CS 250B: Modern Computer Systems
Cache And Memory System

Sang-Woo Jun
Motivation Example:
An Embarrassingly Parallel Workload

- A very simple example of counting odd numbers in a large array

```c
int results[THREAD_COUNT];
void worker_thread(...) {
    int tid = ...;
    for (e in myChunk) {
        if (e % 2 != 0) results[tid]++;
    }
}
```

Do you see any performance red flags?
Scalability Unimpressive

Faster than 1 core

Slower than 1 core
History of The Processor/Memory Performance Gap

What is the Y-axis? Most likely normalized latency reciprocal

Source: Extreme tech, “How L1 and L2 CPU Caches Work, and Why They’re an Essential Part of Modern Chips,” 2018
Purpose of Caches

- The CPU is (largely) unaware of the underlying memory hierarchy
 - The memory abstraction is a single address space
 - The memory hierarchy automatically stores data in fast or slow memory, depending on usage patterns

- Multiple levels of “caches” act as interim memory between CPU and main memory (typically DRAM)
 - Processor accesses main memory through the cache hierarchy
 - If requested address is already in the cache (address is “cached”, resulting in “cache hit”), data operations can be fast
 - If not, a “cache miss” occurs, and must be handled to return correct data to CPU
Caches Try to Be Transparent

Software is (ideally) written to be oblivious to caches
 - Programmer should not have to worry about cache properties
 - Correctness isn’t harmed regardless of cache properties

However, the performance impact of cache affinity is quite high!
 - Performant software cannot be written in a completely cache-oblivious way
History of The Processor/Memory Performance Gap

- **Processor vs Memory Performance**

 - 80386 (1985): Last Intel desktop CPU with no on-chip cache (Optional on-board cache chip though!)
 - 80486 (1989): 4 KB on-chip cache
 - Coffee Lake (2017): 64 KiB L1 Per core, 256 KiB L2 Per core, Up to 2 MiB L3 Per core (Shared)

What is the Y-axis? Most likely normalized latency reciprocal

Source: Extreme tech, “How L1 and L2 CPU Caches Work, and Why They’re an Essential Part of Modern Chips,” 2018
Why The Gap? SRAM vs. DRAM

- **SRAM (Static RAM)** – Register File, Cache
 - Built using transistors, which processor logic is made of
 - As fast as the rest of the processor

- **DRAM (Dynamic RAM)**
 - Built using capacitors, which can hold charge for a short time
 - Controller must periodically read all data and write it back ("Refresh")
 - Hence, “Dynamic” RAM
 - Requires fabrication process separate from processor
 - Reading data from a capacitor is high-latency
 - EE topics involving sense amplifiers, which we won’t get into

Source: Inductiveload, from commons.wikimedia.org

Note: Old, “trench capacitor” design

Multi-Layer Cache Architecture

Numbers from modern Xeon processors (Broadwell – Kaby lake)

<table>
<thead>
<tr>
<th>Cache Level</th>
<th>Size</th>
<th>Latency (Cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>64 KiB</td>
<td>< 5</td>
</tr>
<tr>
<td>L2</td>
<td>256 KiB</td>
<td>< 20</td>
</tr>
<tr>
<td>L3</td>
<td>~ 2 MiB per core</td>
<td>< 50</td>
</tr>
</tbody>
</table>

- Even with SRAM there is a size-performance trade-off
 - Not because the transistors are any different!
 - Cache management logic becomes more complicated with larger sizes
- L1 cache accesses can be hidden in the pipeline
 - Modern processors have pipeline depth of 14+
 - All others take a performance hit
Multi-Layer Cache Architecture

Numbers from modern Xeon processors (Broadwell – Kaby lake)

<table>
<thead>
<tr>
<th>Cache Level</th>
<th>Size</th>
<th>Latency (Cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>64 KiB</td>
<td>< 5</td>
</tr>
<tr>
<td>L2</td>
<td>256 KiB</td>
<td>< 20</td>
</tr>
<tr>
<td>L3</td>
<td>~ 2 MiB per core</td>
<td>< 50</td>
</tr>
<tr>
<td>DRAM</td>
<td>100s of GB</td>
<td>> 100*</td>
</tr>
</tbody>
</table>

*This is in an ideal scenario
- Actual measurements could be multiple hundreds or thousands of cycles!

DRAM systems are complicated entities themselves
- Latency/Bandwidth of the same module varies immensely by situation...
Cache Line Unit of Management

- CPU Caches are managed in units of large “Cache Lines”
 - Typically 64 bytes in modern x86 processors
- Why not smaller units?
 - Word-size management is natural to reason about. Why not this?
Reminder: Direct Mapped Cache Access

- For cache with 2^W cache lines
 - Index into cache with W address bits (the index bits)
 - Read out valid bit, tag, and data
 - If valid bit == 1 and tag matches upper address bits, cache hit!

Example 8-line direct-mapped cache:
Larger Cache Lines

- Reduce cache management overhead: Store multiple words per data line
 - Always fetch entire block (multiple words) from memory
 - **Advantage**: Reduces size of tag memory
 - **Disadvantage**: Fewer indices in the cache -> Higher miss rate

Example: 4-block, 16-word direct-mapped cache

32-bit BYTE address

Tag bits: 26 (=32-6)

Index bits: 2 (4 indices)

Block offset bits: 2 (4 words/block)

Byte offset bits: 2

Figure source: MIT 6.004 2019 Fall
Larger Cache Lines

- Caches are managed in **Cache Line** granularity
 - Typically 64 Bytes for modern CPUs
 - 64 Bytes == 16 4-byte integers
 - Balance of performance and on-chip SRAM usage

- Reading/Writing happens in cache line granularity
 - Read one byte not in cache -> Read all 64 bytes from memory
 - Write one byte -> Eventually write all 64 bytes to memory
 - Inefficient cache access patterns really hurt performance!
Block Size Trade-Offs

- Larger block sizes...
 - Take advantage of spatial locality (also, DRAM is faster with larger blocks)
 - Incur larger miss penalty since it takes longer to transfer the block from memory
 - Can increase the average hit time (more logic) and miss ratio (less lines)

- AMAT (Average Memory Access Time)
 - $\text{AMAT} = \text{HitTime} + \text{MissPenalty} \times \text{MissRatio}$
An Analytical Example: Two 4 KiB Caches

- 4-way set-associative, cache line size of 16 bytes
 - Each set == 64 bytes -> 64 sets
 - Assuming 32 bit addresses: 22 bit tag + valid + dirty = 24 bits per line
 - 768 bytes of overhead per 4 KiB cache
 - Total SRAM requirement: 4 KiB + 768 bytes = \textbf{4864} bytes

- Direct-mapped, cache line size of 4 bytes
 - Each line == 4 bytes -> 1024 lines
 - Assuming 32 bit addresses: 20 bit tag + valid + dirty = 22 bits per line
 - 2816 bytes of overhead per 4 KiB cache
 - Total SRAM requirement: 4 KiB + 2816 bytes = \textbf{6912} bytes
Two packages make up a NUMA (Non-Uniform Memory Access) Configuration
Memory System Bandwidth Snapshot

Core

DDR4 2666 MHz
128 GB/s

DRAM

Cache Bandwidth Estimate
64 Bytes/Cycle \(\approx 200\) GB/s/Core

Core

QPI / UPI

Ultra Path Interconnect
Unidirectional
20.8 GB/s

DRAM

Memory/PCIe controller used to be on a separate “North bridge” chip, now integrated on-die
All sorts of things are now on-die! Even network controllers! (Specialization!)
Reminder: Cache Coherency

- **Cache coherency**
 - Informally: Read to each address must return the most recent value
 - Typically: All writes must be visible at some point, and in proper order

- Coherency protocol implemented between each core’s private caches
 - MSI, MESI, MESIF, ...
 - Won’t go into details here

- **Simply put:**
 - When a core writes a cache line
 - All other instances of that cache line needs to be invalidated

- Emphasis on **cache line**
Cache Prefetching

- CPU speculatively prefetches cache lines
 - While CPU is working on the loaded 64 bytes, 64 more bytes are being loaded

- Hardware prefetcher is usually not very complex/smart
 - Sequential prefetching (N lines forward or backwards)
 - Strided prefetching

- Programmer-provided prefetch hints
 - __builtin_prefetch(address, r/w, temporal locality?); for GCC
 - Will generate prefetch instructions if available on architecture
Now That’s Out of The Way…
Cache Efficiency Issue #1: Cache Line Size
Matrix Multiplication and Caches

- Multiplying two NxN matrices \((C = A \times B)\)

```
for (i = 0 to N)
  for (j = 0 to N)
    for (k = 0 to N)
      C[i][j] += A[i][k] * B[k][j]
```

2048*2048 on an i5-7400 @ 3 GHz using GCC -O3 = 63.19 seconds

is this fast?

Whole calculation requires \(2K \times 2K \times 2K = 8\) Billion floating-point mult + add

At 3 GHz, \(~5\) seconds just for the math. Over 1000% overhead!
Cache Efficiency Issue #1: Cache Line Size Matrix Multiplication and Caches

- Column-major access makes inefficient use of cache lines
 - A 64 Byte block is read for each element loaded from B
 - 64 bytes read from memory for each 4 useful bytes

- Shouldn’t caching fix this? Unused bits should be useful soon!
 - 64 bytes x 2048 = 128 KB ... Already overflows L1 cache (~32 KB)

```plaintext
for (i = 0 to N)
  for (j = 0 to N)
    for (k = 0 to N)
      C[i][j] += A[i][k] * B[k][j]
```
Cache Efficiency Issue #1: Cache Line Size
Matrix Multiplication and Caches

- One solution: Transpose B to match cache line orientation
 - Does transpose add overhead? Not very much as it only scans B once

- Drastic improvements!
 - Before: 63.19s
 - After: 10.39s ... 6x improvement!
 - But still not quite ~5s

```
for (i = 0 to N)
  for (j = 0 to N)
    for (k = 0 to N)
      C[i][j] += A[i][k] * Bt[j][k]
```
Cache Efficiency Issue #2: Capacity Considerations

- Performance is best when working set fits into cache
 - But as shown, even 2048 x 2048 doesn’t fit in cache
 - -> 2048 * 2048 * 2048 elements read from memory for matrix B

- Solution: Divide and conquer! – Blocked matrix multiply
 - For block size 32 x 32 -> 2048 * 2048 * (2048/32) reads

\[
\begin{align*}
A \times B &= C \\
C1 \text{ sub-matrix} &= A1 \times B1 + A2 \times B2 + A3 \times B3 \ldots
\end{align*}
\]
Blocked Matrix Multiply Evaluations

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Elapsed (s)</th>
<th>Normalized Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve</td>
<td>63.19</td>
<td>1</td>
</tr>
<tr>
<td>Transposed</td>
<td>10.39</td>
<td>6.08</td>
</tr>
<tr>
<td>Blocked Transposed</td>
<td>7.35</td>
<td>8.60</td>
</tr>
</tbody>
</table>

- **Blocked Transposed bottlenecked by computation**
 - Peak theoretical FLOPS for my processor running at 3 GHz ~= 3 GFLOPS
 - 7.35s for matrix multiplication ~= 2.18 GFLOPS
 - Not bad, considering need for branches and other instructions!
 - L1 cache access now optimized, but not considers larger caches

- **This chart will be further extended in the next lectures**
 - Normalized performance will reach 57 (~1 second elapsed)
Writing Cache Line Friendly Software

- (Whenever possible) use data in coarser-granularities
 - Each access may load 64 bytes into cache, make use of them!
 - e.g., Transposed matrix B in matrix multiply, blocked matrix multiply

- Many profilers will consider the CPU “busy” when waiting for cache
 - Can’t always trust “CPU utilization: 100%”
Aside: Object-Oriented Programming And Caches

- OOP wants to collocate all data for an entity in a class/struct
 - All instance variables are located together in memory

- Cache friendly OOP
 - All instance variables are accessed whenever an instance is accessed

- Cache unfriendly OOP
 - Only a small subset of instance variables are accessed per instance access
 - e.g., a “for” loop checking the “valid” field of all entities
 - 1 byte accessed per cache line read!

- Non-OOP solution: Have a separate array for “valid”s
 - Is this a desirable solution? Maybe...
Cache Efficiency Issue #3: False Sharing

- Different memory locations, written to by different cores, mapped to same cache line
 - Core 1 performing “results[0]++;”
 - Core 2 performing “results[1]++;”

- Remember cache coherence
 - Every time a cache is written to, all other instances need to be invalidated!
 - “results” variable is ping-ponged across cache coherence every time
 - Bad when it happens on-chip, terrible over processor interconnect (QPI/UPI)

- Simple solution: Store often-written data in local variables
Removing False Sharing

Voice of Experience

Joe Duffy at Microsoft:

During our Beta1 performance milestone in Parallel Extensions, most of our performance problems came down to stamping out false sharing in numerous places.

With False Sharing

Without False Sharing
Aside: Non Cache-Related Optimizations: Loop Unrolling

- Increase the amount of work per loop iteration
 - Improves the ratio between computation instructions and branch instructions
 - Compiler can be instructed to automatically unroll loops
 - Increases binary size, because unrolled iterations are now duplicated code

<table>
<thead>
<tr>
<th>Normal loop</th>
<th>After loop unrolling</th>
</tr>
</thead>
<tbody>
<tr>
<td>int x;</td>
<td>int x;</td>
</tr>
<tr>
<td>for (x = 0; x < 100; x++) {</td>
<td>for (x = 0; x < 100; x += 5)</td>
</tr>
<tr>
<td>delete(x);</td>
<td>delete(x);</td>
</tr>
<tr>
<td>}</td>
<td>delete(x + 1);</td>
</tr>
<tr>
<td></td>
<td>delete(x + 2);</td>
</tr>
<tr>
<td></td>
<td>delete(x + 3);</td>
</tr>
<tr>
<td></td>
<td>delete(x + 4);</td>
</tr>
</tbody>
</table>

Aside: Non Cache-Related Optimizations: Function Inlining

- A small function called very often may be bottlenecked by call overhead
- Compiler copies the instructions of a function into the caller
 - Removes expensive function call overhead (stack management, etc)
 - Function can be defined with “inline” flag to hint the compiler
 - “inline int foo()”, instead of “int foo()”

- Personal anecdote
 - Inlining a key (very small) kernel function resulted in a 4x performance boost
Issue #4
Instruction Cache Effects

- Instructions are also stored in cache
 - L1 cache typically has separate instances for instruction and data caches
 - In most x86 architectures, 32 KiB each
 - L2 onwards are shared
 - Lots of spatial locality, so miss rate is usually very low
 - On SPEC, ~2% at L1
 - But adversarial examples can still thrash the cache

- Instruction cache often has dedicated prefetcher
 - Understands concepts of branches and function calls
 - Prefetches blocks of instructions without branches
Optimizing Instruction Cache

Instruction cache misses can effect performance

- “Linux was routing packets at ~30Mbps [wired], and wireless at ~20. Windows CE was crawling at barely 12Mbps wired and 6Mbps wireless.
- [...] After we changed the routing algorithm to be more cache-local, we started doing 35Mbps [wired], and 25Mbps wireless – 20% better than Linux.
 – Sergey Solyanik, Microsoft

- [By organizing function calls in a cache-friendly way, we] achieved a 34% reduction in instruction cache misses and a 5% improvement in overall performance.
 -- Mircea Livadariu and Amir Kleen, Freescale
Improving Instruction Cache Locality #1

- Careful with loop unrolling
 - They reduce branching overhead, but reduces effective I$ size
 - When gcc’s –O3 performs slower than –O2, this is usually what’s happening

- Careful with function inlining
 - Inlining is typically good for very small* functions
 - A rarely executed path will just consume cache space if inlined

- Move conditionals to front as much as possible
 - Long paths of no branches good fit with instruction cache/prefetcher
Improving Instruction Cache Locality #2

- Organize function calls to create temporal locality

If the functions stage_I, stage_II, and stage_III are sufficiently large, their instructions will thrash the instruction cache!

Baseline: Sequential algorithm

Livadariu et. al., “Optimizing for instruction caches,” EETimes
Improving Instruction Cache Locality #2

- Organize function calls to create temporal locality

Baseline: Sequential algorithm

New array “temp” takes up space. N could be large!

Livadariu et. al., “Optimizing for instruction caches,” EETimes
Improving Instruction Cache Locality #2

- Organize function calls to create temporal locality

Baseline: Sequential algorithm

Ordering changed for cache locality

Balance to reduce memory footprint

Livadariu et. al., “Optimizing for instruction caches,” EETimes
Questions?
Some Details On DRAM

- DRAM cell access latency is very high
 - Electrical characteristics of the capacitors and the circuitry to read their state
 - To mitigate this, accesses are done at a very coarse granularity
 - Might as well spend 10 ns to read 8 KiB, instead of only 4 bytes

- DRAM is typically organized into a rectangle (rows, columns), called a “bank”
 - Reduces addressing logic, which is a high overhead in such dense memory
 - Whole row must be read whenever data in new row is accessed
 - As of 2022, typical row size ~8 KB
Some Details On DRAM

- Accessed row temporarily stored in DRAM “row buffer”
 - Fast when accessing data in same row
 - Much slower when accessing small data across rows

- The off-chip memory system is also hierarchical
 - A DRAM chip consists of multiple banks
 - A DRAM card consists of multiple chips
 - A memory system (typically) consists of multiple DRAM cards

- Row buffer exists for each bank
 - Total size of all row buffers in a system is quite large
 - Inter-bank parallelism
Exploiting Inter-Bank Parallelism

- Ideally, accesses should be grouped within a row
- When this is not possible, access to the same bank must be avoided
 - Access cannot be serviced until the previous (high-latency) access is done
- The processor hardware tries to automatically handle this via address mapping
 - LSB of the address used for column index
 - MSB of the address used for row index
 - Everything in the middle spread across card/chip/bank/...
Questions?