
Differentiable and Stable Long-Range Tracking of
Multiple Posterior Modes

Ali Younis and Erik B. Sudderth
{ayounis, sudderth}@uci.edu

Department of Computer Science, University of California, Irvine

Abstract

Particle filters flexibly represent multiple posterior modes nonparametrically, via a
collection of weighted samples, but have classically been applied to tracking prob-
lems with known dynamics and observation likelihoods. Such generative models
may be inaccurate or unavailable for high-dimensional observations like images.
We instead leverage training data to discriminatively learn particle-based representa-
tions of uncertainty in latent object states, conditioned on arbitrary observations via
deep neural network encoders. While prior discriminative particle filters have used
heuristic relaxations of discrete particle resampling, or biased learning by truncat-
ing gradients at resampling steps, we achieve unbiased and low-variance gradient
estimates by representing posteriors as continuous mixture densities. Our theory
and experiments expose dramatic failures of existing reparameterization-based
estimators for mixture gradients, an issue we address via an importance-sampling
gradient estimator. Unlike standard recurrent neural networks, our mixture den-
sity particle filter represents multimodal uncertainty in continuous latent states,
improving accuracy and robustness. On a range of challenging tracking and robot
localization problems, our approach achieves dramatic improvements in accuracy,
while also showing much greater stability across multiple training runs.

1 Introduction

A particle filter (PF) [1–4] uses weighted samples to provide a flexible, nonparametric representation
of uncertainty in continuous latent states. Classical PFs are generative models that typically require
human experts to specify the latent state dynamics and measurement models. With the growing
popularity of deep learning and abundance of time-series data, recent work has instead sought
to discriminatively learn PF variants that (unlike conventional recurrent neural networks) capture
uncertainty in latent states [5–8]. These approaches are especially promising for high-dimensional
observations like images, where learning accurate generative models is extremely challenging.

The key challenge in learning discriminative PFs is the non-differentiable particle resampling step,
which is key to robustly maintaining diverse particle representations, but inhibits end-to-end learning
by preventing gradient propagation. Prior discriminative PFs have typically used heuristic relaxations
of discrete particle resampling, or biased learning by truncating gradients. These methods severely
compromise the effectiveness of PF training; prior work has often assumed exact dynamical models
are known, or used very large numbers of particles for test data, due to these limitations.

After reviewing prior work on generative (Sec. 2) and discriminative (Sec. 3) training of PFs, Sec. 4
demonstrates dramatic failures of popular reparameterization-based gradient estimators for mixture
models. This motivates our importance weighted samples gradient estimator, which provides the
foundation for the mixture density particle filter of Sec. 5. Experiments in Sec. 6 show substantial
advances over prior discriminative PF for several challenging tracking and visual localization tasks.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

xt−1

ytyt−1 yt+1
atat−1 at+1

xt xt+1 xt−1

ytyt−1 yt+1
atat−1 at+1

xt xt+1

Figure 1: Sequential state estimation may be formulated via either generative (left) or discriminative (right)
graphical models. In either case, dynamics of states xt are influenced by actions at, and estimated via data yt.

2 Sequential State Estimation via Generative Models
Algorithms for sequential state estimation compute or approximate the posterior distribution of the
system state xt, given a sequence of observations yt and (optionally) input actions at, at discrete
times t = 1, . . . , T . Sequential state estimation is classically formulated as inference in a generative
model like the hidden Markov model (HMM) or state space model of Fig. 1, with dynamics defined by
state transition probabilities p(xt | xt−1, at), and observations generated via likelihoods p(yt | xt).
Given a known Markov prior on latent state sequences, and a corresponding observation sequence, the
filtered state posterior p(xt | yt, yt−1, . . . , y1) can in principle be computed via Bayesian inference.
When the means of state dynamics and observations likelihoods are linear functions, and noise is
Gaussian, exact filtered state posteriors are Gaussian and may be efficiently computed via the Kalman
filter (KF) [9–11]. The non-Gaussian state posteriors of general state space models may be approxi-
mated via Gaussians [12], but estimating the posterior mean and covariance is in general challenging,
and cannot faithfully capture the multimodal posteriors produced by missing or ambiguous data.

2.1 Particle Filters

To flexibly approximate general state posteriors, particle filters (PF) [1–4] represent possible states
nonparametrically via a collection of weighted samples or particles. The classical PF parameterizes
the state posterior at time t by a set of N particles x(:)t = {x(1)t , . . . , x

(N)
t } with associated weights

w
(:)
t = {w[1]

t , . . . , w
(N)
t }. PFs recursively update the state posterior given the latest observation yt

and action at, and may be flexibly applied to a broad range of models; they only assume that the state
dynamics may be simulated, and the observation likelihood may be evaluated.

Particle Proposal. To produce particle locations x(:)t at time t, a model of the state transition
dynamics is applied individually to each particle x(i)t−1, conditioned on external actions at if available:

x
(i)
t ∼ p(xt | xt−1 = x

(i)
t−1, at). (1)

Measurement Update. After a new particle set x(:)t has been proposed, particle weights must be
updated to account for the latest observation yt via the known likelihood function:

w
(i)
t ∝ p(yt | x(i)t)w

(i)
t−1. (2)

The updated weights are then normalized so that
∑N

i=1 w
(i)
t = 1. This weight update is motivated

by importance sampling principles, because (asymptotically, as N → ∞) it provides an unbiased
approximation of the true state posterior p(xt | yt, . . . , y1) ∝ p(yt | xt)p(xt | yt−1, . . . , y1).

Particle Resampling. Due to the stochastic nature of PFs, over time particles will slowly diverge to
regions with low posterior probability, and will thus be given little weight in the measurement step. If
all but a few particles have negligible weight, the diversity and effective representational power of the
particle set is diminished, resulting in poor estimates of the state posterior.

To address this, particle resampling is used to maintain diversity of the particle set over time, and may
be performed at every iteration or more selectively when the “effective” sample size becomes too
small [13]. During resampling, a new uniformly-weighted particle set x̂(:)t is constructed by discrete
resampling with replacement. Each resampled particle is a copy of some existing particle, where
copies are sampled with probability proportional to the particle weights:

x̂
(i)
t = x

(j)
t , j ∼ Cat(w(1)

t , . . . , w
(N)
t). (3)

After resampling, assigning uniform weights ŵ(i)
t = 1

N maintains an unbiased approximate state
posterior. This discrete resampling is non-differentiable, preventing gradient estimation via standard
reparameterization [14–16], and inhibiting end-to-end learning of dynamics and measurement models.

2

2.2 Regularized Particle Filters

The regularized PF [17, 18] acknowledges that a small set of discrete samples will never exactly align
with the true continuous state, and thus estimates a continuous state density m(xt | x(:)t , w

(:)
t , β) by

convolving particles with a continuous kernel function K with bandwidth β:

m(xt | x(:)t , w
(:)
t , β) =

N∑
i=1

w
(i)
t K(xt − x

(i)
t ;β). (4)

The kernel function could be a Gaussian, in which case β is a (dimension-specific) standard deviation.
The extensive literature on kernel density estimation (KDE) [19] provides theoretical guidance on
the choice of kernel. Quadratic Epanechnikov kernels take K(u;β) = 3

4

(
1− (u/β)2

)
if |u/β| ≤ 1,

K(u;β) = 0 otherwise, and asymptotically minimize the mean-squared-error in the estimation of the
underlying continuous density. A number of methods have been proposed for selecting the smoothing
bandwidth β [19–21], but they often have asymptotic justifications, and can be unreliable for small N .

Attractively, regularized PFs resample particles x̂(i)t ∼ m(xt | x(:)t , w
(:)
t , β) from the continuous

mixture density rather than the discrete particle set. By resampling from a continuous distribution,
regularized PFs ensure that no duplicates exist in the resampled particle set, increasing diversity
while still concentrating particles in regions of the state space with high posterior probability. Our
proposed mixture density PF generalizes regularized PFs, using bandwidths β that are tuned jointly
with discriminative models of the state dynamics and observation likelihoods.

3 Conditional State Estimation via Discriminative Particle Filters
While classical inference algorithms like KFs and PFs are effective in many domains, they require
faithful generative models. A human expert must typically design most aspects of the state dynamics
and observation likelihoods, and algorithms that use PFs to learn generative models often struggle to
scale beyond low-dimensional, parametric models [22]. For complex systems with high-dimensional
observations like images, learning generative models of the observation likelihoods is often impracti-
cal, and arguably more challenging than estimating latent states given an observed data sequence. We
instead learn discriminative models of the distribution of the state conditioned on observations (see
Fig. 1), and replace manually engineered generative models with deep neural networks learned from
training sequences with (potentially sparse) latent state observations.

Discriminative Kalman Filters. Discriminative modeling has been used to learn conditional variants
of the KF [23, 24] where the posterior is parameterized by a Gaussian state space model, and state
transition and observation emission models are produced from data by trained neural networks.
Like conditional random field (CRF) [25] models for discrete data, discriminative KFs do not learn
likelihoods of observations, but instead condition on them. Discriminative KFs desirably learn a
posterior covariance, and thus do not simply output a state prediction like conventional recurrent
neural networks. But, they are limited to unimodal, Gaussian approximations of state uncertainty.

Discriminative Particle Filters. It is attractive to integrate similar discriminative learning principles
with PFs, but the technical challenges are substantially greater due to the nonparametric particle
representation of posterior uncertainty, and the need for particle resampling to maintain diversity.

Like in generative PFs, discriminative PFs update the particle locations using a dynamics model as
in Eq. (1). Unlike classic PFs, the particle weights are not updated using a generative likelihood
function. Instead, discriminative PFs compute new weights w(:)

t using a measurement model function
ℓ(xt; yt) trained to properly account for uncertainty in the discriminative particle posterior:

w
(i)
t ∝ ℓ(x

(i)
t ; yt)w

(i)
t−1. (5)

Here ℓ(xt; yt) is a (differentiable) function optimized to improve the accuracy of the discriminative
particle posterior, rather than a generative likelihood.

Creating a learnable discriminative PF requires parameterizing the dynamics and measurement models
as differentiable functions, such as deep neural networks. This is straightforward for the measurement
model ℓ(x(i)t ; yt), which may be defined via any feed-forward neural network architecture like those
typically used for classification (see Fig. 2). For the dynamics model, the neural network does not
simply need to score particles; it must be used for stochastic simulation. Using reparameterization [14–
16], dynamics simulation is decomposed as sampling from a standard Gaussian distribution, and then

3

Resampling

Dynamics
Model

𝒙𝒕"𝟏
(:) , 𝒘𝒕"𝟏

(:) , 𝜷	

𝒙𝒕
(:), 𝒘𝒕

(:), 𝜷	

Measurement
Model	

Learned
Bandwidth

Mixture	Density	Particle	Filter

Resampling

Dynamics
Model

Adaptive	-	Mixture	Density	Particle	Filter

𝒙𝒕"𝟏
(:) , =𝒘𝒕"𝟏

(:) , >𝜷

𝒙𝒕
(:), 𝒘𝒕

(:), 𝜷	 𝒙𝒕
(:), =𝒘𝒕

(:), >𝜷

Measurement
Model	

(Posterior)

Measurement
Model	

(Resampling)

Learned
Bandwidth
(Posterior)

Learned
Bandwidth
(Resampling)

𝑦? 𝑦?𝑦? 𝑎?𝑎?

𝒙𝒕"𝟏
(𝒊)

𝒙𝒕
(𝒊)

Particle	
Encoder

Action	
Encoder

Residual	
Network

Inverse
Transform

Transform

𝑎? 𝜼𝒕
(𝒊)

Dynamics	Model Measurement	Model
𝒙𝒕
(𝒊)

𝒘𝒕
(𝒊)

Particle	
Encoder

Observation	
Encoder

Feed-Forward	
Network	

Transform

𝑦?𝒘𝒕"𝟏
(𝒊)

𝒘𝒕
(𝒊) = 𝒘𝒕"𝟏

(𝒊) R 𝒍(𝒙𝒕
(𝒊); 𝒚𝒕)

:	Learned	Block	(N
eural	N

etw
ork)

:	N
on-learned	O

peration

Figure 2: Left: Our MDPF method showing the various sub-components. Middle: Our A-MDPF method with
decoupled measurement models and bandwidths. Right: Dynamics and measurement model structures used in
MDPF and A-MDPF. The dynamics and measurement models are composed of several neural networks as well
as some fixed transforms, which convert the angular state dimensions of particles into a vector representation.

transforming that sample using a learned neural network, possibly conditioned on action at:

x
(i)
t = f(η

(i)
t ;x

(i)
t−1, at), η

(i)
t ∼ N(0, I). (6)

The dynamics model f(η;xt−1, at) is a feed-forward neural network that deterministically processes
noise η, conditioned on xt−1 and at, to implement the dynamical sampling of Eq. (1). The neural
network f may be flexibly parameterized because discriminative particle filters only require simulation
of the dynamical model, not explicit evaluation of the implied conditional state density.

3.1 Prior Work on Discriminative Particle Filters
Specialized, heuristic variants of discriminative PFs have been previously used for tasks like robot
localization [26] and multi-object tracking [27]. Principled end-to-end learning of a discriminative PF
requires propagating gradients through the PF algorithm, including the discrete resampling step. Zhu
et al. [28] explore replacing the PF resampling step with a learned (deterministic) particle transform,
but find that exploding gradient magnitudes prohibit end-to-end training.

Truncated-Gradient Particle Filter (TG-PF). The first so-called “differentiable” particle filter [5]
actually treated the particle resampling step as a non-differentiable discrete resampling operation,
and simply truncated all gradients to zero when backpropagating through this resampling. Though
simple, this approach leads to biased gradients, and often produces ineffective models because back-
propagation through time (BPTT [29]) is not possible. Perhaps due to these limitations, experiments
in Jonschkowski et al. [5] assumed a simplified training scenario where the ground-truth dynamics
are known, and only the measurement model must be learned.

Discrete Importance Sampling Particle Filter (DIS-PF). Ścibior et al. [6] propose a gradient
estimator for generative PFs that may also be adapted to discriminative PFs. They develop their
estimator by invoking prior work on score-function gradient estimators [30], but we provide a simpler
derivation via importance sampling principles. Instead of discretely resampling particles as in Eq. (3),
a separate set of weights v(:)t is defined and used to generate samples:

x̂
(i)
t = x

(j)
t , j ∼ Cat(v(1)t , . . . , v

(N)
t). (7)

To account for discrepancies between these resampling weights v(:) and true weights w(:), the
resampled particle weights ŵ(i)

t are defined via importance sampling. The choice of v(:)t critically
impacts the effectiveness of the resampling step. To maintain the standard PF update of Eq. (3), we
set v(i)t = w

(i)
t , yielding the following resampled particle weights and associated gradients:

ŵ
(i)
t =

w
(i)
t

v
(i)
t |

v
(i)
t =w

(i)
t

= 1, ∇ϕŵ
(i)
t =

∇ϕw
(i)
t

v
(i)
t |

v
(i)
t =w

(i)
t

. (8)

Intuitively, particle locations are resampled according to the current weights in the forward pass of
DIS-PF. Then when computing gradients, perturbations of the observation and dynamics models are
accounted for by changes in the associated particle weights.

A drawback of this discrete importance sampling is known as the ancestor problem: since the
resampled particle set is constructed from a subset of the pre-resampled particles, no direct gradients
exist for particles that were not chosen during resampling; they are only indirectly influenced by the
weight normalization step. This increases the DIS gradient estimator variance, slowing training.

Soft Resampling Particle Filter (SR-PF). Karkus et al. [7] propose a soft-resampling (SR) mixing of
the particle weights with a discrete uniform distribution before resampling: v(i)t = (1−λ)w(i)

t +λ/N .

4

Viewing particle locations as fixed, SR-PF evaluates the resampled particle weights and gradients as

ŵ
(i)
t =

w
(i)
t

(1− λ)w
(i)
t + λ/N

, ∇ϕŵ
(i)
t = ∇ϕ

(
w

(i)
t

(1− λ)w
(i)
t + λ/N

)
. (9)

While the SR-PF weight update is differentiable, it does not avoid the ancestor problem. By re-
sampling low-weight particles more frequently, SR-PF will degrade overall PF performance when
N is not large. More subtly, the gradient of Eq. (9) has (potentially substantial) bias: it assumes
that perturbations of model parameters influence particle weights, but not the outcome of discrete
resampling (7). Indeed in some experiments in [7], smoothing is actually disabled by setting λ = 0.

Concrete Particle Filter (C-PF). The Gumbel-softmax or Concrete distribution [31, 32] approxi-
mates discrete sampling by interpolation with a continuous distribution, enabling reparameterized
gradient estimation. Each resampled particle is a convex combination of the weighted particle set:

x̂
(i)
t =

N∑
j=1

αijx
(j)
t , αij =

exp((log(w
(j)
t) +Gij)/λ)∑N

k=1 exp((log(w
(k)
t) +Gik)/λ)

, Gij ∼ Gumbel. (10)

Gradients of (10) are biased with respect to discrete resampling due to the non-learned “temperature”
hyperparameter λ > 0. When λ is large, the highly-biased relaxation will interpolate between modes,
and produce many low-probability particles. Bias decreases as λ→ 0, but in this limit the variance is
huge. Even with careful tuning of λ, Concrete relaxations are most effective for small N . Maddison
et al. [32] focus on models with binary latent variables, and find that performance degrades even for
N = 8, far smaller than the N needed for practical PFs. While we provide C-PF as a baseline, we
are unaware of prior work successfully incorporating Concrete relaxations in PFs.

Optimal Transport Particle Filter (OT-PF). OT-PF [8] modifies PFs by replacing stochastic
resampling with the optimization-based solution of an entropy-regularized optimal transport (OT)
problem. OT seeks a probabilistic correspondence between particles x(:)t with weights w(:)

t as in (5),
and a corresponding set of uniformly weighted particles, by minimizing a Wasserstein metric W2

2,λ:

min
α̃∈[0,1]N×N

N∑
i,j=1

α̃ij

(
||x(i)t −x(j)t ||2+λ log α̃ij

N−1w
(j)
t

)
, s.t.

N∑
j=1

α̃ij =
1

N
,

N∑
i=1

α̃ij = w
(j)
t . (11)

Entropy regularization is required for differentiability, and OT-PF accuracy is sensitive to the non-
learned hyperparameter λ > 0. OT-PF uses this entropy-regularized mapping to interpolate between
particles: x̂(i)t =

∑N
j=1Nα̃ijx

(j)
t . This assignment approximates the results of true stochastic

resampling in the limit as N → ∞, but lacks accuracy guarantees for moderate N .

OT-PF solves a regularized OT problem which relaxes discrete resampling, producing biased gradients
that are reminiscent (but distinct) from C-PF. Minimization of Eq. (11) via the Sinkhorn algorithm [33]
requires O(N2) operations. This OT problem must be solved at each step of both training and test,
and in practice, OT-PF is substantially slower than all competing discriminative PFs (see Fig. 10).

4 Stable Gradient Estimation for Mixture Model Resampling
Training our discriminative mixture density particle filter (MDPF) requires unbiased and low-variance
estimates of gradients of samples from continuous mixtures. Mixture sampling is classically decom-
posed into discrete (selecting a mixture component) and continuous (sampling from that component)
steps. The Gumbel-softmax or Concrete distribution [31, 32] provides a reparameterizable relaxation
of discrete resampling, but may have substantial bias. Some work has also applied OT methods
for gradient estimation in restricted families of Gaussian mixtures [35, 36]. We instead develop
importance-sampling estimators that are unbiased, computationally efficient, and low variance.
Implicit Reparameterization Gradients. Direct reparameterization of samples, as used for the
latent Gaussian distributions in variational autoencoders [14–16], cannot be easily applied to mixture
models. Reparameterized sampling requires an invertible standardization function Sϕ(z) = ϵ that
transforms a sample z, drawn from a distribution parameterized by ϕ, to an auxiliary variable ϵ
independent of ϕ. For mixture distributions, the inverse of Sϕ(z) cannot be easily computed.

The implicit reparameterization gradients (IRG) estimator [37, 38] avoids explicit inversion of the
standardization function Sϕ(z). Using implicit differentiation, reparameterization can be achieved so
long as a computable (analytically or numerically) and invertible Sϕ(z) exists, without the need to

5

2 0 2
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p(
x)

0 = 1.25
w0 = 0.5

1 = 1.25
w1 = 0.5

Initial Samples

2 0 2
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p(
x)

0 = 1.75
w0 = 0.25

1 = 1.75
w1 = 0.75

Shift in Samples under IRG

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x2

Initial Samples

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x2

Shift in Samples under IRG

2 0 2
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p(
x)

0 = 1.75
w0 = 0.25

1 = 1.75
w1 = 0.75

Change in Sample Weights under IWSG

3 2 1 0 1 2 3
Original Sample Locations

3

2

1

0

1

2

3

N
ew

 S
am

pl
e

Lo
ca

ti
on

Change in Sample Location when using IRG

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x2

Change in Sample Weights under IWSG

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x2

Sample Shift Vector Field under IRG

Figure 3: Left: Example changes in samples from a 1D mixture model with two Epanechnikov [34] components.
Under IRG, changes in the mixture are shown by dramatic sample shifting, where some samples must change
modes to account for the changes in the relative weights of each mixture mode. Explicitly plotting the particle
transformation induced by IRG reveals a discontinuity (bottom). In contrast, IWSG smoothly reweights samples.
Right: Example changes in samples from a 2D mixture of two Gaussians. IRG again induces large shifts as
particles change modes, as demonstrated by the vector field (bottom).

explicitly compute its inverse. IRG gradients are expressed via the Jacobian of Sϕ(z):
∇ϕz = −(∇zSϕ(z))

−1∇ϕSϕ(z). (12)
For univariate distributions, the cumulative distribution function (CDF) Mϕ(z) is a valid standardiza-
tion function. For higher dimensions, the multivariate distributional transform [39] is used:

Sϕ(z) =
(
Mϕ(z1),Mϕ(z2 | z1), . . . ,Mϕ(zD | z1, . . . , zD−1)

)
. (13)

While IRG may be applied to any distribution with continuous CDF, and has been explicitly suggested
(without experimental validation) for mixtures [37], we show that it may have enormous variance.
Importance Weighted Sample Gradient Estimator. We propose a novel alternative method for
computing gradients of samples from a continuous mixture distribution. Our importance weighted
sample gradient (IWSG) estimator employs importance sampling for unbiased gradient estimation.
IWSG is related to the DIS-PF gradient estimator for discrete resampling [6], but we instead consider
continuous mixture distributions with arbitrary component distributions. This resolves the ances-
try problem present in Ścibior et al. [6], since particle locations could be sampled from multiple
overlapping mixture components, whose parameters will all have non-zero gradients.

Formally, we wish to draw samples z(i) ∼ m(z | ϕ) from a mixture with parameters ϕ. Instead
of sampling from m(z | ϕ) directly, IWSG samples from some proposal distribution z(i) ∼ q(z).
Importance weights w(i), and associated gradients, for these samples then equal

w(i) =
m(z(i) | ϕ)
q(z(i))

, ∇ϕw
(i) =

∇ϕm(z(i) | ϕ)
q(z(i))

. (14)

Setting the proposal distribution q(z) = m(z | ϕ0) to be a mixture model with the “current”
parameters ϕ0 at which gradients are being evaluated, the IWSG gradient estimator (14) becomes

w(i) =
m(z(i) | ϕ)

∣∣
ϕ=ϕ0

m(z(i) | ϕ0)
= 1, ∇ϕw

(i) =
∇ϕm(z(i) | ϕ)

∣∣
ϕ=ϕ0

m(z(i) | ϕ0)
. (15)

While current samples are given weight one because they are exactly sampled from a mixture with
the current parameters ϕ0, gradients account for how importance weights will change as mixture
parameters ϕ deviate from ϕ0. Note that gradients are not taken with respect to the proposal
q(z) = m(z | ϕ0) in the denominator of w(i), since sample locations z(i) are not altered by gradient
updates; changes in the associated importance weights are sufficient for unbiased gradient estimation.
Instability of Implicit Reparameterization Gradients. Reparameterization methods capture
changes to a given distribution p(z|ϕ), and thus to its parameters ϕ, by shifting the samples drawn
from that distribution. When p(z|ϕ) is unimodal, this induces a smooth shift in the samples. When
p(z|ϕ) contains multiple non-overlapping modes, these shifts are no longer smooth as samples

6

100 101 102 103 104

Training Iteration

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

e

Learned Estimate of B

100 101 102 103 104

Training Iteration

75

50

25

0

25

50

75

Gradients Estimate for B

100 101 102 103 104

Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0
Learned Estimate of w2

100 101 102 103 104

Training Iteration
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Gradients Estimate for w2

100 101 102 103 104

Training Iteration

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Learned Estimate of C1

100 101 102 103 104

Training Iteration

75

50

25

0

25

50

75

Gradients Estimate for C1

IRG-PF IWSG-PF Truncated Gradient Mixture KF Truth

Figure 4: A simple temporal prediction problem where IRG has highly unstable gradient estimates. We use
N = 25 particles when training IRG-PF, IWSG-PF, and truncated gradients (TG-PF). We show the learned
values for parameters B, w2, C1 and their gradients during training. IRG produces unstable gradients which
prevent parameters from converging at all, but IWSG allows for smooth convergence of all parameters. IWSG is
faster than biased TG, and nearly as effective as (expensive, and for general models intractable) mixture KF.

jump from one mode to another; see Fig. 3. For mixtures with finitely supported kernels (like the
Epanechnikov) and non-overlapping modes, discontinuities exist in S−1

ϕ (ϵ), and IRG estimates may
have infinite variance. These discontinuities correspond to samples shifting from one mode to another,
and the resulting non-smooth sample perturbations will destabilize backpropagation algorithms for
gradient estimation. While the inverse CDF is always continuous for Gaussian mixtures, it may still
have near-infinite slope when modes are widely separated, and induce similar IRG instabilities.

In contrast, our IWSG estimator reweights particles instead of shifting them. This reweighting
is smooth and does not suffer from any discontinuities. To illustrate this, we create a simple
discriminative PF with linear-Gaussian dynamics (16) and a bimodal observation likelihood (17):

p(xt | xt−1, at) = Norm(xt | Axt−1 +Bat, σ
2), (16)

p(yt | xt) = w1Norm(yt | C1xt + c1, γ
2) + w2Norm(yt | C2xt + c2, γ

2). (17)
Exact posterior inference for this model is possible via a mixture KF [11, 40] which represents the
state posterior as a Gaussian mixture. The number of mixture components grows exponentially with
time, motivating PFs for long-term tracking, but remains tractable over a few time steps.

Using a fixed dataset and gradient descent, we train discriminative PFs using the IRG estimator, our
IWSG estimator, as well as with biased gradients that are truncated at each resampling step [5]. We
initialize with perturbed parameter values and aim to learn the values of all dynamics and likelihood
parameters, except for σ and γ which are fixed to their true values. See Appendix for details.

Fig. 4 shows the estimates and gradients for a subset of the learned parameters, and several gradient
estimators. IRG’s unstable gradients prevent convergence of all parameters. For training (generative)
marginal PFs [41] which approximate marginals with mixtures, Lai et al. [42] found that IRG gradient
variance was so large that biased estimators converged faster, but provided no detailed analysis. In
contrast, IWSG converges smoothly for all parameters, and more rapidly than truncated gradients.

5 Mixture Density Particle Filters
Our mixture density particle filter (MDPF) is a discriminative model inspired by regularized PFs,
where resampling uses KDEs centered on the current particles. We apply IWSG to this mixture
resampling, achieving unbiased and low-variance gradient estimates for our fully-differentiable PF.

MDPF does not incorporate human-specified dynamics or measurement models; some prior work
assumed known dynamics to simplify learning [5, 7]. These models are parameterized as deep neural
networks (NNs), and trained via stochastic gradient descent to minimize the negative-log-likelihood
of (potentially sparsely labeled) states xt, given observations yt and (optionally) actions at. As shown
in Fig. 2, dynamics and measurement models are flexible composed from smaller NNs. Our MDPF
places no constraints on the functional form of NNs, allowing for modern architectures such as CNNs
[43] and Spatial Transformers [44] to be used. See Appendix for implementation details.

The MDPF uses KDE mixture distributions as in Eq. (4) to define state posteriors used to evaluate
the training loss, as well as resampling. A bandwidth parameter β is thus required for each state
dimension. Rather than setting β via the classic heuristics discussed in Sec. 2.2, we make β a learnable
parameter, optimizing it using end-to-end learning along with the dynamics and measurement models.
This contrasts with prior work including SR-PF [7] and C-PF and OT-PF [8], which all include
relaxation hyperparameters that must be tuned via multiple (potentially expensive) training trials.

We also extend the MDPF by decoupling the mixtures used for particle resampling and posterior state
estimation. Using two separate measurement models, we compute two sets of particle weights w̃(:)

t

7

LSTM TG-PF OT-PF SR-PF DIS-PF C-PF TG-MDPF IRG-MDPF MDPF A-MDPF

6

7

8

9

10

11

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

Bearings Only
Gaussian
Epanechnikov

LSTM TG-PF OT-PF SR-PF DIS-PF C-PF TG-MDPF IRG-MDPF MDPF A-MDPF
3

4

5

6

7

8

9

10

Ro
ot

-M
ea

n-
Sq

ua
re

-E
rr

or

Bearings Only
Gaussian
Epanechnikov
No Distribution Needed

LSTM TG-PF OT-PF SR-PF DIS-PF C-PF TG-MDPF IRG-MDPF MDPF A-MDPF
5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

N
eg

at
iv

e
Lo

g-
lik

el
ih

oo
d

Deepmind Maze

LSTM
10

12

14

IRG-MDPF

17.0

17.5 Maze 1
Maze 2
Maze 3

LSTM TG-PF OT-PF SR-PF DIS-PF C-PF TG-MDPF IRG-MDPF MDPF A-MDPF

3.5

4.0

4.5

5.0

5.5

Ro
ot

-M
ea

n-
Sq

ua
re

-E
rr

or

Deepmind Maze

IRG-MDPF

10

15 Maze 1
Maze 2
Maze 3

Figure 5: Box plots showing median (red line), inter-quartile (colored box) and range (whiskers) over several
training runs on the Bearings-Only (11 runs) and Deepmind-Maze (5 runs) tracking tasks. MDPF and A-MDPF
consistently perform well on both the NLL and RMSE metrics. Our IWSG estimator is critical: IRG-MDPF
performs very poorly due to unstable gradients, TG-MDPF is inconsistent and sometimes becomes trapped
in local optima, and baselines with biased gradient estimators typically have inferior performance. Note that
IRG-MDPF does not support Epanechnikov kernels, which induce discontinuous CDFs. LSTM achieves low
RMSE in the Deepmind-Maze task, but we find it simply propagates the noisy actions blindly. DIS-PF performs
well for Maze 3, but has larger variability and sometimes performs worse than our more stable A-MDPF.

and w(:)
t , one for resampling and the other for posterior state estimation; see Fig. 2. Each distribution

is also given a separate bandwidth β̃, β. This adaptive mixture density PF (A-MDPF) allows the
uncertainty in the estimation of the current latent state, and the degree of exploration in the particle
resampling step, to be decoupled and separately optimized during training. Note that training of
separate posterior and resampling distributions is impossible for PFs that truncate temporal gradients;
it is only feasible due to our unbiased and low-variance IWSG estimator of resampling gradients.

6 Experiments
We evaluate our MDPF and A-MDPF on a variety state estimation tasks in complex, but simulated,
environments. We compare to TG-PF [5], SR-PF [7], OT-PF [8], DIS-PF [6], as well as C-PF which
uses the Concrete distribution [32, 31] to relax discrete resampling. We also compare to variants
of MDPF: Truncated-Gradient-MDPF (TG-MDPF) is similar but stops gradients at each particle
resampling, and IRG-MDPF replaces our IWSG estimator with the unstable IRG estimator. Finally,
we compare to a LSTM [45] which produces point predictions via uninterpretable latent states.

For all tasks, we estimate posterior distributions of a 3D (translation and angle) state of a robot,
xt = (x, y, θ). We use Gaussian kernels for position components, and von Mises kernels for angular
components, of all KDEs. As is common in recurrent neural network (RNN) training, we employ
conservative gradient clipping [46], as well as truncated-BPTT [47] where gradients are propagated
for 4 time-steps. All methods are initialized as the true state with added noise.

We train and evaluate MDPFs to minimize the following negative-log-likelihood (NLL) loss:

LNLL =
1

|T |
∑
t∈T

− log(m(xt|x(:)t , w
(:)
t , β)). (18)

We use sparsely labeled training data to highlight the need for effective multi-time-step gradients
during training. Dense labeling of data is often expensive, so many real-world datasets have similarly
sparse labels. During training, we label true states every 4th time-step (T = {4, 8, 12, . . .}), and use
densely labeled datasets (T = {1, 2, 3, . . .}) for evaluation. See the Appendix for details.

After training to minimize NLL, we optionally refine our MDPFs to minimize the mean-squared-error
(MSE) of the weighted particle mean, and report the induced Root-MSE (RMSE). Baseline methods
do not estimate continuous posteriors, and thus Eq. (18) cannot be used for training. Instead we train
and evaluate these methods with MSE and RMSE, before freezing the dynamics and measurement
models. Then we construct KDEs, and optimize a bandwidth to report NLL values for comparison.
Bearings-Only Tracking. In the bearings only tracking task, we track the state of a variable-velocity
car using noisy bearing observations from a radar station to the car generated as

yt ∼ α · Uniform(−π, π) + (1− α) · VonMises(ψ(xt), κ),
where ψ(xt) is the true bearing and α = 0.15. Actions are not available. We use 5000 training and
1000 validation trajectories of length T = 17, and 5000 evaluation trajectories of length T = 150.

8

A-
M

D
PF

Time-step: #02 Time-step: #06 Time-step: #10 Time-step: #14 Time-step: #15 Time-step: #17 Time-step: #18 Time-step: #19 Time-step: #22 Time-step: #26 Time-step: #30 Time-step: #34 Time-step: #38 Time-step: #42 Time-step: #46 Time-step: #48

TG
-P

F
D

IS
-P

F
O

T-
PF

C-
PF

True State Mean Particle Particles Radar Station + Radar Sensor Reading

Figure 6: Example trajectories from the Bearings-Only tracking task. The radar station (green circle) produces
bearing observations (green line) from the radar station to the car (red arrow). Note that observations are noisy
and occasionally totally incorrect (see t = 18). We plot the posterior distribution of the current state (blue cloud),
the mean particle (yellow arrow), and the N = 25 particles (black dots). A-MDPF is able to capture multiple
modes in the state posterior (see t = 15, 17, 18, 19) while successfully tracking the true state of the car. Other
models (DIS-PF, OT-PF, C-PF) spread their posterior distribution due to poor tracking of the true state.

U
ni

m
od

al
 In

it
M

ul
ti

m
od

al
 In

it
Ra

nd
om

 In
it

True State Mean Particle Particles / Posterior Density

Figure 7: Example trajectories (rows), with observations in corner, from the House3D task using A-MDPF.
Top: Initialized with N = 50 particles set to the true state with moderate noise, the posterior (blue cloud)
closely tracks the robot. Middle: Multi-modal initialization with N = 150 particles (blue dots). Bottom: Naive
initialization with N = 1000 particles drawn uniformly. A-MDPF maintains multiple modes until enough
observations have been seen to disambiguate the true state.

Ti
m

e-
st

ep
 #

1

MDPF A-MDPF TG-MDPF TG-PF OT-PF SR-PF DIS-PF LSTM

Ti
m

e-
st

ep
 #

15
Ti

m
e-

st
ep

 #
30

True State Mean Particle Posterior Density

Figure 8: Example posteriors for three time steps (rows) of House3D tracking, for several discriminative PFs
given the same low-noise initialization. We show the current true state and state history (red arrow and dashes),
the posterior distribution of the current state (blue cloud, with darker being higher probability), and the estimated
mean state and history (yellow arrow and dashes). Several baselines completely fail to track the robot.

9

Each method is evaluated and trained 11 times using N = 25 particles. To further highlight
the stability of our IWSG estimator, we also train each method (except for IRG-MDPF) with the
Epanechnikov kernel replacing the Gaussian in the KDE. Fig. 5 shows statistics of performance
across 11 training runs. The very poor performance of IRG-MDPF is due to unstable gradients;
without aggressive gradient clipping, IRG-MDPF fails to optimize at all. The benefits of IWSG are
highlighted by the inferior performance of TG-MDPF. Stable multi-time-step gradients clearly benefit
learning and are enabled by IWSG. Qualitative results are shown in Fig. 6.
Deepmind-Maze Tracking. In the Deepmind-Maze tracking task, adapted from [5], we wish to
track the 3D state of a robot as it moves through modified versions of the maze environments from
Deepmind Lab [48] using noisy odometry as actions, and images (from the robot’s perspective) as
observations. We alter the experimental setup of [5] by increasing the noise of the actions by five
times, and using N = 25 particles for training and evaluation. We train and evaluate on trajectories
from the 3 unique mazes separately, using 5000 trajectories of length T = 17 from each maze for
training, and 1000 trajectories of length T = 99 for evaluation. We show results over multiple
training and evaluation runs in Fig. 5, and include qualitative results in the Appendix.

Table 1: Mean ± interquartile range of evalua-
tion metrics for all House3D test sequences.

Method NLL RMSE

LSTM 12.54 ± 3.43 48.51 ± 27.16
TG-PF 15.50 ± 2.21 206.32 ± 109.44
OT-PF 14.87 ± 2.31 159.57 ± 109.65
SR-PF 14.92 ± 2.57 191.32 ± 129.28
DIS-PF 15.06 ± 2.02 212.58 ± 133.69
TG-MDPF 8.38 ± 2.53 35.77 ± 16.67
MDPF 8.18 ± 2.72 30.59 ± 12.98
A-MDPF 8.09 ± 3.49 30.51 ± 12.32

House3D Tracking. This 3D state tracking task is
adapted from [7], where a robot navigates single-level
apartment environments from the SUNCG dataset [49]
using the House3D simulator [50], with noisy odom-
etry as action and RGB images as observations (see
Fig. 7). Floor plans are input into measurement model
via a modern Spatial Transformation Network architec-
ture [44]. Training data consists of 74800 trajectories
(length T = 24) from 199 unique environments, with
evaluation data being 820 trajectories (length T = 100)
from 47 previously unseen floorplans. We train and
evaluate with N = 50 particles.

Due to the larger computational demands of House3D, we train each method once, reporting results
in Table 1. Interestingly we find that TG-PF, OT-PF, SR-PF, and DIS-PF are unable to learn useful
dynamics or measurement models. The LSTM model achieves better performance, but looking deeper
we discover that it ignores observations completely, and simply blindly propagates the estimated state
using actions with good dynamics (i.e., dead-reckoning). This strategy is effective for noise-free
actions, but in reality the actions are noisy and thus the LSTMs estimated state diverges from the true
state after a moderate number of time-steps. In contrast, our MDPF methods are able to learn good
dynamics and measurement models that generalizes well to the unseen environments.

We also investigate MDPFs capacity for multimodal tracking in Fig. 7, by initializing A-MDPF with
particles spread throughout the state space. When initialized with random particles or with particles
clustered around regions with similar observations, A-MDPF does not have sufficient information
to collapse the posterior and thus maintains multiple posterior modes. As the robot moves, more
evidence is collected, allowing A-MDPF to collapse the state posterior to fewer distinct modes, before
eventually collapsing its estimate into one mode containing the true state. Note that such estimation
of multiple posterior modes is impossible for standard RNNs like the LSTM.
Limitations. A known limitation of all PFs is there inability to scale to very high-dimensional states.
Sparsity increases as the dimension grows, and thus more particles (and consequently computation)
are required to maintain the expressiveness and accuracy of the state posterior. Our MDPF is not
immune to this issue, but we conjecture that end-to-end training of discriminative PFs will allow
particles to be more effectively allocated within large state spaces, scaling better than classic PFs.

7 Discussion
We have developed a novel importance-sampling estimator for gradients of samples drawn from a
continuous mixture model. Our results highlight fundamental flaws in the application of (implicit)
reparameterization gradients to any mixture model with multiple modes. Applying our gradient
estimator to the resampling step of a regularized discriminative PF, we obtain a fully end-to-end
differentiable MDPF that robustly learns accurate models across multiple training runs, and has much
greater accuracy than the biased PFs proposed in prior work. While our experiments have focused on
synthetic tracking problems in complex virtual environments, future applications of our MDPF to
real-world vision and robotics data are very promising.

10

Acknowledgements

We thank Alexander Ihler for helpful discussions, and Zain Farhat for his assistance with the LSTM
baseline. This research supported in part by NSF Robust Intelligence Award No. IIS-1816365 and
ONR Award No. N00014-23-1-2712.

References
[1] Neil J Gordon, David J Salmond, and Adrian FM Smith. Novel approach to nonlinear/non-

gaussian bayesian state estimation. IEE proceedings F-Radar and Signal Processing, 1993.

[2] K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithms for dynamic proba-
bilistic networks. In UAI 11, pages 346–351. Morgan Kaufmann, 1995.

[3] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, 2001.

[4] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Proc., 50(2):174–188,
February 2002.

[5] Rico Jonschkowski, Divyam Rastogi, and Oliver Brock. Differentiable particle filters: End-
to-end learning with algorithmic priors. Proceedings of Robotics: Science and Systems (RSS),
2018.

[6] Adam Ścibior, Vaden Masrani, and Frank Wood. Differentiable particle filtering without modi-
fying the forward pass. International Conference on Probabilistic Programming (PROBPROG),
2021.

[7] Peter Karkus, David Hsu, and Wee Sun Lee. Particle filter networks with application to visual
localization. Conference on Robot Learning (CORL), 2018.

[8] Adrien Corenflos, James Thornton, George Deligiannidis, and Arnaud Doucet. Differentiable
particle filtering via entropy-regularized optimal transport. International Conference on Machine
Learning (ICML), 2021.

[9] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME–Journal of Basic Engineering, 1960.

[10] T. Kailath, A. H. Sayed, and B. Hassibi. Linear Estimation. Prentice Hall, New Jersey, 2000.

[11] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics (Intelligent Robotics
and Autonomous Agents). The MIT Press, 2005. ISBN 0262201623.

[12] S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear estimation. Proc. IEEE, 92(3):
401–422, March 2004.

[13] Víctor Elvira, Luca Martino, and Christian Robert. Rethinking the effective sample size.
International Statistical Review, 2022.

[14] Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
ICML, page II–1791–1799, 2014.

[15] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. International Confer-
ence on Learning Representations (ICLR), 2014.

[16] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In ICML, volume 32, pages 1278–1286,
2014.

[17] N. Oudjane and C. Musso. Progressive correction for regularized particle filters. International
Conference on Information Fusion, 2000.

11

[18] C. Musso, N. Oudjane, and F. Le Gland. Improving regularized particle filters. In A. Doucet,
N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo Methods in Practice, pages
247–271. Springer-Verlag, 2001.

[19] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, 1986.

[20] Adrian W Bowman. An alternative method of cross-validation for the smoothing of density
estimates. Biometrika, 1984.

[21] M Chris Jones, James S Marron, and Simon J Sheather. A brief survey of bandwidth selection
for density estimation. Journal of the American Statistical Association, 1996.

[22] Nikolas Kantas, Arnaud Doucet, Sumeetpal S Singh, Jan Maciejowski, and Nicolas Chopin.
On particle methods for parameter estimation in state-space models. Statistical Science, 30(3):
328–351, 2015.

[23] Tuomas Haarnoja, Anurag Ajay, Sergey Levine, and Pieter Abbeel. Backprop kf: Learning
discriminative deterministic state estimators. Advances in Neural Information Processing
Systems (NeurIPS), 2016.

[24] Minyoung Kim and Vladimir Pavlovic. Conditional state space models for discriminative
motion estimation. IEEE International Conference on Computer Vision, 2007.

[25] John D. Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence data. International Conference on Machine
Learning (ICML), 2001.

[26] Benson Limketkai, Dieter Fox, and Lin Liao. Crf-filters: Discriminative particle filters for
sequential state estimation. IEEE International Conference on Robotics and Automation (ICRA),
2007.

[27] Rob Hess and Alan Fern. Discriminatively trained particle filters for complex multi-object
tracking. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[28] Michael Zhu, Kevin P. Murphy, and Rico Jonschkowski. Towards differentiable resampling.
ArXiv, abs/2004.11938, 2020.

[29] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 1990.

[30] Jakob Foerster, Gregory Farquhar, Maruan Al-Shedivat, Tim Rocktäschel, Eric Xing, and
Shimon Whiteson. DiCE: The infinitely differentiable Monte Carlo estimator. In Proceedings of
the 35th International Conference on Machine Learning, volume 80, pages 1529–1538, 2018.

[31] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
International Conference on Learning Representations (ICLR), 2016.

[32] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. International Conference on Learning Representations
(ICLR), 2016.

[33] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
Neural Information Processing Systems (NeurIPS), 2013.

[34] V. A. Epanechnikov. Non-parametric estimation of a multivariate probability density. Theory of
Probability & Its Applications, 1969.

[35] Martin Jankowiak and Fritz Obermeyer. Pathwise derivatives beyond the reparameterization
trick. International Conference on Machine Learning (ICML), 2018.

[36] Martin Jankowiak and Theofanis Karaletsos. Pathwise derivatives for multivariate distributions.
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019.

[37] Alex Graves. Stochastic backpropagation through mixture density distributions. arXiv preprint
arXiv:1607.05690, 2016.

12

[38] Mikhail Figurnov, Shakir Mohamed, and Andriy Mnih. Implicit reparameterization gradients.
Advances in Neural Information Processing Systems (NeurIPS), 31, 2018.

[39] Ludger Rüschendorf. Copulas, Sklar’s Theorem, and Distributional Transform. Springer Berlin
Heidelberg, 2013.

[40] D. Alspach and H. Sorenson. Nonlinear bayesian estimation using Gaussian sum approximations.
IEEE Transactions on Automatic Control, 1972.

[41] Mike Klaas, Nando de Freitas, and Arnaud Doucet. Toward practical N2 Monte Carlo: The
marginal particle filter. In Proceedings of the Twenty-First Conference on Uncertainty in
Artificial Intelligence, pages 308–315, 2005.

[42] Jinlin Lai, Justin Domke, and Daniel Sheldon. Variational marginal particle filters. International
Conference on Artificial Intelligence and Statistics (AISTATS), 2022.

[43] Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv
preprint arXiv:1511.08458, 2015.

[44] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks.
Advances in Neural Information Processing Systems (NeurIPS), 28, 2015.

[45] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
1997.

[46] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. International Conference on Machine Learning (ICML), 2013.

[47] Herbert Jaeger. Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and
the" echo state network" approach. GMD-Forschungszentrum Informationstechnik Bonn, 2002.

[48] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv
preprint arXiv:1612.03801, 2016.

[49] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas Funkhouser.
Semantic scene completion from a single depth image. Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[50] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian. Building generalizable agents with a
realistic and rich 3d environment. arXiv preprint arXiv:1801.02209, 2018.

[51] Marco Frei and Hans R. Künsch. Mixture ensemble kalman filters. Computational Statistics
and Data Analysis, 2013.

[52] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2014.

13

A Parameterization of the Neural Dynamics and Measurement Models

In our implementation of MDPF and A-MDPF, we define the dynamics and measurement models as
a set of small learnable neural networks, Fig. 2. The dynamics model uses two encoder networks
which encode the particles and the actions into latent dimensions. The particle encoder is applied
individually to each particle, allowing for parallelization. The encoded actions and particles are used
as input, along with zero-mean unit variance Gaussian noise, into a residual network to produce new
particles.

The measurement model is also comprised of several small neural networks. Particles and observations
are encoded into latent representations before being used as input into a simple feed-forward network.
Our method makes no restrictions on the network architectures allowing modern architectures
to be used. For high dimensional observations, such as images, or for more complex problems
a sophisticated architecture such as Convolutional Neural Networks [43] or Spatial Transformer
Networks [44] can be implemented.

Since particle states are interpretable, they are often in a representation not suitable for neural
networks. For example angles contain a discontinuities (at 0 and 2π) which hinders their direct use
with neural networks. To address this, non-learned transforms are applied to the particles, converting
them into representations that are better suited for neural networks. In the case of angles transforms
convert angles to and from unit vectors:

T (θ) = (cos(θ), sin(θ)) T−1(u, v) = atan2(u, v) (19)

B Synthetic Learning Problem Details

In section 4, a simple synthetic PF learning problem was presented to illustrate the smooth and stable
gradient estimates produced by our Importance Weighted Samples Gradient (IWSG) estimator while
also highlighting the instability of reparameterization methods when applied to mixture models. Here
we give additional details about this learning problem.

In this learning problem we define several regularized PFs with linear Gaussian dynamics and bimodal
observation likelihoods:

p(xt | xt−1, at) = Norm(Axt−1 +Bat, σ
2) (20)

p(yt | xt) = w1Norm(C1xt + c1, γ
2) + w2Norm(C2xt + c2, γ

2). (21)

For each PF method, we set the dynamics and measurement models to the true linear Gaussian
dynamics and bimodal observation with perturbed parameters with the goal of learning the true
values of the parameters. In this problem we hold σ and γ fixed and only perturb and learn the other
parameters: A, B, C1, C2, c1, c2, w1 and w2.

We train three variants of the regularized PF with differing gradient estimation procedures for
resampling. IWSG-PF uses our IWSG estimator, IRG-PF uses the implicit reparameterization
gradients estimator, and TG-PF does not use any gradient estimator for mixture resampling; instead it
simply truncates gradients to zero at resampling steps. We compare the stability and convergence
of these three methods when learning the parameter values. For this problem, we decouple the
resampling and posterior bandwidth parameters as in our A-MDPF model. For resampling we set
β̃ = 0.05, and for the posterior we set β = 0.5.

We also train a mixture Kalman Filter (KF) [11, 40] with the same true dynamics and measurement
models, also initializing with perturbed parameters. Since this model has linear dynamics with
Gaussian noise, and each component of the observation distribution mixture is also linear and
Gaussian, we can apply mixture KFs to compute the exact posterior as a mixture of Gaussians.
Dynamics are applied to each Gaussian component of the mixture using the KF update equations [11],
keeping the number of components the same. When applying the measurement model, we simply
multiply the KF mixture with the observation likelihood mixture, increasing the number of mixture
components in the KF posterior. The number of components grows exponentially with time, so the
mixture KF is not a practical general inference algorithm, but the computation remains tractable for
short sequences. Special care must be taken when computing the weights of each mixture component
after applying the observation likelihoods; we adapt the approach of Frei and Künsch [51].

14

To make the learning problem identifiable and to enforce the constraints w1 + w2 = 1, w1 ≥ 0,
w2 ≥ 0, we parameterize w1 and w2 within the PF and KF models via the logistic of a single
learnable parameter v:

w1 =
1

1 + exp(v)
, w2 =

1

1 + exp(−v)
. (22)

To learn the dynamics and measurement model parameters, we setup a synthetic training problem
with a dataset of 1000 sequences, each of length 5 time-steps. Using stochastic gradient descent with
batch size 64, we train to minimize the negative log-likelihood loss of the true state given the posterior
distribution at only the final time-step. For PF models, we use kernel density estimation [19] to
estimate a mixture distribution using the final weighted particle set. For the mixture KF, the posterior
distribution is simply a mixture model and no further processing is needed to compute the loss.

Fig. 9 shows the convergence and gradient estimates for all of the learned parameters when using
the different gradient estimators. IRG’s unstable gradients prevents convergence of all parameters,
while IWSG converges smoothly and more rapidly than truncated gradients. Further we see that
for parameters c1 and c2, the TG-PF method does not converge to the true value. TG-PF truncates
gradients at the resampling, resulting in biased gradients. When the loss is computed at the final time,
only information gained from that final time-step is present when updating the parameters, resulting
in biased updates.

15

100 101 102 103 104

Training Iteration

0.6

0.8

1.0

1.2

1.4

Es
ti

m
at

e
Va

lu
e

Learned Estimate of A

100 101 102 103 104

Training Iteration

50

0

50

Es
ti

m
at

ed
 G

ra
di

en
t

Va
lu

e Gradients Estimate for A

100 101 102 103 104

Training Iteration

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Es
ti

m
at

e
Va

lu
e

Learned Estimate of B

100 101 102 103 104

Training Iteration

50

0

50

Es
ti

m
at

ed
 G

ra
di

en
t

Va
lu

e Gradients Estimate for B

100 101 102 103 104

Training Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Es
ti

m
at

e
Va

lu
e

Learned Estimate of w2

100 101 102 103 104

Training Iteration

10

5

0

5

10

Es
ti

m
at

ed
 G

ra
di

en
t

Va
lu

e Gradients Estimate for w2

100 101 102 103 104

Training Iteration

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Es
ti

m
at

e
Va

lu
e

Learned Estimate of C1

100 101 102 103 104

Training Iteration

50

0

50

Es
ti

m
at

ed
 G

ra
di

en
t

Va
lu

e Gradients Estimate for C1

100 101 102 103 104

Training Iteration

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Es
ti

m
at

e
Va

lu
e

Learned Estimate of C2

100 101 102 103 104

Training Iteration

50

0

50

Es
ti

m
at

ed
 G

ra
di

en
t

Va
lu

e Gradients Estimate for C2

100 101 102 103 104

Training Iteration

3.6

3.8

4.0

4.2

4.4

Es
ti

m
at

e
Va

lu
e

Learned Estimate of c1

100 101 102 103 104

Training Iteration

50

0

50

Es
ti

m
at

ed
 G

ra
di

en
t

Va
lu

e Gradients Estimate for c1

100 101 102 103 104

Training Iteration

0.2

0.1

0.0

0.1

0.2

Es
ti

m
at

e
Va

lu
e

Learned Estimate of c2

100 101 102 103 104

Training Iteration

50

0

50

Es
ti

m
at

ed
 G

ra
di

en
t

Va
lu

e Gradients Estimate for c2

IRG-PF IWSG-PF TG-PF Mixture KF Truth

Figure 9: A simple temporal prediction problem where IRG has highly unstable gradient estimates. We use
N = 25 particles when training IRG-PF, IWSG-PF, and truncated gradients (TG-PF). We show the learned
values for all learnable parameters and their gradients during training. IRG produces unstable gradients which
prevent parameters from converging at all, but IWSG allows for smooth convergence of all parameters. IWSG is
faster than biased TG, and nearly as effective as (expensive, and for general models intractable) mixture KF.
TG-PF fails to learn correct values for c1 and c2 due to biases from truncating gradients at resampling.

B.1 Computation Requirements

The computational requirements for our MDPF and A-MDPF methods are quadratic with the number
of particle during training, O(N2), due to gradient computation. During inference, the computation

16

0 200 400 600 800 1000
Number of Particles

10 1

100

101

Ti
m

e
pe

r
Ba

tc
h

(S
ec

on
ds

)
Training

0 200 400 600 800 1000
Number of Particles

10 1

100

101

Inference

TG-MDPF
MDPF

A-MDPF
TG-PF

C-PF
DIS-PF

SR-PF
OT-PF

Figure 10: Computational time for various particle filters versus the number of particles on the Deepmind Maze
task. A batch size of 24 is used. During training, the quadratic run-time of MDPF and A-MDPF is due to
gradient computation. During inference MDPF and A-MDPF have linear run-time requirements. In contrast
OT-PF must solve a complex optimal transport problem at both training and inference resulting in overall slow
run-times.

requirement is linear in the number of particles, O(N), since we mearly have to sample from the
resampling mixture distribution rather than computing gradients for the samples. This is highlighted
in fig. 10. Other methods except OT-PF are have computational complexity O(N) during both
inference and training. OT-PF requires solving an optimal transport problem with complexity O(N2)
during both training and inference [8]. In practice we find that OT-PF has significant computational
requirements resulting in slow run-times both at inference and testing.

C Additional Experiment Results

In this section we give additional qualitative experiment results for the various tracking tasks.

C.1 Bearings Only Tracking Task

In fig. 11 we show additional qualitative results for various PF methods where it is apparent that
A-MDPF and MDPF both track the true state well whereas other methods have wide posteriors due
to their poor tracking ability. Figs. 12 13 14, 15, 16, 17 and 18 show additional trajectories for the
various PF methods.

17

A-
M

D
PF

Time-step: #02 Time-step: #06 Time-step: #10 Time-step: #14 Time-step: #15 Time-step: #17 Time-step: #18 Time-step: #19 Time-step: #22 Time-step: #26 Time-step: #30 Time-step: #34 Time-step: #38 Time-step: #42 Time-step: #46 Time-step: #48

TG
-P

F
D

IS
-P

F
O

T-
PF

C-
PF

True State Mean Particle Particles Radar Station + Radar Sensor Reading

Figure 11: Example trajectory with various PF methods shown for the bearings only tracking task. The radar
station (green circle) produces bearings observations (green line) from the radar station to the car (red arrow).
Note that observations are noisy and occasionally totally incorrect. Shown is the posterior distribution of the
current state (blue cloud, with darker being higher probability), the mean particle (yellow arrow) and the N
= 25 particle set (black dots). A-MDPF and MDPF both have tight posterior distributions over the true state
while maintaining tracking. Other methods such as DIS-PF, OT-PF and C-PF have wide posteriors showing their
uncertainty due to their poor ability to track the true state.

Time-step #01 Time-step #02 Time-step #04 Time-step #06 Time-step #08 Time-step #10 Time-step #12 Time-step #14 Time-step #16 Time-step #18

Time-step #20 Time-step #22 Time-step #24 Time-step #26 Time-step #28 Time-step #30 Time-step #32 Time-step #34 Time-step #36 Time-step #38

Time-step #40 Time-step #42 Time-step #44 Time-step #46 Time-step #48 Time-step #50 Time-step #52 Time-step #54 Time-step #56 Time-step #58

Time-step #60 Time-step #62 Time-step #64 Time-step #66 Time-step #68 Time-step #70 Time-step #72 Time-step #74 Time-step #76 Time-step #78

True State Mean Particle Particles Radar Station + Radar Sensor Reading

Figure 12: Example trajectory using A-MDPF shown for the bearings only tracking task. The radar station
(green circle) produces noisy (and occasionally incorrect) bearings observations (green line) from the radar
station to the car (red arrow). A-MDPF maintains a tight posterior distribution (blue cloud, with darker being
higher probability) over the true state (red arrow) over time showing the effectiveness of our method. The mean
particle (yellow arrow) and the N = 25 particle set (black dots) are also shown.

Time-step #01 Time-step #02 Time-step #04 Time-step #06 Time-step #08 Time-step #10 Time-step #12 Time-step #14 Time-step #16 Time-step #18

Time-step #20 Time-step #22 Time-step #24 Time-step #26 Time-step #28 Time-step #30 Time-step #32 Time-step #34 Time-step #36 Time-step #38

Time-step #40 Time-step #42 Time-step #44 Time-step #46 Time-step #48 Time-step #50 Time-step #52 Time-step #54 Time-step #56 Time-step #58

Time-step #60 Time-step #62 Time-step #64 Time-step #66 Time-step #68 Time-step #70 Time-step #72 Time-step #74 Time-step #76 Time-step #78

True State Mean Particle Particles Radar Station + Radar Sensor Reading

Figure 13: Another example trajectory using A-MDPF shown for the bearings only tracking task.

18

Time-step #01 Time-step #02 Time-step #04 Time-step #06 Time-step #08 Time-step #10 Time-step #12 Time-step #14 Time-step #16 Time-step #18

Time-step #20 Time-step #22 Time-step #24 Time-step #26 Time-step #28 Time-step #30 Time-step #32 Time-step #34 Time-step #36 Time-step #38

Time-step #40 Time-step #42 Time-step #44 Time-step #46 Time-step #48 Time-step #50 Time-step #52 Time-step #54 Time-step #56 Time-step #58

Time-step #60 Time-step #62 Time-step #64 Time-step #66 Time-step #68 Time-step #70 Time-step #72 Time-step #74 Time-step #76 Time-step #78

True State Mean Particle Particles Radar Station + Radar Sensor Reading

Figure 14: Example trajectory using MDPF shown for the bearings only tracking task. Similar to A-MDPF in
figs. 12 and 13, MDPF accurately tracks the true state (red arrow) with a tight posterior density (blue cloud).

Time-step #01 Time-step #02 Time-step #04 Time-step #06 Time-step #08 Time-step #10 Time-step #12 Time-step #14 Time-step #16 Time-step #18

Time-step #20 Time-step #22 Time-step #24 Time-step #26 Time-step #28 Time-step #30 Time-step #32 Time-step #34 Time-step #36 Time-step #38

Time-step #40 Time-step #42 Time-step #44 Time-step #46 Time-step #48 Time-step #50 Time-step #52 Time-step #54 Time-step #56 Time-step #58

Time-step #60 Time-step #62 Time-step #64 Time-step #66 Time-step #68 Time-step #70 Time-step #72 Time-step #74 Time-step #76 Time-step #78

True State Mean Particle Particles Radar Station + Radar Sensor Reading

Figure 15: Example trajectory using DIS-PF shown for the bearings only tracking task. Due to the poorly learned
dynamics and measurement models, DIS-PF often loses track of the true state (red arrow) as seen in time-steps
18− 28. This results in a large estimated posterior density (blue cloud) to account for the incorrectly placed
particles (black dots) caused by poor dynamics and particle weighting.

Time-step #01 Time-step #02 Time-step #04 Time-step #06 Time-step #08 Time-step #10 Time-step #12 Time-step #14 Time-step #16 Time-step #18

Time-step #20 Time-step #22 Time-step #24 Time-step #26 Time-step #28 Time-step #30 Time-step #32 Time-step #34 Time-step #36 Time-step #38

Time-step #40 Time-step #42 Time-step #44 Time-step #46 Time-step #48 Time-step #50 Time-step #52 Time-step #54 Time-step #56 Time-step #58

Time-step #60 Time-step #62 Time-step #64 Time-step #66 Time-step #68 Time-step #70 Time-step #72 Time-step #74 Time-step #76 Time-step #78

True State Mean Particle Particles Radar Station + Radar Sensor Reading

Figure 16: Example trajectory using SR-PF shown for the bearings only tracking task.

19

Time-step #01 Time-step #02 Time-step #04 Time-step #06 Time-step #08 Time-step #10 Time-step #12 Time-step #14 Time-step #16 Time-step #18

Time-step #20 Time-step #22 Time-step #24 Time-step #26 Time-step #28 Time-step #30 Time-step #32 Time-step #34 Time-step #36 Time-step #38

Time-step #40 Time-step #42 Time-step #44 Time-step #46 Time-step #48 Time-step #50 Time-step #52 Time-step #54 Time-step #56 Time-step #58

Time-step #60 Time-step #62 Time-step #64 Time-step #66 Time-step #68 Time-step #70 Time-step #72 Time-step #74 Time-step #76 Time-step #78

True State Mean Particle Particles Radar Station + Radar Sensor Reading

Figure 17: Example trajectory using OT-PF shown for the bearings only tracking task. Like DIS-PF in fig. 15,
OT-PF has trouble tracking the true state (red) due to poorly learned dynamics and measurement models.

Time-step #01 Time-step #02 Time-step #04 Time-step #06 Time-step #08 Time-step #10 Time-step #12 Time-step #14 Time-step #16 Time-step #18

Time-step #20 Time-step #22 Time-step #24 Time-step #26 Time-step #28 Time-step #30 Time-step #32 Time-step #34 Time-step #36 Time-step #38

Time-step #40 Time-step #42 Time-step #44 Time-step #46 Time-step #48 Time-step #50 Time-step #52 Time-step #54 Time-step #56 Time-step #58

Time-step #60 Time-step #62 Time-step #64 Time-step #66 Time-step #68 Time-step #70 Time-step #72 Time-step #74 Time-step #76 Time-step #78

True State Mean Particle Particles Radar Station + Radar Sensor Reading

Figure 18: Example trajectory using C-PF shown for the bearings only tracking task. C-PF is unable to accurately
track the true state (red) as shown by the relatively non-moving mean particle (yellow arrow).

20

C.2 Deepmind Maze Tracking Task

In figs. 19, 20 and 21 we show additional qualitative results for various PF methods for mazes 1,
2 and 3, respectively. Again it is apparent that A-MDPF and MDPF both track the true state well
whereas other methods have wide posteriors due to their poor tracking ability.

Time-step #01 Time-step #03 Time-step #05 Time-step #07 Time-step #09 Time-step #11 Time-step #13 Time-step #15 Time-step #17 Time-step #19 Time-step #21 Time-step #23

A-
M

D
PF

M
D

PF
TG

-M
D

PF
TG

-P
F

D
IS

-P
F

O
T-

PF
SR

-P
F

C-
PF

True State Mean Particle Particles

Figure 19: Example trajectory with various PF methods shown for the Deepmind maze tracking task for maze 1.
Shown is the current true state (red arrow), the posterior estimate of the current state (blue cloud, with darker
being higher probability), the mean particle (yellow arrow) and the N = 25 particle set (black dots).

Time-step #01 Time-step #03 Time-step #05 Time-step #07 Time-step #09 Time-step #11 Time-step #13 Time-step #15 Time-step #17 Time-step #19 Time-step #21 Time-step #23

A-
M

D
PF

M
D

PF
TG

-M
D

PF
TG

-P
F

D
IS

-P
F

O
T-

PF
SR

-P
F

C-
PF

True State Mean Particle Particles

Figure 20: Example trajectory with various PF methods shown for the Deepmind maze tracking task for maze 2.
Shown is the current true state (red arrow), the posterior estimate of the current state (blue cloud, with darker
being higher probability), the mean particle (yellow arrow) and the N = 25 particle set (black dots).

21

Time-step #01 Time-step #03 Time-step #05 Time-step #07 Time-step #09 Time-step #11 Time-step #13 Time-step #15 Time-step #17 Time-step #19 Time-step #21 Time-step #23

A-
M

D
PF

M
D

PF
TG

-M
D

PF
TG

-P
F

D
IS

-P
F

O
T-

PF
SR

-P
F

C-
PF

True State Mean Particle Particles

Figure 21: Example trajectory with various PF methods shown for the Deepmind maze tracking task for maze 3.
Shown is the current true state (red arrow), the posterior estimate of the current state (blue cloud, with darker
being higher probability), the mean particle (yellow arrow) and the N = 25 particle set (black dots).

C.3 House3D Tracking Task

Figs. 22 and 23 show example trajectories for the House3D tracking task using A-MDPF and MDPF
respectively. We see that our A-MDPF and MDPF methods both successfully track the true state over
time as evident by the tight posterior over the true state as well as the closeness of the mean state
to the true state. Fig. 24 shows an example trajectory using the LSTM model. It is clear that the
LSTM model is ignoring observations and instead is blind propagating its state estimate using good
dynamics and the actions (dead-reckoning). In later time-steps, the LSTM estimate drifts away from
the true state however the predicted state trajectory looks similar to that of the true state, but with a
growing offset, indicating blind propagation.

Fig. 25 shows qualitative results when using OT-PF. OT-PF is unable to learn good dynamics and
measurement models and quickly diverges away from true state. Figs. 26, 27 and 28 give example
trajectories for TG-PF, DIS-PF and SR-PF respectively. These methods fail to learn usable dynamics
or measurement models with their trajectories essentially being random.

22

True State Mean Particle Posterior Density

Figure 22: Example trajectory for the House3D tracking task using A-MDPF. The posterior density of the state
is tight showing the confidence A-MDPF has in its estimate. The estimated posterior density (blue cloud, with
darker being higher probability) also converges on the true state (red arrow) showing its accuracy. The mean
particle (yellow arrow) closely tracks the true state. The observations are shown as inset images in the plots.

True State Mean Particle Posterior Density

Figure 23: Example trajectory for the House3D tracking task using MDPF. Similar to fig. 22, MDPF accurately
tracks the true state.

True State Mean Particle Posterior Density

Figure 24: Example trajectory for the House3D tracking task using the LSTM model. The LSTM model does
not us observations but rather blind-propagates the estimated state using the available noisy actions. This is
seen by the true state (shown in red) and the estimated state (shown in yellow) having similar shapes but with
increasing error.

23

True State Mean Particle Posterior Density

Figure 25: Example trajectory for the House3D tracking task using the OT-PF. OT-PF is unable to learn good
dynamics or measurement models and thus the estimated posterior (blue cloud) diverges away from the true
state (shown in red) after a couple time-steps.

True State Mean Particle Posterior Density

Figure 26: Example trajectory for the House3D tracking task using the TG-PF. TG-PF is unable to learn a usable
dynamic or measurement model resulting in fairly random output. This is reflected in the large uncertainty of the
estimated posterior (blue cloud) as well as the random nature of the mean state (shown in yellow).

True State Mean Particle Posterior Density

Figure 27: Example trajectory for the House3D tracking task using the DIS-PF. Similar to TG-PF in fig. 26,
DIS-PF is unable to learn a usable dynamic or measurement model and therefore is unable to collapse the
estimated posterior density (blue cloud) onto the true state (shown in red).

24

True State Mean Particle Posterior Density

Figure 28: Example trajectory for the House3D tracking task using the SR-PF. Similar to TG-PF in fig. 26 and
DIS-PF in fig. 27, SR-PF is unable to learn a usable dynamic or measurement model.

25

D Experiment Details

In this section give additional details for the various experiments (tasks). We also provide specific
neural architectures used in each task.

D.1 Mean Squared Error Loss

When training the comparison PF methods, we use the Mean-Squared Error (MSE) loss. This is
computed as the mean squared error between the sparse true states st and the mean particle at each
time t:

LMSE =
1

|T |
∑
t∈T

(xt −
N∑
i=1

w
(i)
t x

(i)
t)2 (23)

Here T are the indices of the labeled true states. During training, sparsely labeled true states are used
and thus T = {4, 8, 12, . . .}. During evaluation we use dense labels, T = {1, 2, 3, 4, . . .}

For angular dimensions of x(i)t , we compute the mean particle by converting the angle into a unit
vector, averaging the unit vectors (with normalization) and converting the mean unit vector back
into an angle. Further we take special care when computing square differences for angles due to the
discontinuity present at 0 and 2π.

D.2 Pre-Training Measurement Model

We pre-train the measurement model for each task using the sparse true states. To pre-train, a
random true state from the dataset is selected. A particle set is constructed by drawing samples from
a distribution centered around the select true state and weights for this particle set are computed
using the measurement model and the observation associated with the selected true state. A mixture
distribution is then fit using KDE with a manually specified bandwidth. Negative Log-Likelihood
loss of the true state is used as the training loss. We find pre-training not to be sensitive to choice of
bandwidth so long as it is not too small.

The dynamics model cannot be pre-trained because of the lack of true state pairs due to the sparse
true state training labels and thus must be trained for the first time within the full PF algorithm.

D.3 Additional General Task and Training Details

Table 2: Hyper-parameters use for various PF methods.

Parameter Value

SR-PF [7] λ 0.1
OT-PF [8] λ (Bearings Only) 0.5
OT-PF [8] λ (Deepmind) 0.01
OT-PF [8] λ (House3D) 0.01
OT-PF [8] scaling 0.9
OT-PF [8] threshold 1e-3
OT-PF [8] max iterations 500
C-PF [31, 32] λ 0.5

For all tasks we wish to track the 3D (translation and angle) state of a robot, s = (x, y, θ), over time.
This state space contains an angle dimension which is not suitable for neural networks. To address
this issue, we convert particles into 4D using a transform T (s) = (x, y, sin(θ), cos(θ)) before using
them as input into a neural network. Further we convert back into the original 3D representation to
retrieve the a 3D particle after applying neural networks to the particles.

We use the Adam [52] optimizer with default parameters, tuning the learning rate for each task. We
use a batch size of 64 during training and decrease the learning rate by a factor of 10 when the
validation loss reaches a plateau. We use Truncated-Back-Propagation-Through-Time (T-BPTT) [47],
truncating the gradients every 4 time-steps.

26

For all tasks we use the Gaussian distribution for the positional components of the state and the Von
Mises distribution for the angular components when applying KDE. Here β is a dimension-specific
bandwidth corresponding to the two standard deviations for the Gaussians and a concentration for the
Von Mises.

Some methods have non-learnable hyper-parameters that must be set. The values of the hyper-
parameters are chosen via brief hyper-parameter search with the final chosen values shown in table
2. The hyper-parameter values are the same for all tasks unless otherwise specified. We find the
regularization parameter λ for OT-PF to be sensitive to the specific datasets.

We choose to make the dynamics position invariant. This prevents the learned PF models from
memorizing the state space based on position but rather forces the learned dynamics to the true
dynamics. Position invariance can be achieved by masking out the translational dimensions of the
particle before input into the dynamics model.

D.4 Bearings Only Tracking Task

Input: Transformed Particle

Mask out Translational Component

Fully Connected (8) + ReLU

Fully Connected (8) + ReLU

Fully Connected (8)

Output

(a) Particle encoder for dy-
namics Model.

Input: Transformed Particle

Fully Connected (8) + ReLU

Fully Connected (8) + ReLU

Fully Connected (8)

Output

(b) Particle encoder for mea-
surement model.

Input: Observation

Fully Connected (8) + ReLU

Fully Connected (8) + ReLU

Fully Connected (8)

Output

(c) Observation encoder.

Input: Encoded Particle Input: η

Concatenate

Fully Connected (8) + ReLU

Fully Connected (8) + ReLU

Fully Connected (4)

Tanh

Output Scaling

Output

Input: Transformed Particle

(d) Dynamics model residual network,
with actions omitted. Output scaling all
dimensions to be within [-0.99, 0.99].

Concatenate

Fully Connected (8) + ReLU

Fully Connected (8) + ReLU

Fully Connected (1)

Sigmoid

Scale output to be in: [1−5,1]

Output

Input: Encoded Observation Input: Encoded Particle

(e) Measurement model weights network.

Figure 29: Neural architecture for the networks within the dynamics and measurement models for the bearings
only tracking task.

In this section we give additional task specific information and network architecture details for the
bearings only tracking task.

D.4.1 Additional Experiment Details

When training MDPF using the Negative Log-Likelihood (NLL) loss, we set the learning rate (LR)
of the neural networks to be 0.0005 and the bandwidth learning rate to 0.00005. When training

27

Figure 30: Example trajectories and observations from each of the three mazes from the Deepmind maze tracking
task.

using MSE loss, we use 0.0001 and 0.00001 for the neural network and bandwidth learning rates
respectively. For the discrete PF methods, we use LR = 0.0005 for training the neural network using
the MSE loss. We use the same bandwidth for optimizing the bandwidth using the NLL loss when
the neural networks are held fixed. For the LSTM [45], we use 0.001 as the learning rate for training
the networks and LR = 0.0005 when optimizing the bandwidth parameter using NLL.

We apply gradient norm clipping, clipping the norm of the gradients to be ≤ 100.0.

In addition to using the Gaussian distribution for KDE, we also train with the Epanechnikov distri-
bution applied to the translational dimensions of the state. To do this we first train using Gaussian
kernels before re-training with the Epanechnikov, using the already trained dynamics and measure-
ment models as a starting point.

The observations ot are generated as noisy bearings from the radar station to the car:
ot ∼ α · Uniform(−π, π) + (1− α) · VonMises(ψt, κ)

where ψt is the true bearing, α = 0.15 and κ = 50. Observations ot are angles and not suitable as
input into a neural network. As such we convert the angular representation into a unit vector as is
done with the angle dimensions of the particles.

D.4.2 Network Architectures

Fig. 29 gives details on the neural network architectures used for the dynamics and measurement
models within the PF for the bearings only tracking task. Since this task does not provide actions, the
action encoder has been omitted.

D.5 Deepmind Maze Tracking Task

In this section we give additional task specific information and network architecture details for the
Deepmind maze tracking task.

D.5.1 Additional Experiment Details

The Deepmind maze tracking task was first proposed in [5]. In this task, a robot moves through
modified versions of the maze environments from Deepmind Lab [48]. Three distinct mazes are
provided and we train and test on each maze individually. Example robot trajectories as well as
example observations for each maze are shown in fig. 30. We modify this task by increasing the
noise applied to the actions by 5 fold as well as using sparsely labeled true states during training.

When training MDPF using the Negative Log-Likelihood (NLL) loss, we set the learning rate (LR)
of the neural networks to be 0.0005 and the bandwidth learning rate to 0.00005. When training
using MSE loss, we use 0.0005 and 0.00005 for the neural network and bandwidth learning rates
respectively. For the discrete PF methods, we use LR = 0.0005 for training the neural network using
the MSE loss. We use the same bandwidth for optimizing the bandwidth using the NLL loss when
the neural networks are held fixed. For the LSTM, we use 0.001 as the learning rate for training the
networks and LR = 0.0005 when optimizing the bandwidth parameter using NLL.

28

Input: Observation

3x3 Conv (16) + ReLU

Fully Connected (64) + ReLU

Output

3x3 Conv (32) + ReLU

3x3 Max Pool (/2)

3x3 Conv (64) + ReLU

3x3 Max Pool (/2)

Flatten

Fully Connected (64)

(a) Observation en-
coder.

Input: Transformed Particle

Mask out Translational Component

Fully Connected (8) + ReLU

Fully Connected (8) + ReLU

Fully Connected (8)

Output

(b) Particle encoder
for dynamics Model.

Input: Transformed Particle

Fully Connected (32) + ReLU

Fully Connected (32)

Output

(c) Particle encoder for
measurement model.

Input: Action

Fully Connected (8) + ReLU

Fully Connected (8) + ReLU

Fully Connected (8)

Output

(d) Action encoder for dy-
namics Model.

Concatenate

Fully Connected (8) + ReLU

Fully Connected (8) + ReLU

Fully Connected (4)

Tanh

Output Scaling

Output

Input: Encoded Particle Input: ηInput: Transformed Particle Input: Encoded Action

(e) Dynamics model residual network.
Output scaling scales the transnational
dimensions to be within [-7, 7] and the
unit vector representing angles to be
within [-1, 1].

Concatenate

Fully Connected (64) + ReLU

Fully Connected (64) + ReLU

Fully Connected (1)

Sigmoid

Scale output to be in: [1−5,1]

Output

Input: Encoded Observation Input: Encoded Particle

(f) Measurement model weights
network.

Figure 31: Neural architecture for the networks within the dynamics and measurement models for the Deepmind
maze tracking task.

We apply gradient norm clipping, clipping the norm of the gradients to be ≤ 500.0. Further we
limit the bandwidth for the angle dimension such that β ≤ 4.0. We do this only for this task as
non-MDPF methods were prone to learning an unreasonably large bandwidth resulting in a near
uniform distribution for the angular part of the state.

D.5.2 Network Architectures

Fig. 31 gives details on the neural network architectures used for the dynamics and measurement
models within the PF for the Deepmind maze tracking task.

D.6 House3D Tracking Task

In this section we give additional task specific information and network architecture details for the
House3D tracking task.

D.6.1 Additional Experiment Details

When training MDPF using the Negative Log-Likelihood (NLL) loss, we set the learning rate (LR)
of the neural networks to be 0.0005 and the bandwidth learning rate to 0.00005. When training
using MSE loss, we use 0.0001 and 0.00001 for the neural network and bandwidth learning rates
respectively. For the discrete PF methods, we use LR = 0.0005 for training the neural network using
the MSE loss. We use the same bandwidth for optimizing the bandwidth using the NLL loss when
the neural networks are held fixed. For the LSTM, we use 0.001 as the learning rate for the LSTM
layers and LR = 0.0005 when optimizing the bandwidth parameter using NLL.

29

We apply gradient norm clipping, clipping the norm of the gradients to be ≤ 250.0 when training
with NLL loss. When training with MSE loss, we disable gradient norm clipping.

D.6.2 Network Architectures

Fig. 31 gives details on the neural network architectures used for the dynamics and measurement
models within the PF for the House3D tracking task.

Input: Observation

3x3 Conv (16) + PReLU

Fully Connected (64) + PReLU

Output

3x3 Conv (32) + PReLU

3x3 Max Pool (/2)

3x3 Conv (64) + PReLU

3x3 Max Pool (/2)

Flatten

Fully Connected (64)

(a) Observation en-
coder.

Input: Transformed Particle

Mask out Translational Component

Fully Connected (32) + PReLU

Fully Connected (32) + PReLU

Fully Connected (32)

Output

(b) Particle encoder
for dynamics Model.

Input: Local Map

3x3 Conv (16) + PReLU

Fully Connected (64) + PReLU

Output

3x3 Conv (32) + PReLU

3x3 Max Pool (/2)

3x3 Conv (64) + PReLU

Flatten

Fully Connected (64)

(c) Particle encoder for
measurement model.

Input: Action

Fully Connected (32) + PReLU

Fully Connected (32) + PReLU

Fully Connected (32)

Output

(d) Action encoder for dy-
namics Model.

Concatenate

Fully Connected (32) + PReLU

Fully Connected (32) + PReLU

Fully Connected (4)

Tanh

Output Scaling

Output

Input: Encoded Particle Input: ηInput: Transformed Particle Input: Encoded Action

(e) Dynamics model residual network.
Output scaling scales the transnational
dimensions to be within [-75, 75] and
the unit vector representing angles to
be within [-0.99, 0.99].

Input: Encoded Observation Input: Particle

Concatenate

Fully Connected (64) + PReLU

Fully Connected (64) + PReLU

Fully Connected (1)

Sigmoid

Scale output to be in: [1−5,1]

Output

Input: Floor Plan Map

Create local Map

Local Map Particle
Encoder

Compute Cropping and Affine Matrix
(From Spatial Transformer Network)

(f) Measurement model weights net-
work.

Figure 32: Neural architecture for the networks within the dynamics and measurement models for the House3D
tracking task.

D.7 LSTM Model Details

We train using LSTM [45] based recurrent neural network models for all tasks as a baseline compari-
son. For the LSTM, we use the same encoders as the PF methods. Fig. 33 shows the LSTM network
architecture used for all tasks. We use the same output scaling the PF methods.

30

Input: Encoded Action

Tanh

Output Scaling

Output

Input: Transformed Particle

Input: Encoded ObservationInput: Encoded Particle

Concatenate

Fully Connected (256) + PReLU

Fully Connected (4)

Fully Connected (256) + PReLU

Fully Connected (256) + PReLU

LSTM (256)

LSTM (256)

LSTM (256)

LSTM (256)

Output: Hidden StatesInput: Hidden States

Figure 33: LSTM network architecture used for all tasks. The output is the 4D state which is then converted
back into the 3D state using the inverse particle transform.

31

	Introduction
	Sequential State Estimation via Generative Models
	Particle Filters
	Regularized Particle Filters

	Conditional State Estimation via Discriminative Particle Filters
	Prior Work on Discriminative Particle Filters

	Stable Gradient Estimation for Mixture Model Resampling
	Mixture Density Particle Filters
	Experiments
	Discussion
	Parameterization of the Neural Dynamics and Measurement Models
	Synthetic Learning Problem Details
	Computation Requirements

	Additional Experiment Results
	Bearings Only Tracking Task
	Deepmind Maze Tracking Task
	House3D Tracking Task

	Experiment Details
	Mean Squared Error Loss
	Pre-Training Measurement Model
	Additional General Task and Training Details
	Bearings Only Tracking Task
	Additional Experiment Details
	Network Architectures

	Deepmind Maze Tracking Task
	Additional Experiment Details
	Network Architectures

	House3D Tracking Task
	Additional Experiment Details
	Network Architectures

	LSTM Model Details

