CS 250B: Modern Computer Systems

The End of Conventional Performance Scaling

Sang-Woo Jun
Conventional Performance Scaling

- Traditional model of a computer is simple
 - Single, in-order flow of instructions on a processor
 - Simple, in-order memory model

- Large part of computer architecture research involved maintaining this abstraction while improving performance
 - Transparent caches, Transparent superscalar scheduling,
 - Same software runs faster tomorrow
 - (Slow software becomes acceptable tomorrow)

- Driven largely by continuing march of Moore's law
Moore’s Law

- What exactly does it mean?
- What is it that is scaling?
Moore’s Law

- Typically cast as:
 “Performance doubles every X months”

- Actually closer to:
 “Number of transistors per unit cost doubles every two years”
Moore’s Law

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year.

[...]

Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.

-- Gordon Moore, Electronics, 1965

Why is Moore’s Law conflated with processor performance?
Dennard Scaling: Moore’s Law to Performance

- “Power density stays constant as transistors get smaller”
 - Robert H. Dennard, 1974

- Intuitively:
 - Smaller transistors → shorter propagation delay → faster frequency
 - Smaller transistors → smaller capacitance → lower voltage
 - $\text{Power} \propto \text{Capacitance} \times \text{Voltage}^2 \times \text{Frequency}$

Moore’s law → Faster performance @ Constant power!
Single-Core Performance Scaling Projection

What happened?
(Slightly) More Accurate Processor Power Consumption

\[
\text{Power} = (\text{Active Transistors} \times \text{Capacitance} \times V^2 \times \text{Frequency}) + (V \times \text{Leakage})
\]

- Dynamic power
- Static power

Gate-oxide stopped scaling

Stopped scaling due to leakage

Exremely simplified model!
Power Consumption of High-Density Circuits

- Total power consumption with constant frequency

https://www.design-reuse.com/articles/20296/power-management-leakage-control-process-compensation.html
End of Dennard Scaling

- Even with smaller transistors, we cannot continue reducing power
 - What do we do now?

- Option 1: Continue scaling frequency at increased power budget
 - Chip quickly become too hot to cool!
 - Thermal runaway:
 - Hotter chip \rightarrow increased resistance \rightarrow hotter chip \rightarrow ...
Option 1: Continue Scaling Frequency at Increased Power Budget
Option 2: Stop Frequency Scaling

Dennard Scaling Ended (~2006)

Looking Back: Change of Predictions

But Moore’s Law Continues Beyond 2006

Moore’s Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore’s law.
State of Things at This Point (2006)

- Single-thread performance scaling ended
 - Frequency scaling ended (Dennard Scaling)
 - Instruction-level parallelism scaling stalled ... also around 2005

- Moore’s law continues
 - Double transistors every two years
 - What do we do with them?

K. Olukotun, “Intel CPU Trends”
Crisis Averted With Manycores?
Crisis Averted With Manycores?

Source:
International Roadmap for Semiconductors 2007 edition (http://www.itrs.net/)
What Happened?

\[\text{Power} = (\text{Active Transistors} \times \text{Capacitance} \times \text{Voltage}^2 \times \text{Frequency}) + (\text{Voltage} \times \text{Leakage Current}) \]

Can't keep going up

Gate-oxide stopped scaling

Stopped scaling due to leakage

Dynamic power

Static power

Stopped scaling due to leakage

“Utilization Wall”

Regardless of Moore’s Law, a limited amount of gates can be active at a given time.
Where To, From Here?

- The number of active transistors at a given time is limited
 - Left unchecked, we won’t get much performance improvements even with Moore’s law continuing
 - We need to make the best use of those active transistors!
Also, Scaling Size is Becoming More Difficult!

- Processor fabrication technology has always reduced in size
 - As of 2022, 5 nm is cutting edge, working towards 3 nm

Image source: Intel
Number of Semiconductor Manufacturers with a Cutting Edge Logic Fab

<table>
<thead>
<tr>
<th>Year 2000</th>
<th>Year 2008</th>
<th>Year 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung</td>
<td>Samsung</td>
<td>Samsung</td>
</tr>
<tr>
<td>IBM</td>
<td>IBM</td>
<td>IBM</td>
</tr>
<tr>
<td>TSMC</td>
<td>TSMC</td>
<td>TSMC</td>
</tr>
<tr>
<td>STMicroelectronics</td>
<td>STMicroelectronics</td>
<td>STMicroelectronics</td>
</tr>
<tr>
<td>HLMC</td>
<td>HLMC</td>
<td>HLMC</td>
</tr>
<tr>
<td>UMC</td>
<td>UMC</td>
<td>UMC</td>
</tr>
<tr>
<td>AMD</td>
<td>AMD</td>
<td>AMD</td>
</tr>
<tr>
<td>AMD</td>
<td>AMD</td>
<td>AMD</td>
</tr>
<tr>
<td>SMIC</td>
<td>SMIC</td>
<td>SMIC</td>
</tr>
<tr>
<td>TI</td>
<td>TI</td>
<td>TI</td>
</tr>
<tr>
<td>Panasonic</td>
<td>Panasonic</td>
<td>Panasonic</td>
</tr>
<tr>
<td>Cypress</td>
<td>Cypress</td>
<td>Cypress</td>
</tr>
<tr>
<td>Sony</td>
<td>Sony</td>
<td>Sony</td>
</tr>
<tr>
<td>Infineon</td>
<td>Infineon</td>
<td>Infineon</td>
</tr>
<tr>
<td>Sharp</td>
<td>Sharp</td>
<td>Sharp</td>
</tr>
<tr>
<td>Freescale</td>
<td>Freescale</td>
<td>Freescale</td>
</tr>
<tr>
<td>Renesas</td>
<td>Renesas</td>
<td>Renesas</td>
</tr>
<tr>
<td>Toshiba</td>
<td>Toshiba</td>
<td>Toshiba</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>Fujitsu</td>
<td>Fujitsu</td>
</tr>
<tr>
<td>TI</td>
<td>TI</td>
<td>TI</td>
</tr>
<tr>
<td>Panasonic</td>
<td>Panasonic</td>
<td>Panasonic</td>
</tr>
<tr>
<td>STM</td>
<td>STM</td>
<td>STM</td>
</tr>
<tr>
<td>UMC</td>
<td>UMC</td>
<td>UMC</td>
</tr>
<tr>
<td>IBM</td>
<td>IBM</td>
<td>IBM</td>
</tr>
<tr>
<td>SMIC</td>
<td>SMIC</td>
<td>SMIC</td>
</tr>
<tr>
<td>AMD</td>
<td>AMD</td>
<td>AMD</td>
</tr>
<tr>
<td>Samsung</td>
<td>Samsung</td>
<td>Samsung</td>
</tr>
<tr>
<td>TSMC</td>
<td>TSMC</td>
<td>TSMC</td>
</tr>
<tr>
<td>Intel</td>
<td>Intel</td>
<td>Intel</td>
</tr>
<tr>
<td>180 nm</td>
<td>130 nm</td>
<td>10 nm</td>
</tr>
<tr>
<td>90 nm</td>
<td>65 nm</td>
<td>7 nm</td>
</tr>
<tr>
<td>65 nm</td>
<td>45 nm/40 nm</td>
<td>5 nm</td>
</tr>
<tr>
<td>32 nm/28 nm</td>
<td>22 nm/20 nm</td>
<td></td>
</tr>
<tr>
<td>16 nm/14 nm</td>
<td>10 nm</td>
<td></td>
</tr>
</tbody>
</table>

Only three players left?!
We Can’t Keep Doing What we Used to

- Limited number of transistors, limited clock speed
 - How to make the ABSOLUTE BEST of these resources?

- Timely example: Apple M1 Processor
 - Claims to outperform everyone (per Apple)
 - How?
 - “8-wide decoder” [...] “16 execution units (per core)”
 - “(Estimated) 630-deep out-of-order”
 - “Unified memory architecture”
 - Hardware/software optimized for each other

What do these mean?
Not just apple! (Amazon, Microsoft, EU, ...)

Image source: Apple
We Can’t Keep Doing What we Used to

AWS Graviton 2:
64-Core ARM

European Processor Accelerator (EPAC):
4-Core RISC-V +
Variable Precision Accelerator +
Stencil and Tensor Accelerator

Image source: Anandtech, “Amazon’s Arm-based Graviton2 Against AMD and Intel: Comparing Cloud Compute”
Image source: TheNextPlatform, “Europe Inches Closer to Native RISC-V Reality”
Where To, From Here?

- Potential Solution 1: The software solution
 - Write efficient software to make the efficient use of hardware resources
 - No longer depend entirely on hardware performance scaling
 - “Performance engineering” software, using hardware knowledge
Impact of Software Performance Engineering

- Multiplying two 2048 x 2048 matrices
 - 16 MiB, doesn’t fit in smaller caches
- Machine: Intel i5-7400 @ 3.00GHz

\[
\begin{array}{c|c}
A & B \\
\hline
\vdots & \vdots \\
\end{array}
\quad \times \quad \begin{array}{c|c}
A & \mathbf{B^T} \\
\hline
\vdots & \vdots \\
\end{array}
\]

63.19 seconds vs 10.39 seconds (6x performance!)

Last year, we measured 42.13x performance improvement just by writing better software
Where To, From Here?

- Solution 2: The specialized architectural solution
 - Chip space is now cheap, but power is expensive
 - Stop depending on more complex general-purpose cores
 - Use space to build heterogeneous systems, with compute engines well-suited for each application
Fine-Grained Parallelism of Special-Purpose Circuits

- Example -- Calculating gravitational force: \[\frac{G \times m_1 \times m_2}{(x_1 - x_2)^2 + (y_1 - y_2)^2} \]

- 8 instructions on a CPU, 16 instructions for two calculations, ...

- Specialized datapath can be extremely efficient
 - Pipelined implementation can emit one result per cycle
 - Also, no need for general-purpose overhead such as instruction decoding
 - Much more cores can fit on chip
 - Much lower power consumption per unit

\[A = G \times m_1 \quad C = x_1 - x_2 \quad E = y_1 - y_2 \]
\[B = A \times m_2 \quad D = C^2 \quad F = E^2 \]
\[G = D + F \quad \text{Ret} = B / G \]
Typical Energy Efficiency Benefits of Optimized Hardware

Spectrum of Specialized Hardware

- Multicore CPU
- General-Purpose GPU
- Field-Programmable Gate Array (FPGA)
- Application-Specific Integrated Circuit (ASIC)

Power efficiency
The Bottom Line: Architecture is No Longer Transparent

- Optimized software requires architecture knowledge
- Special-purpose “accelerators” (GPU, FPGA, ...) programmed explicitly
- Even general-purpose processors implement specialized instructions
 - Single-Instruction Multiple Data (SIMD) instructions such as AVX
 - Special-purpose instructions sets such as AES-NI
Coming Up

- Before we go into newer technologies, let’s first make sure we make good use of what we have
 - SIMD (SSE, AVX), Cache-optimized code, etc
 - “Performance engineering”
- “Our implementation delivers 9.2X the performance (RPS) and 2.8X the system energy efficiency (RPS/watt) of the best-published FPGA-based claims.”
 - Li et. al., Intel, “Architecting to Achieve a Billion Requests Per Second Throughput on a Single Key-Value Store Server Platform,” ISCA 2015
 - Intel software implementation of memcached