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Cache Efficient Processing in 1D:
Trapezoid Units

• Computation in a trapezoid is either:
• Self-contained, does not require anything from outside(        ), or

• Only uses data that has been computed and ready (         , after       ) 
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We will do 2D!!



Goal: Fill out temp
and then have results at the bottom of temp
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“temp” represents a 3-D array! (x,y,time)



No Dependencies For Corner
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Calculate Blocks With Satisfied Dependencies

Edges only depend
on corner

Block size

Next line only depends on edges



All Done With Trapezoids



Fill Out The Rest (Upside-down wedges)



This Was Not Cache-Oblivious

• We had to choose a block size
• “temp” is divided into a grid of BLOCK_SIZE width and height sub-blocks

• Depending on the location (corner? edge? middle?) 3D shape determined

• After filling in all grids, we fill in the upside-down edges 

• Cache-oblivious algorithm instead divides the space into four 
quadrants recursively
• Actual shape determination and filling it out happens only at a very small 

block size

• Actually more complex than this, but having a small SUBSTEP parameter 
restricts the problem space



SUBSTEPS may be too large

• If the given substeps parameter is too large to be used as-is as the 
height of the 3D structure, remember you can also break that down 
into smaller steps!


