What Are Formal Methods?

- Use of formal notations …
 - first-order logic, state machines, etc.
- … in software system descriptions …
 - system models, constraints, specifications, designs, etc.
- … for a broad range of effects …
 - correctness, reliability, safety, security, etc.
- … and varying levels of use
 - guidance, documentation, rigor, mechanisms

Formal method = specification language + formal reasoning

Objectives of Formal Methods

- Verification
 - “Are we building the system right?”
 - Formal consistency between specificand (the thing being specified) and specification
- Validation
 - “Are we building the right system?”
 - Testing for satisfaction of ultimate customer intent
- Documentation
 - Communication among stakeholders

Why Use Formal Methods?

- Formal methods have the potential to improve both software quality and development productivity
 - Circumvent problems in traditional practices
 - Enhance early error detection
 - Develop safe, reliable, secure software-intensive systems
 - Facilitate verifiability of implementation
 - Enable powerful analyses
 - simulation, animation, proof, execution, transformation
 - Gain competitive advantage

Why Choose Not to Use Formal Methods?

- Emerging technology with unclear payoff
- Lack of experience and evidence of success
- Lack of automated support
- Lack of user friendly tools
- Ignorance of advances
- High learning curve
- Requires perfection and mathematical sophistication
- Techniques not widely applicable
- Techniques not scalable
- Too many in-place tools and techniques

Desirable Properties of Formal Specifications

- Unambiguous
 - Exactly one specificand (set) satisfies it
- Consistency
 - A specificand exists that satisfies it
- Completeness
 - All aspects of specificands are specified
- Inference
 - Consequences of the specification and properties of its satisfying specificands are discovered
Different Kinds of Formal Specification Languages

- **Axiomatic specifications**
 - Defines system in terms of logical assertions
- **State transition specifications**
 - Defines system in terms of states & transitions
- **Abstract model specifications**
 - Defines system in terms of mathematical model
- **Algebraic specifications**
 - Defines system in terms of equivalence relations
- **Temporal logic specifications**
 - Defines operations in terms of time-ordered assertions
- **Concurrency specifications**
 - Defines operations in terms of concurrent event occurrences

Tool Support for Specification Languages

- **Modeling**
 - Editors and word processors
- **Analysis**
 - Syntax checking
 - Model checking
 - Proving and proof checking
 - Property checking
 - Deadlock, reachability, data flow, liveness, safety, ...
- **Synthesis**
 - Refinement
 - Code generation
 - Test case and test oracle generation

A Closer Look: Axiomatic Specification

- Formal specification in which statements in first-order predicate logic are used to define the semantics of a system and its constituent elements (statements, functions, modules)
- Usually taken to mean specification with
 - Pre-conditions
 - Post-conditions
 - Invariants
 - Point Assertions

History of Axiomatic Specification

- Attempts to put program development on a formal basis date at least to John McCarthy's 1962 paper (w.r.t recursive functions)
- Floyd's 1967 paper presented the first worked-out approach (in terms of flowcharts)
- Hoare's 1969 paper formed the basis for much of the later work in formalized development
- Formal specification languages
- Formal verification
- Axiomatic semantics of programming languages

Hoare's Basic Approach

\[
P \quad (S) \quad Q \quad \text{(nowadays written } \{P\} S \{Q\})
\]

- If environment of S makes assertion P true
- And if S terminates
- Then assertion Q must be true
- But
 - If the environment doesn't establish P, Q need not be true
 - If S doesn't terminate, Q need not be true
- Proving \(\{P\} S \{Q\} \) establishes **partial correctness**
 - To establish **total correctness**, one must also prove that S terminates, which in general is undecidable

Axiomatic Specification of Programs

\[
(P) \quad S \quad (Q)
\]

- One typically **specifies** (components of) whole programs
 - S is a program, module, method, etc.
 - P is the desired **pre-condition** of S
 - Q is the desired **post-condition** of S
- The **axiomatic semantics** of the language of S comprises Hoare-style axiom schemas for the constituent statements of S
 - assignments, conditionals, loops, etc.
 - Used for verifying S with respect to P and Q

© 2001 David S. Rosenblum
A Simple Example of an Axiomatic Specification

```java
class BankAccount {
    public Amount Balance() {
        // POST: Balance() = (in Balance()) + a;
    }
    public void Deposit(Amount a) {
        // PRE: a > 0;  // POST: Balance() = (in Balance()) + a;
    }
    public void Withdraw(Amount a) {
        // PRE: a > 0 and Balance() >= a;  // POST: Balance() = (in Balance()) - a;
    }
}
```

- Can embellish with open/close, interest, credit limit, ID/PIN, etc.

Hoare’s Axiom Schemas (I)

- Axiom of Assignment
 \[\{ P \} x := f \{ P \} \]

- Rules of Consequence
 \[\{ P \} S(Q) \quad \text{and} \quad Q' \quad \Rightarrow \quad \{ P \} S(Q') \]
 \[\{ P \} S(O) \quad \text{and} \quad O' \quad \Rightarrow \quad \{ P \} S(O') \]

- Rule of Composition
 \[\{ P \} S1 \quad \text{and} \quad \{ Q \} S2 \quad \Rightarrow \quad \{ P \} S1;S2 \quad \text{and} \quad \{ Q \} S2 \]

Hoare’s Axiom Schemas (II)

- Rule of Iteration
 \[\text{P} \quad \text{and} \quad \{ C \} S(P) \]
 \[\{ P \} \text{while} C \text{ do } S(\text{not} C \text{ and } P) \]

- P is the loop invariant, which typically must be supplied by the specifier

- Rules have been defined for other common language features
 - arrays, do-until, if-then, if-then-else, subprogram calls, ...

An Example Verification: Integer Square Root

```java
procedure sqrt(N : Integer; R : out Integer);
begin
    S, T : Integer;
    begin
        R := 0;
        S := 1;
        T := 1;
        while S <= N loop
            R := R + 1;
            T := T + 2;
            S := S + T;
        end loop;
    end sqrt;
```

Specifying the Pre- and Post-Conditions

```java
{ \pre: N >= 0 }
begin
    R := 0;
    S := 1;
    T := 1;
    while S <= N loop
        R := R + 1;
        T := T + 2;
        S := S + T;
    end loop;
end;
{ \post: (R^2 <= N < (R+1)^2) \quad \text{and} \quad (R >= 0) } 
```

Specifying the Loop Invariant

```java
{ \pre: N >= 0 }
begin
    R := 0;
    S := 1;
    T := 1;
    while S <= N loop
        ( E : \{ T = 2*R + 1 \} and (S = (R+1)^2) \quad \text{and} \quad (R^2 <= N) \quad \text{and} \quad (R >= 0) )
        \begin{align*}
        R &:= R + 1; \\
        T &:= T + 2; \\
        S &:= S + T;
        \end{align*}
    end loop;
end;
{ \post: (R^2 <= N < (R+1)^2) \quad \text{and} \quad (R >= 0) } 
```
Verification Via Backward Substitution (I)

Apply Rule of Iteration and Rule of Consequence:

\[
\begin{align*}
& \text{begin} \\
& \quad R := 0; \\
& \quad S := 1; \\
& \quad T := 1; \\
& \quad \text{while } S \leq N \text{ loop} \\
& \quad \quad \{ \text{I} : (T = 2*R + 1) \text{ and } (S = (R+1)^2) \text{ and } (R^2 \leq N) \text{ and } (R \geq 0) \} \\
& \quad \quad R := R + 1; \\
& \quad \quad T := T + 2; \\
& \quad \quad S := S + T; \\
& \quad \text{end loop;} \\
& \quad \{ \text{post} : (T = 2*R + 1) \text{ and } (S = (R+1)^2) \text{ and } (R^2 \leq N) \text{ and } (R \geq 0) \} \\
& \text{end};
\end{align*}
\]

Verification Via Backward Substitution (II)

Apply Axiom of Assignment and Rule of Consequence:

\[
\begin{align*}
& \text{begin} \\
& \quad R := 0; \\
& \quad S := 1; \\
& \quad T := 1; \\
& \quad \text{while } S \leq N \text{ loop} \\
& \quad \quad \{ \text{I} : (T = 2*R + 1) \text{ and } (S = (R+1)^2) \text{ and } (R^2 \leq N) \text{ and } (R \geq 0) \} \\
& \quad \quad \text{I implies } \{ ((T+2) = 2*(R+1) + 1) \text{ and } ((S+(T+2)) = ((R+1)+1)^2) \text{ and } ((R+1)^2 \leq N) \text{ and } ((R+1) \geq 0) \text{ and } ((S+(T+2)) > N) \} \\
& \quad \quad R := R + 1; \\
& \quad \quad T := T + 2; \\
& \quad \quad S := S + T; \\
& \quad \text{end loop;} \\
& \quad \{ \text{post} : (R^2 \leq N < (R+1)^2) \text{ and } (R \geq 0) \} \\
& \text{end};
\end{align*}
\]

Verification Via Backward Substitution (III)

Apply Axiom of Assignment and Rule of Consequence:

\[
\begin{align*}
& \text{begin} \\
& \quad \text{pre} : N \geq 0 \\
& \quad \text{pre implies } \{ (1 = 2*0 + 1) \text{ and } (1 = (0+1)^2) \text{ and } (0^2 \leq N) \text{ and } (0 \geq 0) \} \\
& \quad \text{begin} \\
& \quad \quad R := 0; \\
& \quad \quad S := 1; \\
& \quad \quad T := 1; \\
& \quad \quad \text{while } S \leq N \text{ loop} \\
& \quad \quad \quad \{ \text{I} : (T = 2*R + 1) \text{ and } (S = (R+1)^2) \text{ and } (R^2 \leq N) \text{ and } (R \geq 0) \} \\
& \quad \quad \quad R := R + 1; \\
& \quad \quad \quad T := T + 2; \\
& \quad \quad \quad S := S + T; \\
& \quad \quad \text{end loop;} \\
& \quad \text{end};
\end{align*}
\]

Anthony Hall’s Seven Myths of Formal Methods (I)

1) Formal methods can guarantee that software is perfect
 - How do you ensure the initial spec is perfect?
2) Formal methods are all about program proving
 - They’re also about modeling, communication, analyzing, demonstrating
3) Formal methods are only useful for safety-critical systems
 - Can be useful in any system

Anthony Hall’s Seven Myths of Formal Methods (II)

4) Formal methods require highly trained mathematicians
 - Many methods involve nothing more than set theory and logic
5) Formal methods increase the cost of development
 - There is evidence that the opposite is true
6) Formal methods are unacceptable to users
 - When properly presented, users find them helpful

Anthony Hall’s Seven Myths of Formal Methods (III)

7) Formal methods are not used on real, large-scale software
 - They’re used daily in many branches of industry
Bertrand Meyer’s Seven Sins of the Specifier (I)

1) Noise
 - the presence in the specification text of an element that does not carry information relevant to any feature of the problem
 - Includes redundancy and remorse
2) Silence
 - the existence of a feature of the problem that is not covered by any element of the text
3) Overspecification
 - the presence in the text of an element that corresponds not to a feature of the problem but to features of a possible solution

Bertrand Meyer’s Seven Sins of the Specifier (II)

4) Contradiction
 - the presence in the text of two or more elements that define a feature of the system in an incompatible way
5) Ambiguity
 - the presence in the text of an element that makes it possible to interpret a feature of the problem in at least two different ways
6) Forward reference
 - the presence in the text of an element that uses features of the problem not defined until later in the text

Bertrand Meyer’s Seven Sins of the Specifier (III)

7) Wishful thinking
 - the presence in the text of an element that defines a feature of the problem in such a way that a candidate solution cannot reasonably be validated

Limits to the Notion of “Correctness”

- Correctness of a program is always relative
 - It’s relative to assumption that compiler is correct, which is relative to
 - Assumption that hardware architecture is correct, which is relative to
 - Assumption that digital approximations of continuous electromagnetic phenomena are correct, which is relative to
 - Assumption that the laws of physics are correct
- In other words, correctness is always a matter of demonstrating consistency of one spec with another, where the latter is assumed to be correct