
Visual Guide to 2D Stencil
Memory Optimization

CS250B

Sang-Woo Jun

Cache Efficient Processing in 1D:
Trapezoid Units

• Computation in a trapezoid is either:
• Self-contained, does not require anything from outside(), or

• Only uses data that has been computed and ready (, after)

x

time axis

We will do 2D!!

Goal: Fill out temp
and then have results at the bottom of temp

Bottom of temp

Top of temp

temp height
(time steps)
(e.g. 64)

time axis

x

y

“temp” represents a 3-D array! (x,y,time)

No Dependencies For Corner

Block size

Block size

Calculate Blocks With Satisfied Dependencies

Edges only depend
on corner

Block size

Next line only depends on edges

All Done With Trapezoids

Fill Out The Rest (Upside-down wedges)

This Was Not Cache-Oblivious

• We had to choose a block size
• “temp” is divided into a grid of BLOCK_SIZE width and height sub-blocks

• Depending on the location (corner? edge? middle?) 3D shape determined

• After filling in all grids, we fill in the upside-down edges

• Cache-oblivious algorithm instead divides the space into four
quadrants recursively
• Actual shape determination and filling it out happens only at a very small

block size

• Actually more complex than this, but having a small SUBSTEP parameter
restricts the problem space

SUBSTEPS may be too large

• If the given substeps parameter is too large to be used as-is as the
height of the 3D structure, remember you can also break that down
into smaller steps!

