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A Experimental Protocols
For each experiment, we begin by observing the latent fairness discrepancy in an unconstrained
model, and use that to assign group labels a and b. In our results, we obscure these assignments and
refer to the sensitive groups as a and b in order to reduce implicit biases associated with identity
groups, as in Denton et al. [3].

A.1 Fair Logistic Regression for Tabular Data

To preprocess each data set, we make a random 2
3 - 1

3 train-test split and apply min-max normalization
to improve regularization performance. To get an L2 penalty coefficient, we perform 5-fold cross-
validation on the training data and search to find a coefficient which maximizes cross-validated AUC.
We searched over the set of powers of 2 from 2−15 to 210. For Fig. 2 only, we use a penalty coefficient
of 2−20 to better demonstrate the degeneracy of the surrogates.

To set the fairness penalizer λ, we searched in the range [0, 1] to find a λ∗ for which ∆ was slightly
less than 0 on the training data set. Note that this λ∗ varies for each relaxation and fairness criterion,
even on the same data set. We then ran experiments on a dense uniform grid of λ from 0 to λ∗.

All relaxations are optimized via our Lagrangian framework. All code was implemented using
PyTorch, and optimized using L-BFGS. λ = 0 models were initialized at the all-0 parameter
vector, and each subsequent model was initialized starting from the solution to the previous λ value.
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Figure 1: Comparison of convergence rates for logis-
tic and piecewise linear relaxations on tabular data sets.
On the left, both use upper bound regularizer R+

g to
achieve demographic parity on the Adult data set. On
the right, the difference framework is used to achieve
equality of opportunity on COMPAS. Error bars show
the standard deviation of number of iterations until con-
vergence (changes in all parameters drop below 10−10),
across 5 independent train-test splits, for the L-BFGS
quasi-Newton method. For both relaxations, standard
gradient descent is orders of magnitude slower.

We set the initial learning rate 0.1, which was
chosen to achieve quick convergence on the un-
constrained model. Training was terminated
when every component of θ changed by < 10−8

in a single iteration, which took less than 1
minute for every λ on both data sets. Our code
is publicly available online.2

Logistic vs Hinge Convergence. Both Lohaus
et al. [6] and Wu et al. [8] use the hinge func-
tion as their surrogates. The hinge and logistic
functions have the same asymptotic behavior,
but in Fig. 1 we show that Lagrangian optimiza-
tion of the logistic function is quicker and more
consistent due to its smoothness. We compare
our logistic upper bound formulation to a hinge
upper bound g(r) = max(0, 1 + r), and our lo-
gistic difference formulation to the rectified lin-
ear relaxation g(r) = max(0, r) of Zafar et al.
[9]. We compare over 5 random train-test splits,
with each constructed as described above. We
found the optimal L2 penalty coefficient independently for each split.
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Adult. We use the preprocessed data compiled by [5], which has 30,162 total data points and 100
attributes. After removing the target attribute and sensitive attributes race, sex, and race-sex, we
further remove capital-gain and capital-loss as was done in [6]. This leaves us with p = 94 predictor
attributes. Here we define equality of opportunity on false negative rates, i.e. predicting that someone
earns under $50,000 per year when actually they earn more.

COMPAS. As with the Adult data set, we use the preprocessed data of [5]. We drop the target and
sensitive attributes to form a data set with p = 399 predictive attributes and 5,273 data points. In this
case, equality of opportunity is concerned with false positive rates, where a defendant who will not
recidivate is incorrectly labeled high-risk.

Toy Model. We use binary search [6] to find a model with ∆ = 0.03 for each relaxation. Adding an
outlier with y = 1, s = a does not change the decision boundaries for any relaxation. Setting s = b,
however, causes the linear relaxation to degenerate.

A.2 Fair Deep Learning
For our deep learning experiments, we used the approach of Sec. A.1 to construct a range of λ values.
All results are reported on test data. All computation was done on NVIDIA GeForce RTX 2080Ti
11GB GPUs, and GPU times are reported with respect to that hardware.

CelebA. We used the pre-split data provided in torchvision which has 162,770 training images,
19,867 validation images and 19,962 testing images. For our architecture, we used a wide residual
network (WRN-50-2) [10] initialized with random low-noise parameter values. The last layer is a
soft-max layer, which is mathematically equivalent to logistic regression performed on the attributes
learned from the previous layers. Thus in order to enforce fairness, the only change we make is to add
the scaled fairness surrogate to the loss function. For this data set, we defined equality of opportunity
on false negative rates.

The network was trained on training mini-batches of size 32 for 3 epochs. We used Adam to perform
stochastic optimization with an initial learning rate of 0.01, and a scheduler which reduced the
learning rate by a factor of 10 when validation loss plateaus for 2000 batches. Each epoch took 25
minutes of GPU time. With 8 relaxations and 21 λ-values per relaxation, the total GPU time was 240
hours.

Faces of the World. The Looking at People CVPR Challenge Track 2 [4] required participants to,
given an image, return the bounding box around the face, the subject’s gender, and whether or not the
subject is smiling. The data set has 6,171 training images, 3,087 validation images and 8,506 test
images. The participants were allowed to train on any additional data. The Faces of the World data
set shows people from more varied angles than CelebA and is not limited to celebrities, a group that
is not representative of the broader population in many physical or sensitive attributes.

We crop the images according to the bounding boxes provided, and resize to 224 by 224 pixels as
expected by the WRN. Because the data set is small, we first trained a WRN-50-2 on CelebA using
the scheme described above for our CelebA results, and then froze the first two layers of the network
to prevent overfitting on Faces of the World. All experiments were initialized at this same baseline.
The network was trained on mini-batches of size 32 for 30 epochs using Adam. The initial learning
rate was set to 0.01 and a scheduler reduced the learning rate by a factor of 10 when validation loss
plateaued for 2000 batches. Each epoch took 1 minute of GPU time. With 4 relaxations and 21 λ
values per relaxation, the total GPU time was 42 hours.

On top of having performance costs, kernel-based methods have quadratic memory requirements
in the number of data points. In order to get around this, Lohaus et al. [6] construct a small set of
“reasonable points" and perform learning on those. We use their publicly available code3, converting
the input images to 150,528-dimensional input vectors (224 by 224 by 3 channels) and run with as
many reasonable points as we can hold in 125 gigabytes of RAM.

Yelp. We took the subset of reviews from the 5,000 most prolific reviewers, totaling 337,723 reviews.
To estimate those reviewers’ genders, we use Gender API [1] as in [7]. When no gender can be
confidently inferred, we set the sensitive attribute to unknown.

The reweighting baseline of Calders & Verwer [2] does not propose a way weighting data with no
labelled sensitive attribute. For this baseline, we simply set those points to have weight 1.

3https://github.com/mlohaus/SearchFair, GNU General Public License v3.0
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We modified publicly-available code from Onepoint Consulting4. Our model was initialized to
the pretrained BertForSequenceClassification from the Pytorch Transformers library. No
parameters were frozen during our training.

The learning rate was initialized to 2 · 10−5 and decreased linearly to 0 over the 3 training epochs.
Weight decay with parameter 10−3 was used to improve regularization. Each epoch took 200 minutes
of GPU time. To save computation time we use the same λ = 0 training session for every relaxation.
With 4 relaxations and 7 λ values per relaxation, as well as the unconstrained training session, the
total GPU time was 290 hours.

B Conditions for Surrogate Degeneracy
For the more general case, we must consider averages of Φ(x)j where we zero out negative values, as
well as averages where we zero out the positive values. Define:

γjsy =
1

Nsy

∑
(x,s′,y′)∈D
s′=s,y′=y

max(0,Φ(x)j), (1)

ηjsy =
1

Nsy

∑
(x,s′,y′)∈D
s′=s,y′=y

min(0,Φ(x)j). (2)

Note that the normalizing Nsy include all data with sensitive label s and target attribute y, even those
which the thresholding functions replace with 0. Further let γj.y be the mean of Φ(x)j (with negative
values zeroed out) for data with y′ = y but any group, and γjs. be the mean of Φ(x)j (with negative
values zeroed out) for data with s′ = s but any target value. Define ηjs., ηj.y similarly. Note that
when attribute Φ(x)j is non-negative, all ηjsy are 0 and γjsy = µjsy. We again assume that g(r) is
continuous and monotonically increasing, and that δ+

g = limr→∞ g′(r) and δ−g = limr→−∞ g′(r)
exist.
Theorem 4 (General case for degeneracy in demographic parity). Consider a feature j.
(1) If δ−g (γja. − γjb.) + δ+

g (ηja. − ηjb.) > 0 then for λ > λ∗j =
γj.1p.1−ηj.0p.0

δ−g (γja.−γjb.)+δ+g (ηja.−ηjb.)
,

lim
wj→−∞

Lg,λ(θ) = −∞.

(2) If δ+
g (γjb. − γja.) + δ−g (ηjb. − ηja.) > 0 then for λ > λ∗j =

γj.0p.0−ηj.1p.1
δ+g (γjb.−γja.)+δ−g (ηjb.−ηja.)

,

lim
wj→+∞

Lg,λ(θ) = −∞.

Proof of Theorems 1 and 4. We begin by proving Theorem 4. Consider the two cases separately.
(1) It is sufficient to show that as wj → −∞, ∂

∂wjLg,λ(θ)→ κ > 0.

∂

∂wj
Lg,λ(θ)

=
∂

∂wj

(
1

N

∑
(x,s,y)∈D

(
L(wTΦ(x), y) + λRg(x, y, s)

))

=
∂

∂wj

(
1

N

∑
(x,s,y)∈D
y=1

− log σ(wTΦ(x)) +
1

N

∑
(x,s,y)∈D
y=0

− log σ(−wTΦ(x))

+
λ

Na.

∑
(x,s,y)∈D
s=a

g(wTΦ(x))− λ

Nb.

∑
(x,s,y)∈D
s=b

g(wTΦ(x))

)
(3)

=
1

N

∑
(x,s,y)∈D
y=1

−σ(−wTΦ(x))Φ(x)j +
1

N

∑
(x,s,y)∈D
y=0

σ(wTΦ(x))Φ(x)j

+
λ

Na.

∑
(x,s,y)∈D
s=a

g′(wTΦ(x))Φ(x)j −
λ

Nb.

∑
(x,s,y)∈D
s=b

g′(wTΦ(x))Φ(x)j

4https://github.com/onepointconsulting/yelp_bert/blob/master/bert_training.ipynb
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Note that as wj → −∞, σ(−wTΦ(x)) → 0 for data with Φ(x)j < 0 and σ(−wTΦ(x)) → 1 for
data with Φ(x)j > 0. Similarly, σ(wTΦ(x))→ 0 for data with Φ(x)j > 0 and σ(wTΦ(x))→ 1 for
data with Φ(x)j < 0. Finally, g′(wTΦ(x)) → δ+

g for data with Φ(x)j < 0 and g′(wTΦ(x)) → δ−g
for data with Φ(x)j > 0. Thus

lim
wj→−∞

∂

∂wj
Lg,λ(θ) =

1

N

∑
(x,s,y)∈D
y=1

−Φ(x)j1{Φ(x)j>0} +
1

N

∑
(x,s,y)∈D
y=0

Φ(x)j1{Φ(x)j<0}

+
λ

Na.

∑
(x,s,y)∈D
s=a

(
δ+
g Φ(x)j1{Φ(x)j<0} + δ−g Φ(x)j1{Φ(x)j>0}

)

− λ

Nb.

∑
(x,s,y)∈D
s=b

(
δ+
g Φ(x)j1{Φ(x)j<0} + δ−g Φ(x)j1{Φ(x)j>0}

)

=− γj.1p.1 + ηj.0p.0 + λ
(
δ+
g (ηja. − ηjb.) + δ−g (γja. − γjb.)

)
>− γj.1p.1 + ηj.0p.0 + λ∗j

(
δ+
g (ηja. − ηjb.) + δ−g (γja. − γjb.)

)
= 0

(4)

Where λ∗j =
γj.1p.1−ηj.0p.0

δ−g (γja.−γjb.)+δ+g (ηja.−ηjb.)
is the lower bound on λ. The derivative converges to

κ = −γj.1p.1 + ηj.0p.0 + λ
(
δ+
g (ηja. − ηjb.) + δ−g (γja. − γjb.)

)
> 0.

For condition (2) it is sufficient to show that as wj → ∞, ∂
∂wjLg,λ(θ) → κ < 0. Equation (3)

still holds, but we instead note that as wj → ∞, σ(−wTΦ(x)) → 0 for data with Φ(x)j > 0 and
σ(−wTΦ(x)) → 1 for data with Φ(x)j < 0. Similarly, σ(wTΦ(x)) → 0 for data with Φ(x)j < 0
and σ(wTΦ(x))→ 1 for data with Φ(x)j > 0. Finally, g′(wTΦ(x))→ δ+

g for data with Φ(x)j > 0

and g′(wTΦ(x))→ δ−g for data with Φ(x)j < 0. Thus

lim
wj→∞

∂

∂wj
Lg,λ(θ) =

1

N

∑
(x,s,y)∈D
y=1

−Φ(x)j1{Φ(x)j<0} +
1

N

∑
(x,s,y)∈D
y=0

Φ(x)j1{Φ(x)j>0}

+
λ

Na.

∑
(x,s,y)∈D
s=a

(
δ+
g Φ(x)j1{Φ(x)j>0} + δ−g Φ(x)j1{Φ(x)j<0}

)

− λ

Nb.

∑
(x,s,y)∈D
s=b

(
δ+
g Φ(x)j1{Φ(x)j>0} + δ−g Φ(x)j1{Φ(x)j<0}

)

=− ηj.1p.1 + γj.0p.0 + λ
(
δ+
g (γja. − γjb.) + δ−g (ηja. − ηjb.)

)
<− ηj.1p.1 + γj.0p.0 + λ∗j

(
δ+
g (γja. − γjb.) + δ−g (ηja. − ηjb.)

)
= 0

(5)

Where λ∗j =
γj.0p.0−ηj.1p.1

δ+g (γjb.−γja.)+δ−g (ηjb.−ηja.)
is the lower bound on λ. The derivative converges to

κ = −ηj.1p.1 + γj.0p.0 + λ
(
δ+
g (γja. − γjb.) + δ−g (ηja. − ηjb.)

)
< 0, and thus Lg,λ(θ)→ −∞.

Theorem 1 is a special case of Theorem 4 where all ηjsy = 0, γjsy = µjsy. The conditions in
Theorem 1 make use of the fact that δ+

g , δ
−
g > 0 from the monotonicity assumption.

Theorem 5 (General case for degeneracy in equality of opportunity). Consider a feature j.
(1) If δ−g (γja0 − γjb0) + δ+

g (ηja0 − ηjb0) > 0 and λ > λ∗j =
γj.1p.1−ηj.0p.0

δ−g (γja0−γjb0)+δ+g (ηja0−ηjb0)
, then

lim
wj→−∞

Lg,λ(θ) = −∞.

(2) If δ+
g (γjb0 − γja0) + δ−g (ηjb0 − ηja0) > 0 and λ > λ∗j =

γj.0p.0−ηj.1p.1
δ+g (γjb0−γja0)+δ−g (ηjb0−ηja0)

, then

lim
wj→+∞

Lg,λ(θ) = −∞.
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Proof of Theorems 2 and 5. The proof is identical to the proof for Theorems 1 and 4, except with
the fairness metrics defined only on the negative instances.

Finally, we present a generalization of Theorem 3:
Theorem 6. For any surrogate g(r) such that δ−g = 0, both thresholds in Theorem 5 are bounded
below by pb0/δ+

g :
(1) If δ−g (γja0 − γjb0) + δ+

g (ηja0 − ηjb0) > 0, then λ∗j =
γj.1p.1−ηj.0p.0

δ−g (γja0−γjb0)+δ+g (ηja0−ηjb0)
≥ pb0/δ+

g .

(2) If δ+
g (γjb0 − γja0) + δ−g (ηjb0 − ηja0) > 0 then λ∗j =

γj.0p.0−ηj.1p.1
δ+g (γjb0−γja0)+δ−g (ηjb0−ηja0)

≥ pb0/δ+
g .

Proof of Theorems 3 and 6. We start by proving condition (1). Applying the assumption that
δ−g = 0, we see that δ+

g (ηja0 − ηjb0) > 0. Because all ηjsy ≤ 0 and δ+
g ≥ 0, we know −ηjb0δ+

g ≥
δ+
g (ηja0 − ηjb0) > 0. Thus

λ∗j =
γj.1p.1 − ηj.0p.0

δ−g (γja0 − γjb0) + δ+
g (ηja0 − ηjb0)

=
γj.1p.1 − ηj.0p.0
δ+
g (ηja0 − ηjb0)

≥ γj.1p.1 − ηj.0p.0
−ηjb0δ+

g
≥ −ηj.0p.0
−ηjb0δ+

g

The last inequality uses γj.1p.1 ≥ 0. Further note that,

−ηj.0 =
1

N.0

∑
(x,s,y)∈D
y=0

−min(0,Φ(x)j) ≥
1

N.0

∑
(x,s,y)∈D
s=b,y=0

−min(0,Φ(x)j) = −Nb0
N.0

ηjb0

This follow from the fact that every term in these sums is non-negative. Thus

λ∗j ≥
−ηj.0p.0
−ηjb0δ+

g
≥
−ηjb0Nb0N.0

N.0
N

−ηjb0δ+
g

=
pb0

δ+
g

Next we prove condition (2). Applying the assumption that δ−g = 0, we see that δ+
g (γjb0− γja0) > 0.

Because all γjsy ≥ 0 and δ+
g ≥ 0, we know γjb0δ

+
g ≥ δ+

g (γjb0 − γja0) > 0. Thus

λ∗j =
γj.0p.0 − ηj.1p.1

δ+
g (γjb0 − γja0) + δ−g (ηjb0 − ηja0)

=
γj.0p.0 − ηj.1p.1
δ+
g (γjb0 − γja0)

≥ γj.0p.0 − ηj.1p.1
δ+
g γjb0

≥ γj.0p.0

δ+
g γjb0

The last inequality uses −ηj.1p.1 ≥ 0. Further note that

γj.0 =
1

N.0

∑
(x,s,y)∈D
y=0

max(0,Φ(x)j) ≥
1

N.0

∑
(x,s,y)∈D
s=b,y=0

max(0,Φ(x)j) =
Nb0
N.0

γjb0

This follows from the fact that every term in these sums is non-negative. Thus

λ∗j ≥
γj.0p.0

δ+
g γjb0

≥
γjb0

Nb0
N.0

N.0
N

δ+
g γjb0

=
pb0

δ+
g

Theorem 3 is a special case of Theorem 6 where Φ(x)j ≥ 0 so the thresholds in Theorem 5 are given
by the simpler equations in Theorem 2. As we have shown that the thresholds in Theorem 5 are
bounded, the equivalent but simplified thresholds in Theorem 2 must be as well.

Finally, we generalize Thm. 4 to allow for the use of two independent surrogates: g0 applied to data
with target label y = 0, and g1 applied to data with target label y = 1. This applies to our use of the
log-sigmoid difference surrogate on the demographic parity criterion. The regularizer is given by

Rg0,g1(x, y, s) =


g0(fθ(x))
pa.

if s = a, y = 0
g1(fθ(x))
pa.

if s = a, y = 1

− g0(fθ(x))
pb.

if s = b, y = 0

− g1(fθ(x))
pb.

if s = b, y = 1.

(6)

With overall loss function

Lg0,g1,λ(θ) =
1

N

∑
(x,s,y)∈D

(
L(wTΦ(x), y) + λRg0,g1,λ(x, y, s)

)
(7)

For this proof, we must further define py|s =
Nsy
Ns.

. We assume that both g0(r), g1(r) are con-
tinuous and monotonically increasing, and that δ+

g0 = limr→∞ g′0(r), δ+
g1 = limr→∞ g′1(r),

δ−g0 = limr→−∞ g′0(r) and δ−g1 = limr→−∞ g′1(r) exist.
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Finally, for notational compactness, we write our thresholds’ denominators:
β− = δ+

g0(p0|aηa0 − p0|bηb0) + δ+
g1(p1|aηa1 − p1|bηb1) + δ−g0(p0|aγa0 − p0|bγb0) + δ−g1(p1|aγa1 − p1|bγb1)

β+ = δ+
g0(p0|bγb0 − p0|aγa0) + δ+

g1(p1|bγb1 − p1|aγa1) + δ−g0(p0|bηb0 − p0|aηa0) + δ−g1(p1|bηb1 − p1|aηa1)

Theorem 7 (Two-surrogate case for degeneracy in demographic parity). Consider a feature j.
(1) If β− > 0 then for λ > λ∗j =

γj.1p.1−ηj.0p.0
β− , lim

wj→−∞
Lg,λ(θ) = −∞.

(2) If β+ > 0 then for λ > λ∗j =
γj.0p.0−ηj.1p.1

β+ , lim
wj→+∞

Lg,λ(θ) = −∞.

Proof of Theorem 7. The proof proceeds similarly as Theorem 4. First we handle (1) by proving
that as wj → −∞, ∂

∂wjLg,λ(θ)→ κ > 0.

∂

∂wj
Lg0,g1,λ(θ)

=
∂

∂wj

(
1

N

∑
(x,s,y)∈D
y=1

− log σ(wTΦ(x)) +
1

N

∑
(x,s,y)∈D
y=0

− log σ(−wTΦ(x))

+
λ

Na.

∑
(x,s,y)∈D
s=a,y=0

g0(wTΦ(x)) +
λ

Na.

∑
(x,s,y)∈D
s=a,y=1

g1(wTΦ(x))

− λ

Nb.

∑
(x,s,y)∈D
s=b,y=0

g0(wTΦ(x))− λ

Nb.

∑
(x,s,y)∈D
s=b,y=1

g1(wTΦ(x))

)
(8)

=
1

N

∑
(x,s,y)∈D
y=1

−σ(−wTΦ(x))Φ(x)j +
1

N

∑
(x,s,y)∈D
y=0

σ(wTΦ(x))Φ(x)j

+
λ

Na.

∑
(x,s,y)∈D
s=a,y=0

g′0(wTΦ(x))Φ(x)j +
λ

Na.

∑
(x,s,y)∈D
s=a,y=1

g′1(wTΦ(x))Φ(x)j

− λ

Nb.

∑
(x,s,y)∈D
s=b,y=0

g′0(wTΦ(x))Φ(x)j −
λ

Nb.

∑
(x,s,y)∈D
s=b,y=1

g′1(wTΦ(x))Φ(x)j

We observe, as in the proof for Theorem 4, that σ(wTΦ(x)) becomes 0 or 1 as wj → ±∞, depending
on the sign of Φ(x)j

lim
wj→−∞

∂

∂wj
Lg0,g1,λ(θ) =

1

N

∑
(x,s,y)∈D
y=1

−Φ(x)j1{Φ(x)j>0} +
1

N

∑
(x,s,y)∈D
y=0

Φ(x)j1{Φ(x)j<0}

+
λ

Na.

∑
(x,s,y)∈D
s=a,y=0

(
δ+
g0Φ(x)j1{Φ(x)j<0} + δ−g0Φ(x)j1{Φ(x)j>0}

)

+
λ

Na.

∑
(x,s,y)∈D
s=a,y=1

(
δ+
g1Φ(x)j1{Φ(x)j<0} + δ−g1Φ(x)j1{Φ(x)j>0}

)

− λ

Nb.

∑
(x,s,y)∈D
s=b,y=0

(
δ+
g0Φ(x)j1{Φ(x)j<0} + δ−g0Φ(x)j1{Φ(x)j>0}

)

− λ

Nb.

∑
(x,s,y)∈D
s=b,y=1

(
δ+
g1Φ(x)j1{Φ(x)j<0} + δ−g1Φ(x)j1{Φ(x)j>0}

)

=− γj.1p.1 + ηj.0p.0 + λβ−

>− γj.1p.1 + ηj.0p.0 + λ∗jβ
− = 0

(9)
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Where λ∗j =
γj.1p.1−ηj.0p.0

β− is the lower bound on λ. The derivative converges to κ = −γj.1p.1 +

ηj.0p.0 + λβ− > 0.

For condition (2) it is sufficient to show that as wj →∞, ∂
∂wjLg,λ(θ)→ κ < 0. Equation (8) still

holds, and we proceed:

lim
wj→∞

∂

∂wj
Lg0,g1,λ(θ) =

1

N

∑
(x,s,y)∈D
y=1

−Φ(x)j1{Φ(x)j<0} +
1

N

∑
(x,s,y)∈D
y=0

Φ(x)j1{Φ(x)j>0}

+
λ

Na.

∑
(x,s,y)∈D
s=a,y=0

(
δ+
g0Φ(x)j1{Φ(x)j>0} + δ−g0Φ(x)j1{Φ(x)j<0}

)

+
λ

Na.

∑
(x,s,y)∈D
s=a,y=1

(
δ+
g1Φ(x)j1{Φ(x)j>0} + δ−g1Φ(x)j1{Φ(x)j<0}

)

− λ

Nb.

∑
(x,s,y)∈D
s=b,y=0

(
δ+
g0Φ(x)j1{Φ(x)j>0} + δ−g0Φ(x)j1{Φ(x)j<0}

)

− λ

Nb.

∑
(x,s,y)∈D
s=b,y=1

(
δ+
g1Φ(x)j1{Φ(x)j>0} + δ−g1Φ(x)j1{Φ(x)j<0}

)

=− ηj.1p.1 + γj.0p.0 + λ(−β+)

<− ηj.1p.1 + γj.0p.0 + λ∗j (−β+) = 0

(10)

Where λ∗j =
γj.0p.0−ηj.1p.1

β+ is the lower bound on λ. The derivative converges to κ = −ηj.1p.1 +

γj.0p.0 − λβ+ < 0 and thus Lg0,g1,λ(θ)→ −∞.
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3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
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