A simple comparison of randomized groups in this study will yield an estimate of the effect of encouraging these children to watch the show, not an estimate of the effect of actually viewing the show. In this setting the simple randomized comparison is an estimate of a quantity called the intent-to-treat (ITT) effect. However, we may be able to take advantage of the randomization to estimate a causal effect for at least some of the people in the study by using the randomized encouragement as an “instrument.” An instrument is a variable thought to randomly induce variation in the treatment variable of interest.

Assumptions for instrumental variables estimation

Instrumental variables analyses rely on several key assumptions, one combination of which we will discuss in this section in the context of a simple example with binary treatment and instrument:

- Ignorability of the instrument,
- Nonzero association between instrument and treatment variable,
- Monotonicity,
- Exclusion restriction.

In addition, the model assumes no interference between units (the stable unit treatment value assumption) as with most other causal analyses, an issue we have already discussed at the end of Section 9.3.

Ignorability of the instrument

The first assumption in the list above is ignorability of the instrument with respect to the potential outcomes (both for the primary outcome of interest and the treatment variable). This is trivially satisfied in a randomized experiment (assuming the randomization was pristine). In the absence of a randomized experiment (or natural experiment) this property may be more difficult to satisfy and often requires conditioning on other predictors.

4 Actually the researchers in this study recorded four viewing categories: (1) rarely watched, (2) watched once or twice a week, (3) watched 3-5 times a week, and (4) watched more than 5 times a week on average. Since there is no a category for “never watched,” for the purposes of this illustration we treat the lowest viewing category (“rarely watched”) as if it were equivalent to “never watched.”
Nonzero association between instrument and treatment variable

To demonstrate how we can use the instrument to obtain a causal estimate of the treatment effect in our example, first consider that about 90% of those encouraged watched the show regularly; by comparison, only 55% of those not encouraged watched the show regularly. Therefore, if we are interested in the effect of actually viewing the show, we should focus on the 35% of the treatment population who decided to watch the show because they were encouraged but who otherwise would not have watched the show. If the instrument (encouragement) did not affect regular watching, then we could not proceed. Although a nonzero association between the instrument and the treatment is an assumption of the model, fortunately this assumption is empirically verifiable.

Monotonicity and the exclusion restrictions

Those children whose viewing patterns could be altered by encouragement are the only participants in the study for whom we can conceptualize counterfactuals with regard to viewing behavior—under different experimental conditions they might have been observed either viewing or not viewing, so a comparison of these potential outcomes (defined in relation to randomized encouragement) makes sense. We shall label these children “induced watchers”; these are the only children for whom we will make inferences about the effect of watching Sesame Street.

For the children who were encouraged to watch but did not, we might plausibly assume that they also would not have watched if not encouraged—we shall label this type of child a “never-watcher.” We cannot directly estimate the effect of viewing for these children since in this context they would never be observed watching the show. Similarly, for the children who watched Sesame Street even though not encouraged, we might plausibly assume that if they had been encouraged they would have watched as well, again precluding an estimate of the effect of viewing for these children. We shall label these children “always-watchers.”

Monotonicity. In defining never-watchers and always-watchers, we assumed that there were no children who would watch if they were not encouraged but who would not watch if they were encouraged. Formally this is called the monotonicity assumption, and it need not hold in practice, though there are many situations in which it is defensible.

Exclusion restriction. To estimate the effect of viewing for those children whose viewing behavior would have been affected by the encouragement (the induced watchers), we must make another important assumption, called the exclusion restriction. This assumption says for those children whose behavior would not have been changed by the encouragement (never-watchers and always-watchers) there is no effect of encouragement on outcomes. So for the never-watchers (children who would not have watched either way), for instance, we assume encouragement to watch did not affect their outcomes. And for the always-watchers (children who would have watched either way), we assume encouragement to watch did not affect their outcomes.\(^5\)

It is not difficult to tell a story that violates the exclusion restriction. Consider, for instance, the conscientious parents who do not let their children watch television.

\(^5\) Technically, the assumptions regarding always-watchers and never-watchers represent distinct exclusion restrictions. In this simple framework, however, the analysis suffers if either assumption is violated. Using more complicated estimation strategies, it can be helpful to consider these assumptions separately as it may be possible to weaken one or the other or both.
Figure 10.9 Hypothetical complete data in a randomized encouragement design. Units have been ordered for convenience. For each unit, the students are encouraged to watch Sesame Street \((z_i = 1) \) or not \((z_i = 0) \). This reveals which of the potential viewing outcomes \((T^0_i, T^1_i) \) and which of the potential test outcomes \((y^0_i, y^1_i) \) we get to observe. The observed outcomes are displayed in boldface. Here, potential outcomes are what we would observe under either encouragement option. The exclusion restriction forces the potential outcomes to be the same for those whose viewing would not be affected by the encouragement. The effect of watching for the “induced watchers” is equivalent to the intent-to-treat effect (encouragement effect over the whole sample) divided by the proportion induced to view; thus, \(3.4/0.4 = 8.5 \).

and are concerned with providing their children with a good start educationally. The materials used to encourage them to have their children watch Sesame Street for its educational benefits might instead have motivated them to purchase other types of educational materials for their children or to read to them more often.

Derivation of instrumental variables estimation with complete data (including unobserved potential outcomes)

To illustrate the instrumental variables approach, however, let us proceed as if the exclusion restriction were true (or at least approximately true). In this case, if we think about individual-level causal effects, the answer becomes relatively straightforward.

Figure 10.9 illustrates with hypothetical data based on the concepts in this real-life example by displaying for each study participant not only the observed data (encouragement and viewing status as well as observed outcome test score) but also the unobserved categorization, \(c_i \), into always-watcher, never-watcher, or induced watcher based on potential watching behavior as well as the counterfactual

<table>
<thead>
<tr>
<th>Unit</th>
<th>Potential viewing outcomes</th>
<th>Encouragement indicator</th>
<th>Potential test outcomes</th>
<th>Encouragement effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T^0_i)</td>
<td>(T^1_i)</td>
<td>(z_i)</td>
<td>(y^0_i)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>(induced watcher)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>(induced watcher)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>(induced watcher)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>(induced watcher)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>(never-watcher)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>(never-watcher)</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>(always-watcher)</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>(always-watcher)</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>(always-watcher)</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>(always-watcher)</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>(induced watcher)</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>1</td>
<td>(induced watcher)</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>1</td>
<td>(induced watcher)</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>1</td>
<td>(induced watcher)</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>(never-watcher)</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>(never-watcher)</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
<td>(always-watcher)</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1</td>
<td>(always-watcher)</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1</td>
<td>(always-watcher)</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>1</td>
<td>(always-watcher)</td>
<td>1</td>
</tr>
</tbody>
</table>
test outcomes (the potential outcome corresponding to the treatment not received). Here, potential outcomes are the outcomes we would have observed under either encouragement option. Because of the exclusion restriction, for the always-watchers and the never-watchers the potential outcomes are the same no matter the encouragement (really they need not be exactly the same, just distributionally the same, but this simplifies the exposition).

The true intent-to-treat effect for these 20 observations is then an average of the effects for the 8 induced watchers, along with 12 zeroes corresponding to the encouragement effects for the always-watchers and never-watchers:

\[
\text{ITT} = \frac{9 + 8 + 7 + 10 + 9 + 8 + 7 + 10 + \cdots + 0}{20} = 8.5 \cdot 0.4. \quad (10.3)
\]

The effect of watching Sesame Street for the induced watchers is 8.5 points on the letter recognition test. This is algebraically equivalent to the intent-to-treat effect (3.4) divided by the proportion of induced watchers (8/20 = 0.40).

Instrumental variables estimate

We can calculate an estimate of the effect of watching Sesame Street for the induced watchers with the actual data using the same principles.

We first estimate the percentage of children actually induced to watch Sesame Street by the intervention, which is the coefficient of the treatment (encouraged), in the following regression:

\[
\text{R code}
\]

\[
\text{fit.1a } \leftarrow \text{ lm (watched } \sim \text{ encouraged)}
\]

The estimated coefficient of encouraged here is 0.36 (which, in this regression with a single binary predictor, is simply the proportion of induced watchers in the data).

We then compute the intent-to-treat estimate, obtained in this case using the regression of outcome on treatment:

\[
\text{R code}
\]

\[
\text{fit.1b } \leftarrow \text{ lm (y } \sim \text{ encouraged)}
\]

The estimated coefficient of encouraged in this regression is 2.9, which we then “inflate” by dividing by the percentage of children affected by the intervention:

\[
\text{R code}
\]

\[
\text{iv.est } \leftarrow \text{ coef(fit.1a) ["encouraged"]/coef(fit.1b) ["encouraged"]}
\]

The estimated effect of regularly viewing Sesame Street is thus 2.9/0.36 = 7.9 points on the letter recognition test. This ratio is sometimes called the Wald estimate.

Local average treatment effects

The instrumental variables strategy here does not estimate an overall causal effect of watching Sesame Street across everyone in the study. The exclusion restriction implies that there is no effect of the instrument (encouragement) on the outcomes for always-watchers and for never-watchers. Given that the children in these groups cannot be induced to change their watching behavior by the instrument, we cannot estimate the causal effect of watching Sesame Street for these children. Therefore the causal estimates apply only to the “induced watchers.”
We are estimating (a special case of) what has been called a local average treatment effect (LATE). Some researchers argue that intent-to-treat effects are more interesting from a policy perspective because they accurately reflect that not all targeted individuals will participate in the intended program. However, the intent-to-treat effect only parallels a true policy effect if in the subsequent policy implementation the compliance rate remains unchanged. We recommend estimating both the intent-to-treat effect and the local average treatment effect to maximize what we can learn about the intervention.

10.6 Instrumental variables in a regression framework

Instrumental variables models and estimators can also be derived using regression, allowing us to more easily extend the basic concepts discussed in the previous section. A general instrumental variables model with continuous instrument, z, and treatment, d, can be written as

$$
y = \beta_0 + \beta_1 T + \epsilon_i \tag{10.4}\n$$

$$
T = \gamma_0 + \gamma_1 z + \nu_i
$$

The assumptions can now be expressed in a slightly different way. The first assumption is that z_i is uncorrelated with both ϵ_i and ν_i, which translates informally into the ignorability assumption and exclusion restriction (here often expressed informally as “the instrument only affects the outcome through its effect on the treatment”). Also the correlation between z_i and t_i must be nonzero (parallel to the monotonicity assumption from the previous section). We next address how this framework identifies the causal effect of T on y.

Identifiability with instrumental variables

Generally speaking, identifiability refers to whether the data contain sufficient information for unique estimation of a given parameter or set of parameters in a particular model. For example, in our formulation of the instrumental variables model, the causal parameter is not identified without assuming the exclusion restriction (although more generally the exclusion restriction is not the only assumption that could be used to achieve identifiability).

What if we did not impose the exclusion restriction for our basic model? The model (ignoring covariate information, and switching to mathematical notation for simplicity and generalizability) can be written as

$$
y = \beta_0 + \beta_1 T + \beta_2 z + \text{error} \tag{10.5}\n$$

$$
T = \gamma_0 + \gamma_1 z + \text{error},
$$

where y is the response variable, z is the instrument, and T is the treatment of interest. Our goal is to estimate β_1, the treatment effect. The difficulty is that T has not been randomly assigned; it is observational and, in general, can be correlated with the error in the first equation; thus we cannot simply estimate β_1 by fitting a regression of y on T and z.

However, as described in the previous section, we can estimate β_1 using instrumental variables. We derive the estimate here algebraically, in order to highlight the assumptions needed for identifiability.
INSTRUMENTAL VARIABLES IN A REGRESSION FRAMEWORK

Substituting the equation for \(T \) into the equation for \(y \) yields

\[
y = \beta_0 + \beta_1 T + \beta_2 z + \text{error} = \beta_0 + \beta_1 (\gamma_0 + \gamma_1 z) + \beta_2 z + \text{error} = (\beta_0 + \beta_1 \gamma_0) + (\beta_1 \gamma_1 + \beta_2) z + \text{error.} \tag{10.6}
\]

We now show how to estimate \(\beta_1 \), the causal effect of interest, using the slope of this regression, along with the regressions (10.5) and the exclusion restriction.

The first step is to express (10.6) in the form

\[
y = \delta_0 + \delta_1 z + \text{error.}
\]

From this equation we need \(\delta_1 \), which can be estimated from a simple regression of \(y \) on \(z \). We can now solve for \(\beta_1 \) in the following equation:

\[
\delta_1 = \beta_1 \gamma_1 + \beta_2,
\]

which we can rearrange to get

\[
\beta_1 = (\delta_1 - \beta_2) / \gamma_1. \tag{10.7}
\]

We can directly estimate the denominator of this expression, \(\gamma_2 \), from the regression of \(T \) on \(z \) in (10.5)—this is not a problem since we are assuming that the instrument, \(z \), is randomized.

The only challenge that remains in estimating \(\beta_1 \) from (10.7) is to estimate \(\beta_2 \), which in general cannot simply be estimated from the top equation of (10.5) since, as already noted, the error in that equation can be correlated with \(T \). However, under the exclusion restriction, we know that \(\beta_2 \) is zero, and so \(\beta_1 = \delta_1 / \gamma_1 \), leaving us with the standard instrumental variables estimate.

Other models. There are other ways to achieve identifiability in this two-equation setting. Approaches such as selection correction models rely on functional form specifications to identify the causal effects even in the absence of an instrument. For example, a probit specification could be used for the regression of \(T \) on \(z \) in (10.5)—this is not a problem since we are assuming that the instrument, \(z \), is randomized.

The only challenge that remains in estimating \(\beta_1 \) from (10.7) is to estimate \(\beta_2 \), which in general cannot simply be estimated from the top equation of (10.5) since, as already noted, the error in that equation can be correlated with \(T \). However, under the exclusion restriction, we know that \(\beta_2 \) is zero, and so \(\beta_1 = \delta_1 / \gamma_1 \), leaving us with the standard instrumental variables estimate.

Other models. There are other ways to achieve identifiability in this two-equation setting. Approaches such as selection correction models rely on functional form specifications to identify the causal effects even in the absence of an instrument. For example, a probit specification could be used for the regression of \(T \) on \(z \). The resulting estimates of treatment effects are often unstable if a true instrument is not included as well.

Two-stage least squares

The Wald estimate discussed in the previous section can be used with this formulation of the model as well. We now describe a more general estimation strategy, two-stage least squares.

To illustrate we return to our Sesame Street example. The first step is to regress the “treatment” variable—an indicator for regular watching (\texttt{watched})—on the randomized instrument, encouragement to watch (\texttt{encouraged}). Then we plug predicted values of \texttt{encouraged} into the equation predicting the letter recognition outcome, \(y \):

```r
fit.2a <- lm (watched ~ encouraged)
watched.hat <- fit.2a$fitted
fit.2b <- lm (y ~ watched.hat)
```

The result is

```
   coef.est coef.se
(Intercept) 20.6  3.9
watched.hat  7.9  4.9
```

\(n = 240, \ k = 2 \)

residual sd = 13.3, R-Squared = 0.01
where now the coefficient on \texttt{watched.hat} is the estimate of the causal effect of watching Sesame Street on letter recognition for those induced to watch by the experiment. This two-stage estimation strategy is especially useful for more complicated versions of the model, for instance, when multiple instruments are included. This second-stage regression does not give the correct standard error, however. We discuss calculation of an appropriate standard error on page 222.

Adjusting for covariates in an instrumental variables framework

It turns out that the randomization for this experiment took place within sites and settings; it is therefore appropriate to control for these covariates in estimating the treatment effect. Additionally, pre-test scores are available that are highly predictive of post-test scores. Our preferred model would control for all of these predictors. We can calculate the same ratio (intent-to-treat effect divided by effect of encouragement on viewing) as before using models that include these additional predictors but pulling out only the coefficients on \texttt{encouraged} for the ratio.

Here we equivalently perform this analysis using two-stage least squares:

```R
R code
fit.3a <- lm (watched ~ encouraged + pretest + as.factor(site) + setting)
watched.hat <- fit.3a$fitted
fit.3b <- lm (y ~ watched.hat + pretest + as.factor(site) + setting)
display (fit.3b)
```

yielding

```R
R output
table

<table>
<thead>
<tr>
<th></th>
<th>coef.est</th>
<th>coef.se</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.2</td>
<td>4.8</td>
</tr>
<tr>
<td>watched.hat</td>
<td>14.0</td>
<td>4.0</td>
</tr>
<tr>
<td>pretest</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>as.factor(site)2</td>
<td>8.4</td>
<td>1.8</td>
</tr>
<tr>
<td>as.factor(site)3</td>
<td>-3.9</td>
<td>1.8</td>
</tr>
<tr>
<td>as.factor(site)4</td>
<td>0.9</td>
<td>2.5</td>
</tr>
<tr>
<td>as.factor(site)5</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>setting</td>
<td>1.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>

n = 240, k = 8, residual sd = 9.7, R-Squared = 0.49
```

The estimated effect of watching Sesame Street on the induced watchers is about 14 points on the letter recognition test. Again, we do not trust this standard error and will discuss later how to appropriately adjust it for the two stages of estimation.

Since the randomization took place within each combination of site (five categories) and setting (two categories), it would be appropriate to interact these variables in our equations. Moreover, it would probably be interesting to estimate variation of effects across sites and settings. However, for simplicity of illustration (and also due to the complication that one site \(\times\) setting combination has no observations) we only include main effects for this discussion. We return to this example using multilevel models in Chapter 23. It turns out that the estimated average treatment effect changes only slightly (from 14.0 to 14.1) with the model that includes site \(\times\) setting interactions.

Standard errors for instrumental variables estimates

The second step of two-stage regression yields the instrumental variables estimate, but the standard-error calculation is complicated because we cannot simply look at the second regression in isolation. We show here how to adjust the standard error...
to account for the uncertainty in both stages of the model. We illustrate with the model we have just fitted.

The regression of compliance on treatment and other covariates (model fit.3a) is unchanged. We then regress the outcome on predicted compliance and covariance, this time saving the predictor matrix, X, from this second-stage regression (which we do using the x=TRUE option in the lm call):

```
fit.3b <- lm (y ~ watched.hat+pretest+as.factor(site)+setting, x=TRUE)
```

We next compute the standard deviation of the adjusted residuals, $r_{\text{adj}}^2 = y_i - X_{\text{adj}}^ib$, where X_{adj} is the predictor matrix from fit.3b but with the column of predicted treatment values replaced by observed treatment values:

```
X.adj <- fit.2$x
X.adj[,"watched.hat"] <- watched
residual.sd.adj <- sd (y - X.adj %*% coef(fit.3b))
```

Finally, we compute the adjusted standard error for the two-stage regression estimate by taking the standard error from fit.3b and scaling by the adjusted residual standard deviation, divided by the residual standard deviation from fit.3b itself:

```
se.adj <- se.coef(fit.3b)"watched.hat"]*residual.sd.adj/sigma.hat(fit.3b)
```

So the adjusted standard errors are calculated as the square roots of the diagonal elements of $(X'X)^{-1}\hat{\sigma}^2_{TSLS}$ rather than $(X'X)^{-1}\hat{\sigma}^2$, where $\hat{\sigma}$ is the residual standard deviation from fit.3b and $\hat{\sigma}_{TSLS}$ is calculated using the residuals from an equation predicting the outcome from watched (not watched.hat) using the two-stage least squares estimate of the coefficient, not the coefficient that would have been obtained in a least squares regression of the outcome on watched.

The resulting standard-error estimate for our example is 3.9, which is actually a bit smaller than the unadjusted estimate (which is not unusual for these corrections).

Performing two-stage least squares automatically using the tsls function

We have illustrated the key concepts in our instrumental variables discussion using basic R commands with which you were already familiar so that the steps were transparent. There does exist, however, a package available in R called sem that has a function, tsls(), that automates this process, including calculating appropriate standard errors.

To calculate the effect of regularly watching Sesame Street on post-treatment letter recognition scores using encouragement as an instrument, we specify both equations:

```
iv1 <- tsls (postlet ~ regular, ~ encour, data=sesame)
display (iv1)
```

where in the second equation it is assumed that the “treatment” (in econometric parlance, the endogenous variable) for which encour is an instrument is whatever predictor from the first equation that is not specified as a predictor in the second. Fitting and displaying the two-stage least squares model yields

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>20.6</td>
</tr>
<tr>
<td>watched</td>
<td>7.9</td>
</tr>
</tbody>
</table>

To incorporate other pre-treatment variables as controls, we must include them in both equations; for example,
R code

```r
iv2 <- tsls (postlet ~ watched + prelet + as.factor(site) + setting, ~ encour + prelet + as.factor(site) + setting, data=sesame)
display(iv2)
```
yielding

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.2</td>
<td>4.6</td>
</tr>
<tr>
<td>watched</td>
<td>14.0</td>
<td>3.9</td>
</tr>
<tr>
<td>prelet</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>as.factor(site)2</td>
<td>8.4</td>
<td>1.8</td>
</tr>
<tr>
<td>as.factor(site)3</td>
<td>-3.9</td>
<td>1.7</td>
</tr>
<tr>
<td>as.factor(site)4</td>
<td>0.9</td>
<td>2.4</td>
</tr>
<tr>
<td>as.factor(site)5</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>setting</td>
<td>1.6</td>
<td>1.4</td>
</tr>
</tbody>
</table>

The point estimate of the treatment calculated this way is the same as with the preceding step-by-step procedure, but now we automatically get correct standard errors.

More than one treatment variable; more than one instrument

In the experiment discussed in Section 10.3, the children randomly assigned to the intervention group received several services (“treatments”) that the children in the control group did not receive, most notably, access to high-quality child care and home visits from trained professionals. Children assigned to the intervention group did not make full use of these services. Simply conceptualized, some children participated in the child care while some did not, and some children received home visits while others did not. Can we use the randomization to treatment or control groups as an instrument for these two treatments? The answer is no. Similar arguments as those used in Section 10.6 can be given to demonstrate that a single instrument cannot be used to identify more than one treatment variable. In fact, as a general rule, we need to use at least as many instruments as treatment variables in order for all the causal estimates to be identifiable.

Continuous treatment variables or instruments

When using two-stage least squares, the models we have discussed can easily be extended to accommodate continuous treatment variables and instruments, although at the cost of complicating the interpretation of the causal effects.

Researchers must be careful, however, in the context of binary instruments and continuous treatment variables. A binary instrument cannot in general identify a continuous treatment or “dosage” effect (without further assumptions). If we map this back to a randomized experiment, the randomization assigns someone only to be encouraged or not. This encouragement may lead to different dosage levels, but for those in the intervention group these levels will be chosen by the subject (or subject’s parents in this case). In essence this is equivalent to a setting with many different treatments (one at each dosage level) but only one instrument—therefore causal effects for all these treatments are not identifiable (without further assumptions). To identify such dosage effects, one would need to randomly assign encouragement levels that lead to the different dosages or levels of participation.
Have we really avoided the ignorability assumption? Natural experiments and instrumental variables

We have motivated instrumental variables using the cleanest setting, within a controlled, randomized experiment. The drawback of illustrating instrumental variables using this example is that it de-emphasizes one of the most important assumptions of the instrumental variables model, ignorability of the instrument. In the context of a randomized experiment, this assumption should be trivially satisfied (assuming the randomization was pristine). However, in practice an instrumental variables strategy potentially is more useful in the context of a natural experiment, that is, an observational study context in which a “randomized” variable (instrument) appears to have occurred naturally. Examples of this include:

• The draft lottery in the Vietnam War as an instrument for estimating the effect of military service on civilian health and earnings,
• The weather in New York as an instrument for estimating the effect of supply of fish on their price,
• The sex of a second child (in an analysis of people who have at least two children) as an instrument when estimating the effect of number of children on labor supply.

In these examples we have simply traded one ignorability assumption (ignorability of the treatment variable) for another (ignorability of the instrument) that we believe to be more plausible. Additionally, we must assume monotonicity and the exclusion restriction.

Assessing the plausibility of the instrumental variables assumptions

How can we assess the plausibility of the assumptions required for causal inference from instrumental variables? As a first step, the “first stage” model (the model that predicts the treatment using the instrument) should be examined closely to ensure both that the instrument is strong enough and that the sign of the coefficient makes sense. This is the only assumption that can be directly tested. If the association between the instrument and the treatment is weak, instrumental variables can yield incorrect estimates of the treatment effect even if all the other assumptions are satisfied. If the association is not in the expected direction, then closer examination is required because this might be the result of a mixture of two different mechanisms, the expected process and one operating in the opposite direction, which could in turn imply a violation of the monotonicity assumption.

Another consequence of a weak instrument is that it exacerbates the bias that can result from failure to satisfy the monotonicity and exclusion restrictions. For instance, for a binary treatment and instrument, when the exclusion restriction is not satisfied, our estimates will be off by a quantity that is equal to the effect of encouragement on the outcomes of noncompliers (in our example, never-watchers and always-watchers) multiplied by the ratio of noncompliers to compliers (in our example, induced watchers). The bias when monotonicity is not satisfied is slightly more complicated but also increases as the percentage of compliers decreases.

The two primary assumptions of instrumental variables (ignorability, exclusion) are not directly verifiable, but in some examples we can work to make them more plausible. For instance, if unconditional ignorability of the instrument is being assumed, yet there are differences in important pre-treatment characteristics across groups defined by the instrument, then these characteristics should be included in
the model. This will not ensure that ignorability is satisfied, but it removes the observed problem with the ignorability assumption.

Example: Vietnam War draft lottery study. One strategy to assess the plausibility of the exclusion restriction is to calculate an estimate within a sample that would not be expected to be affected by the instrument. For instance, researchers estimated the effect of military service on earnings (and other outcomes) using, as an instrument, the draft lottery number for young men eligible for the draft during the Vietnam War. This number was assigned randomly and strongly affected the probability of military service. It was hoped that the lottery number would only have an effect on earnings for those who served in the military only because they were drafted (as determined by a low enough lottery number). Satisfaction of the exclusion restriction is not certain, however, because, for instance, men with low lottery numbers may have altered their educational plans so as to avoid or postpone military service. So the researchers also ran their instrumental variables model for a sample of men who were assigned numbers so late that the war ended before they ever had to serve. This showed no significant relation between lottery number and earnings, which provides some support for the exclusion restriction.

Structural equation models

A goal in many areas of social science is to infer causal relations among many variables, a generally difficult problem (as discussed in Section 9.8). Structural equation modeling is a family of methods of multivariate data analysis that are sometimes used for causal inference. In that setting, structural equation modeling relies on conditional independence assumptions in order to identify causal effects, and the resulting inferences can be sensitive to strong parametric assumptions (for instance, linear relationships and multivariate normal errors). Instrumental variables can be considered to be a special case of a structural equation model. As we have just discussed, even in a relatively simple instrumental variables model, the assumptions needed to identify causal effects are difficult to satisfy and largely untestable. A structural equation model that tries to estimate many causal effects at once multiplies the number of assumptions required with each desired effect so that it quickly becomes difficult to justify all of them. Therefore we do not discuss the use of structural equation models for causal inference in any greater detail here. We certainly have no objection to complicated models, as will become clear in the rest of this book; however, we are cautious about attempting to estimate complex causal structures from observational data.

10.7 Identification strategies that make use of variation within or between groups

Comparisons within groups—so-called “fixed effects” models

What happens when you want to make a causal inference but no valid instrument exists and ignorability does not seem plausible? Do alternative strategies exist? Sometimes repeated observations within groups or within individuals over time can provide a means for controlling for unobserved characteristics of these groups or individuals. If comparisons are made across the observations within a group or

6 Structural equation modeling is also used to estimate latent factors in noncausal regression settings with many inputs, and sometimes many outcome variables, which can be better understood by reducing to a smaller number of linear combinations.
OTHER IDENTIFICATION STRATEGIES

persons, implicitly such comparisons “hold constant” all characteristics intrinsic to
the group or individual that do not vary across observations (across members of
the group or across measures over time for the same person).

For example, suppose you want to examine the effect of low birth weight on chil-
dren’s mortality and other health outcomes. One difficulty in establishing a causal
effect here is that children with low birth weight are also typically disadvantaged in
genetic endowments and socioeconomic characteristics of the family, some of which
may not be easy or possible to measure. Rather than trying to directly control for all
of these characteristics, however, one could implicitly control for them by comparing
outcomes across twins. Twins share many of the same genetic endowments (all if
identical) and, in most cases, live in exactly the same household. However, there are
physiological reasons (based, for instance, on position in the uterus) why one child
in the pair may be born with a markedly different birth weight than the sibling.
So we may be able to consider birth weight to be randomly assigned (ignorable)
within twin pairs. Theoretically, if there is enough variation in birth weight, within
sets of twins, we can estimate the effect of birth weight on subsequent outcomes.
In essence each twin acts as a counterfactual for his or her sibling.

A regression model that is sometimes used to approximate this conceptual com-
parison simply adds an indicator variable for each of the groups to the standard
regression model that might otherwise have been fit. So, for instance, in our twins
eexample one might regress outcomes on birth weight (the “treatment” variable)
and one indicator variable for each pair of twins (keeping one pair as a baseline
category to avoid collinearity). More generally, we could control for the groups us-
ing a multilevel model, as we discuss in Part 2. In any case, the researcher might
want to control for other covariates to improve the plausibility of the ignorability
assumption (to control for the fact that the treatment may not be strictly randomly
assigned even within each group—here, the pair of twins). In this particular exam-
ple, however, it is difficult to find child-specific predictors that vary across children
within a pair but can still be considered “pre-treatment.”

In examples where the treatment is dichotomous, a substantial portion of the data
may not exhibit any variation at all in “treatment assignment” within groups. For
instance, if this strategy is used to estimate the effect of maternal employment on
child outcomes by including indicators for each family (set of siblings) in the dataset,
then in some families the mother may not have varied her employment status across
children. Therefore, no inferences about the effect of maternal employment status
can be made for these families. We can only estimate effects for the type of family
where the mother varied her employment choice across the children (for example,
working after her first child was born but staying home from work after the second).

Conditioning on post-treatment outcomes. Still more care must be taken when
considering variation over time. Consider examining the effect of marriage on men’s
earnings by looking at data that follows men over time and tracks marital status,
earnings, and predictors of each (confounding covariates such as race, education,
and occupation). Problems can easily arise in a model that includes an indicator
for each person and also controls for covariates at each time point (to help satisfy
ignorability). In this case the analysis would be implicitly conditioning on post-
treatment variables, which, as we know from Section 9.8, can lead to bias.

Better suited for a multilevel model framework? This model with indicators for
each group is often (particularly in the economics literature) called a “fixed effects”
model. We dislike this terminology because it is interpreted differently in different
settings, as discussed in Section 11.4. Further, this model is hierarchically struc-
tured, so from our perspective it is best analyzed using a multilevel model. This is not completely straightforward, however, because one of the key assumptions of a simple multilevel model is that the individual-level effects are independent of the other predictors in the model—a condition that is particularly problematic in this setting where we are expecting that unobserved characteristics of the individuals may be associated with observed characteristics of the individuals. In Chapter 23 we discuss how to appropriately extend this model to the multilevel framework while relaxing this assumption.

Comparisons within and between groups: difference-in-differences estimation

Almost all causal strategies make use of comparisons across groups: one or more that were exposed to a treatment, and one or more that were not. Difference-in-difference strategies additionally make use of another source of variation in outcomes, typically time, to help control for potential (observed and unobserved) differences across these groups. For example, consider estimating the effect of a newly introduced school busing program on housing prices in a school district where some neighborhoods were affected by the program and others were not. A simple comparison of housing prices across affected and unaffected areas sometime after the busing program went into effect might not be appropriate because these neighborhoods might be different in other ways that might be related to housing prices. A simple before-after comparison of housing prices may also be inappropriate if other changes that occurred during this time period (for example, a recession) might also be influencing housing prices. A difference-in-differences approach would instead calculate the difference in the before-after change in housing prices in exposed and unexposed neighborhoods. An important advantage of this strategy is that the units of observation (in this case, houses) need not be the same across the two time periods.

The assumption needed with this strategy is a weaker than the (unconditional) ignorability assumption because rather than assuming that potential outcomes are the same across treatment groups, one only has to assume that the potential gains in potential outcomes over time are the same across groups (for example, exposed and unexposed neighborhoods). Therefore we need only believe that the difference in housing prices over time would be the same across the two types of neighborhoods, not that the average post-program potential housing prices if exposed or unexposed would be the same.

Panel data. A special case of difference-in-differences estimation occurs when the same set of units are observed at both time points. This is also a special case of the so-called fixed effects model that includes indicators for treatment groups and for time periods. A simple way to fit this model is with a regression of the outcome on an indicator for the groups, an indicator for the time period, and the interaction between the two. The coefficient on the interaction is the estimated treatment effect.

In this setting, however, the advantages of the difference-in-differences strategy are less apparent because an alternative model would be to include an indicator for treatment exposure but then simply regress on the pre-treatment version of the outcome variable. In this framework it is unclear if the assumption of randomly assigned changes in potential outcome is truly weaker than the assumption of randomly assigned potential outcomes for those with the same value of the pre-treatment variable.\footnote{Strictly speaking, we need not assume actual random manipulation of treatment assignment for either assumption to hold, only results that would be consistent with such manipulation.}
Do not condition on post-treatment outcomes. Once again, to make the (new) ignorability assumption more plausible it may be desirable to condition on additional predictor variables. For models where the variation takes place over time—for instance, the differences-in-differences estimate that includes both pre-treatment and post-treatment observations on the same units—a standard approach is to include changes in characteristics for each observation over time. Implicitly, however, this conditions on post-treatment variables. If these predictors can be reasonably assumed to be unchanged by the treatment, then this is reasonable. However, as discussed in Section 9.8, it is otherwise inappropriate to control for post-treatment variables. A better strategy would be to control for pre-treatment variables only.

10.8 Bibliographic note

We have more references here than for any of the other chapters in this book because causal inference is a particularly contentious and active research area, with methods and applications being pursued in many fields, including statistics, economics, public policy, and medicine.

Imbalance and lack of complete overlap have been discussed in many places; see, for example, Cochran and Rubin (1973), and King and Zeng (2006). The intervention for low-birth-weight children is described by Brooks-Gunn, Liaw, and Klebanov (1992) and Hill, Brooks-Gunn, and Waldfogel (2003). Imbalance plots such as Figure 10.3 are commonly used; see Hansen (2004), for example.

Use of propensity scores as weights is discussed by Rosenbaum (1987), Ichimura and Linton (2001), Hirano, Imbens, and Ridder (2003), and Frolich (2004) among others. This work has been extended to a “doubly-robust” framework by Robins and Rotnitzky (1995), Robins, Rotnitzky, and Zhao (1995), and Robins and Ritov (1997).

As far as we are aware, LaLonde (1986) was the first use of so-called constructed observational studies as a testing ground for nonexperimental methods. Other examples include Friedlander and Robins (1995), Heckman, Ichimura, and Todd (1997), Dehejia and Wahba (1999), Michalopoulos, Bloom, and Hill (2004), and Agodini and Dynarski (2004). Dehejia (2005a, b), in response to Smith and Todd (2005), provides useful guidance regarding appropriate uses of propensity
scores (the need to think hard about ignorability and to specify propensity score models that are specific to any given dataset). The constructed observational analysis presented in this chapter is based on a more complete analysis presented in Hill, Reiter, and Zanutto (2004).

Several packages exist that automate different combinations of the propensity score steps described here and are available as supplements to R and other statistical software. We mention some of these here without intending to provide a comprehensive list. There is a program available for R called MatchIt that is available at gking.harvard.edu/matchit/ that implements several different matching methods including full matching (using software called OptMatch; Hansen, 2006). Three packages available for Stata are psmatch2, pscore, and nnmatch; any of these can be installed easily using the “net search” (or comparable) feature in Stata. Additionally, nnmatch produces valid standard errors for matching. Code is also available in SAS for propensity score matching or subclassification; see, for example, www.rx.uga.edu/main/home/cas/faculty/propensity.pdf.

Regression discontinuity analysis is described by Thistlethwaite and Campbell (1960). Recent work in econometrics includes Hahn, Todd, and van der Klaauw (2001) and Linden (2006). The political ideology example in Section 10.4 is derived from Poole and Rosenthal (1997) and Gelman and Katz (2005); see also Lee, Moretti, and Butler (2004) for related work. The example regarding children’s promotion in school was drawn from work by Jacob and Lefgren (2004).

Instrumental variables formulations date back to work in the economics literature by Tinbergen (1930) and Haavelmo (1943). Angrist and Krueger (2001) present an upbeat applied review of instrumental variables. Imbens (2004) provides a review of statistical methods for causal inference that is a little less enthusiastic about instrumental variables. Woolridge (2001, chapter 5) provides a crisp overview of instrumental variables from a classical econometric perspective; Lancaster (2004, chapter 8) uses a Bayesian framework. The “always-watcher,” “induced watcher,” and “never-watcher” categorizations here are alterations of the “never-taker,” “complier,” and “always-taker” terminology first used by Angrist, Imbens, and Rubin (1996), who reframe the classic econometric presentation of instrumental variables in statistical language and clarify the assumptions and the implications when the assumptions are not satisfied. For a discussion of all of the methods discussed in this chapter from an econometric standpoint, see Angrist and Krueger (1999).

The Vietnam draft lottery example comes from several papers including Angrist (1990). The weather and fish price example comes from Angrist, Graddy, and Imbens (2000). The sex of child example comes from Angrist and Evans (1998).

For models that link instrumental variables with the potential-outcomes framework described in Chapter 9, see Angrist, Imbens, and Rubin (1996). Glickman and Normand (2000) derive an instrumental variables estimate using a latent-data model; see also Carroll et al. (2004).

Imbens and Rubin (1997) discuss a Bayesian approach to instrumental variables in the context of a randomized experiment with noncompliance. Hirano et al. (2000) extend this framework to include covariates. Barnard et al. (2003) describe further extensions that additionally accommodate missing outcome and covariate data. For discussions of prior distributions for instrumental variables models, see Dreze
(1976), Maddala (1976), Kleibergen and Zivot (2003), and Hoogerheide, Kleibergen and van Dijk (2006).

For a discussion of use of instrumental variables models to estimate bounds for the average treatment effect (as opposed to the local average treatment effect), see Robins (1989), Manski (1990), and Balke and Pearl (1997). Robins (1994) discusses estimation issues.

For more on the Sesame Street encouragement study, see Bogatz and Ball (1971) and Murphy (1991).

Sobel (1990, 1998) discusses the assumptions needed for structural equation modeling more generally.

10.9 Exercises

1. Constructed observational studies: the folder lalonde contains data from an observational study constructed by LaLonde (1986) based on a randomized experiment that evaluated the effect on earnings of a job training program called National Supported Work. The constructed observational study was formed by replacing the randomized control group with a comparison group formed using data from two national public-use surveys: the Current Population Survey (CPS) and the Panel Study in Income Dynamics.

Dehejia and Wahba (1999) used a subsample of these data to evaluate the potential efficacy of propensity score matching. The subsample they chose removes men for whom only one pre-treatment measure of earnings is observed. (There is substantial evidence in the economics literature that controlling for earnings from only one pre-treatment period is insufficient to satisfy ignorability.) This exercise replicates some of Dehejia and Wahba’s findings based on the CPS comparison group.

(a) Estimate the treatment effect from the experimental data in two ways: (i) a simple difference in means between treated and control units, and (ii) a regression-adjusted estimate (that is, a regression of outcomes on the treatment indicator as well as predictors corresponding to the pre-treatment characteristics measured in the study).

(b) Now use a regression analysis to estimate the causal effect from Dehejia and Wahba’s subset of the constructed observational study. Examine the sensitivity of the model to model specification (for instance, by excluding the employed indicator variables or by including interactions). How close are these estimates to the experimental benchmark?
(c) Now estimate the causal effect from the Dehejia and Wahba subset using propensity score matching. Do this by first trying several different specifications for the propensity score model and choosing the one that you judge to yield the best balance on the most important covariates.

Perform this propensity score modeling without looking at the estimated treatment effect that would arise from each of the resulting matching procedures.

For the matched dataset you construct using your preferred model, report the estimated treatment effects using the difference-in-means and regression-adjusted methods described in part (a) of this exercise. How close are these estimates to the experimental benchmark (about $1800)?

(d) Assuming that the estimates from (b) and (c) can be interpreted causally, what causal effect does each estimate? (Hint: what populations are we making inferences about for each of these estimates?)

(e) Redo both the regression and the matching exercises, excluding the variable for earnings in 1974 (two time periods before the start of this study). How important does the earnings-in-1974 variable appear to be in terms of satisfying the ignorability assumption?

2. Regression discontinuity analysis: suppose you are trying to evaluate the effect of a new procedure for coronary bypass surgery that is supposed to help with the postoperative healing process. The new procedure is risky, however, and is rarely performed in patients who are over 80 years old. Data from this (hypothetical) example are displayed in Figure 10.10.

(a) Does this seem like an appropriate setting in which to implement a regression discontinuity analysis?

(b) The folder bypass contains data for this example: stay is the length of hospital stay after surgery, age is the age of the patient, and new is the indicator variable indicating that the new surgical procedure was used. Preoperative disease severity (severity) was unobserved by the researchers, but we have access to it for illustrative purposes. Can you find any evidence using these data that the regression discontinuity design is inappropriate?

(c) Estimate the treatment effect using a regression discontinuity estimate (ignoring) severity. Estimate the treatment effect in any way you like, taking advantage of the information in severity. Explain the discrepancy between these estimates.
3. Instrumental variables: come up with a hypothetical example in which it would be appropriate to estimate treatment effects using an instrumental variables strategy. For simplicity, stick to an example with a binary instrument and binary treatment variable.

(a) Simulate data for this imaginary example if all the assumptions are met. Estimate the local average treatment effect for the data by dividing the intent-to-treat effect by the percentage of compliers. Show that two-stage least squares yields the same point estimate.

(b) Now simulate data in which the exclusion restriction is not met (so, for instance, those whose treatment level is left unaffected by the instrument have a treatment effect of half the magnitude of the compliers) but the instrument is strong (say, 80% of the population are compliers), and see how far off your estimate is.

(c) Finally, simulate data in which the exclusion restriction is violated in the same way, but where the instrument is weak (only 20% of the population are compliers), and see how far off your estimate is.

4. In Exercise 9.13, you estimated the effect of incumbency on votes for Congress. Now consider an additional variable: money raised by the congressional candidates. Assume this variable has been coded in some reasonable way to be positive in districts where the Democrat has raised more money and negative in districts where the Republican has raised more.

(a) Explain why it is inappropriate to include money as an additional input variable to “improve” the estimate of incumbency advantage in the regression in Exercise 9.13.

(b) Suppose you are interested in estimating the effect of money on the election outcome. Set this up as a causal inference problem (that is, define the treatments and potential outcomes).

(c) Explain why it is inappropriate to simply estimate the effect of money using instrumental variables, with incumbency as the instrument. Which of the instrumental variables assumptions would be reasonable in this example and which would be implausible?

(d) How could you estimate the effect of money on congressional election outcomes?