Visual Guide to 2D Stencil
Memory Optimization

CS2508B
Sang-Woo Jun

We will do 2D!!

Cache Efficient Processing in 1D:
Trapezoid Units

 Computation in a trapezoid is either:

* Self-contained, does not require anything from outside(£9), or
* Only uses data that has been computed and ready (Vafter B

timeaxis(T)
® 6 6 6 6 6 ¢ ©° ®

O
O © © © &6 6 6 0 © O
Q o O
Q O
Q O
Q O

Goal: Fill out temp
and then have results at the bottom of temp

Top of temp

\time axis temp height
Bottom of temp (time steps)
(e.g. 64)

“temp” represents a 3-D array! (x,y,time)

No Dependencies For Corner

Calculate Blocks With Satistfied Dependencies

All Done With Trapezoids

Fill Out The Rest (Upside-down wedges)

This Was Not Cache-Oblivious

* We had to choose a block size
e “temp” is divided into a grid of BLOCK_SIZE width and height sub-blocks
* Depending on the location (corner? edge? middle?) 3D shape determined
» After filling in all grids, we fill in the upside-down edges

e Cache-oblivious algorithm instead divides the space into four
guadrants recursively

* Actual shape determination and filling it out happens only at a very small
block size

e Actually more complex than this, but having a small SUBSTEP parameter
restricts the problem space

SUBSTEPS may be too large

* If the given substeps parameter is too large to be used as-is as the
height of the 3D structure, remember you can also break that down
into smaller steps!

