
 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Requirements Engineering
From System Goals

to UML Models
to Software Specifications

Axel Van Lamsweerde

© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Fundamentals of REFundamentals of RE

Chapter 4
Requirements Specification

& Documentation
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

3
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

start

Chap. 2:
Elicitation
techniques

Chap. 3:
Evaluation
techniques

 alternative options

agreed
requirements

documented requirements

consolidated
requirements

Chap. 4: Chap. 4:
Specification &Specification &
documentationdocumentation
techniquestechniques

Chap.1: RE products and processes

4
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Specification & documentation:
as introduced in Chapter 1 ...

 Precise definition of all features of the agreed system
– Objectives, concepts, relevant domain properties,

system/software requirements, assumptions, responsibilities

– Rationale for options taken, satisfaction arguments

– Likely system evolutions & variants

 Organization of these in a coherent structure

 Documentation in a form understandable by all parties
– Often in annex: costs, workplan, delivery schedules

Resulting product: Requirements DocumentRequirements Document (RD)

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

5
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Requirements specification & documentation:
outline

 Free documentation in unrestricted natural language
 Disciplined documentation in structured natural language

– Local rules on writing statements
– Global rules on organizing the Requirements Document

 Use of diagrammatic notations
– System scope: context, problem, frame diagrams
– Conceptual structures: entity-relationship diagrams
– Activities and data: SADT diagrams
– Information flows: dataflow diagrams
– System operations: use case diagrams
– Interaction scenarios: event trace diagrams
– System behaviors: state machine diagrams
– Stimuli and responses: R-net diagrams
– Integrating multiple system views, multi-view spec in UML

6
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Requirements specification & documentation:
outline (2)

 Formal specification

– Logic as a basis for formalizing statements

– History-based specification

– State-based specification

– Event-based specification

– Algebraic specification

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

7
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Free documentation
in unrestricted natural language

 Unconstrained prose writing in natural language (NL) ...
 Unlimited expressiveness, communicability, no training needed
 Prone to many of the spec errors & flaws (cf. Chap.1)

 In particular, ambiguitiesambiguities are inherent to NL; can be harmful
“Full braking shall be activated by any train that receives an outdated

acceleration command oror that enters a station block at speed higher
than X m.p.h. and for whichand for which the preceding train is closer than Y yards.”

 Frequent confusions among logical connectives in NL
– e.g. case analysis:

 If Case1 then <Statement1>
 or if Case2 then <Statement2> (amounts to true!)
 vs. If Case1 then <Statement1>
 and if Case2 then <Statement2>

8
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Disciplined documentation in structured NL:
local rules on writing statements

 Use stylistic rulesstylistic rules for good NL spec, e.g.
− Identify who will read this; write accordingly
− Say what you are going to do before doing it
− Motivate first, summarize after
− Make sure every concept is defined before use
− Keep asking yourself: “Is this comprehensible? Is this enough?

Is this relevant?”
− Never more than one req, assumption, or dom prop in a single

sentence. Keep sentences short.
− Use “shall” for mandatory, “should” for desirable prescriptions
− Avoid unnecessary jargon & acronyms
− Use suggestive examples to clarify abstract statements
− Supply diagrams for complex relationships among items
(More in the book)

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

9
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Disciplined documentation in structured NL:
local rules on writing statements (2)

 Use decision tablesdecision tables for complex combinations of conditions

Train receives outdated acceleration command T T T T F F F F

Train enters station block at speed ! X mph T T F F T T F F

Preceding train is closer than Y yards T F T F T F T F

Full braking activated X X X

Alarm generated to station computer X X X X

input ifif-conditions

output thenthen-conditions

binary filling with truth values

one case = AND-combination
 Systematic, simple, additional benefits ...

– Completeness check: 22NN columns required for full table
– Table reduction: drop impossible cases in view of dom props;

merge 2 columns differing only by single “T”, “F” => “-”
– Test cases for free (cause-effect coverage)

10
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Disciplined documentation in structured NL:
local rules on writing statements (3)

 Use standardized statement templatesstatement templates

IdentifierIdentifier --suggestive; hierarchical if compound statement

CategoryCategory --functional or quality req, assumption, domain property,
 definition, scenario example, ...
SpecificationSpecification --statement formulation according to stylistic rules

Fit criterionFit criterion --for measurability (see next slide)

SourceSource --for traceability to elicitation sources

RationaleRationale --for better understanding & traceability

InteractionInteraction --contribution to, conflict with other statements

PriorityPriority level --for comparison & prioritization

StabilityStability, CommonalityCommonality levels --for change management

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

11
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Fit criteria make statements measurable

 Complement statements by quantifying the extent to which
they must be satisfied [Robertson, 1999]

 Especially important for measurability of NFRs

Spec:Spec: Info displays inside trains shall be informative & understandable
 Fit criterionFit criterion: A survey after 3 months of use should reveal that at least

75% of travelers found in-train info displays helpful for finding their
connection

Spec:Spec: The scheduled meeting dates shall be convenient to participants
 Fit criterionFit criterion: Scheduled dates should fit the diary constraints of at least

90% of invited participants in at least 80% of cases

12
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Disciplined documentation in structured NL:
global rules on organizing the RD

 GroupingGrouping rules: Put in same section all items related to
common factor ...
– system objective
– system component
– task
– conceptual object
– software feature
– ...

 Global templatestemplates for standardizing the RD structure
– domain-specific, organization-specific, company-specific

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

13
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

IEEE Std-830 template for organizing the RD

1. Introduction
1.1 RD purpose
1.2 Product scope
1.3 Definitions, acronyms, abbreviations
1.4 References
1.5 Overview

2. General Description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions & Dependencies
2.6 Apportioning of requirements

3. Specific Requirements

sw-environment boundary:
interfaces with users,
devices, other sw

glossary of terms

domain, scope,
purpose
of system-to-be

elicitation sources

functionalities of software-to-be
assumptions about users

development constraints
(hw limitations, implem platform, ...)

environment assumptions
(subject to change)

optional, deferable reqs

14
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

IEEE Std-830 template for organizing the RD (2)

3.3. Specific Requirements Specific Requirements
3.1 Functional requirements

3.2 External interface reqs

3.3 Performance reqs

3.4 Design constraints

3.5 Software quality attributes

3.6 Other requirements
Appendices
Index

NFRs: development reqs

NFRs: interoperability

alternative templates foralternative templates for
specific types of systemspecific types of system

NFRs: time/space performance

NFRs: quality reqs

NFRs: security, reliability,
 maintainability

 Variant: VOLERE template [Robertson, 1999]
– explicit sections for domain properties, costs, risks,

development workplan, ...

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

15
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Use of diagrammatic notations

 To complement or replace NL prose

 Dedicated to specific aspectsspecific aspects of the system (as-is or to-be)

 Graphical: to ease communication, provide overview

 Semi-formal ...
– Declaration of items in formal language (syntax, semantics)

=> surface checks on RD items, machine-processable
– Informal spec of item properties in NL

 This chapterThis chapter: typical sample of frequently used diagrams,
showing complementarities

 Part 2Part 2: in-depth study + systematic method for building
complex models using integrated set of diagrams

16
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Requirements specification & documentation:
outline

 Free documentation in unrestricted natural language
 Disciplined documentation in structured natural language

– Local rules on writing statements
– Global rules on organizing the Requirements Document

 Use of diagrammatic notationsUse of diagrammatic notations
–– System scope: context, problem, frame diagramsSystem scope: context, problem, frame diagrams
– Conceptual structures: entity-relationship diagrams
– Activities and data: SADT diagrams
– Information flows: dataflow diagrams
– System operations: use case diagrams
– Interaction scenarios: event trace diagrams
– System behaviors: state machine diagrams
– Stimuli and responses: R-net diagrams
– Integrating multiple system views, multi-view spec in UML

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

17
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

System scope: context diagrams

 Declare system componentscomponents & their interfacesinterfaces [DeMarco ’78]

=> system structure
what is in system, what is not
environment of each component: neighbors, interfaces

Handbrake
Controller

Driver

Car
handbrake.Sw

motor.Regime

pedal
Pushed

button
Pressed

system
component

connection through
shared phenomenon

(data, event)

18
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

System scope: problem diagrams

 More detailed form of context diagram: highlights...
– the MachineMachine among system components
– for shared phenomenon: who controlscontrols it, who monitorsmonitors it
–– requirementsrequirements, components affected by them

Driver

Car
HC ! handbrake.Sw

C ! motor.Regime

DR ! {pedalPushed,
buttonPressed}

Handbrake shall be ...
activated if the brake button is pressed,
released if the acceleration pedal is pushed

 {pedalPushed,
buttonPressed

}

{BrakeActivation,
BrakeRelease}

controlling
component

Handbrake
Controller

Machine
constrains

refers to

requirement

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

19
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

System scope: frame diagrams

 Capture frequent problem patternsproblem patterns
– typed phenomena (CC: causal, EE: event, YY: symbolic)
– typed components (CC: causal, BB: biddable, XX: lexical)

 E.g. Simple Workpieces, Information Display, Commanded Behavior
(see book)

Commanded Behavior frameCommanded Behavior frame

Control
Machine

Operator

Commanded
World

Component

CM ! C1

CWC ! C2

OP! E4

Command-based
control rules

E4

 C3

B

C

biddable

causal

event

20
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Reusing problem frames

 Candidate system-specific problem diagram can be obtained
by instantiation, in matching situations (cf. Chap. 2)
– under typing constraints
– mutiple frames reusable for same problem world

InstantiatedInstantiated
Commanded Behavior frameCommanded Behavior frame

Driver

Car
HC ! handbrake.Sw

C ! motor.Regime

DR ! {pedalPushed,
buttonPressed}

Handbrake shall be
activated if the brake button is pressed,
released if the acceleration pedal is pushed

 {pedalPushed,
buttonPressed

}

{BrakeActivation,
BrakeRelease}

Handbrake
Controller

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

21
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Conceptual structures: entity-relationship diagrams

 Declare conceptual items, structure them
 EntityEntity: class of concept instances ...

– having distinct identities
– sharing common features (attributes, relationships)
e.g. Meeting, Participant

 N-ary relationship relationship: feature conceptually linking N entities,
each playing a distinctive role (N ≥ 2)
–– MultiplicityMultiplicity, one one side: min & max number of entity instances,

on this side, linkable at same time to single tuple of entity
instances on the other sides

e.g. Invitation linking Participant and Meeting

 AttributeAttribute: feature intrinsic to an entity or a relationship
– has range of values
e.g. Date of Meeting

22
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Entity-relationship diagram: example

Constraints

Participant
1..* 0..*

Initiator

Invitation Meeting

 Date
 Location

1..1

 Name
 Address
 Email

InvitesinvitedTo

excludedDates

preferredDatesImportant
Participant

 Preferences
 Email

Normal
Participant

 …

constraintsFor constraintsFrom

Requesting

 dateRange
 withWhom

 1..*

entity

attribute

attributes of
relationship

binary relationship

A meeting invites at least 1 up to
an arbitrary number of participants

role
specialization

Multiplicities may capture requirements oror domain properties
 No distinction between prescriptive & descriptive

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

23
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Entity-relationship diagrams (2)

 Entity specializationspecialization: subclass of concept instances, further
characterized by specific features (attributes, relationships)
– by default, inherits attributes & relationships from superclass
– rich structuring mechanism for factoring out structural

commonalities in superclasses
e.g. ImportantParticipant, with specific attribute Preferences
 Inherits relationships Invitation, Constraints, attribute Address

 (Email of ImportantParticipant inhibits default inheritance)

 Diagram annotationsannotations: to define elements precisely
– essential for avoiding spec errors & flaws
e.g. annotation for Participant:
“Person expected to attend the meeting, at least partially, under some

specific role. Appears in the system when the meeting is initiated and
disappears when the meeting is no longer relevant to the system”

24
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Requirements specification & documentation:
outline

 Free documentation in unrestricted natural language
 Disciplined documentation in structured natural language

– Local rules on writing statements
– Global rules on organizing the Requirements Document

 Use of diagrammatic notations
– System scope: context, problem, frame diagrams
– Conceptual structures: entity-relationship diagrams
–– Activities and data: SADT diagramsActivities and data: SADT diagrams
–– Information flows: dataflow diagramsInformation flows: dataflow diagrams
–– System operations: use case diagramsSystem operations: use case diagrams
– Interaction scenarios: event trace diagrams
– System behaviors: state machine diagrams
– Stimuli and responses: R-net diagrams
– Integrating multiple system views, multi-view spec in UML

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

25
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Activities and data: SADT diagrams

 Capture activities & data in the system (as-is or to-be)

 ActigramActigram: relates activities through data dependency links
– East → → : input data; West →→ : output data
– North →→ : controlling data/event; South →→ : processor
– Activities refinable into sub-activities

 DatagramDatagram: relates data through control dependency links
– East → → : producing activity; West →→ : consuming activity
– North →→ : validation activity; South →→ : needed resources
– Data refinable into sub-data

 Data-activity duality:
– data in actigram must appear in datagram
– activities in datagram must appear in actigram

26
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

SADT diagrams: actigram example

meeting
Constraints

Handling Constraints

Ask
Constraints

Return
Constraints

meeting
Request

dateRange

dateRange

copyInitiator

constraint
Request

allConstraints
Received

Scheduler

Participant Merge
Constraints

dateRange Deadline
meeting
Request

meeting
Constraints

individual
Constraints

Scheduler

refinement

input data

output dataprocessor

controlling data

activity

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

27
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

SADT diagrams: datagram example

Merge
Constraints

meeting
Constraints

constraints
Repository

Check
Validity

Plan
Meeting

producing activity

controlling activity consuming activity

resource

 Consistency/completeness rules checkable by tools
– Every activity must have an input and an output
– All data must have a producer and a consumer
– I/O data of an activity must appear as I/O data of subactivities
– Every activity in a datagram must be defined in an actigram, ...

data

28
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Information flows: dataflow diagrams

 Capture system operations linked by data dependencies
– simpler but less expressive than actigrams

 Operation = data transformation activity

 Input, output links = data flows
– operation needs data flowing in to produce data flowing out
 (≠ control flow !)

 Data transformation rule to be specified ...
– in annotation (structured NL)
–– oror in another DFD (operation refinement, cf. SADT)

 System components, data repositories = origins, ends of flow

 Consistency/completeness rules checkable by tools, cf. SADT

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

29
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Dataflow diagram: example

Initiator

Ask
Constraints

copyOf
constraints

Request

constraintRequest

meeting
Request

meeting
Constraints

individual
Constraints

Collect
Constraints

Participant

Participant

Merge
Constraints

participantConstraints

Determine
Schedule

meeting
NotificationCheck

Request

invalid
Request

validRequest operation

data repositorysystem component

input data
flow output data

flow

30
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

System operations: use case diagrams

 Capture operations to be performed by a system component
 & interactions with other components

– yet simpler, outline view ... but vague
– to be made precise by annotations, interaction scenarios, ...
– introduced in UML to replace DFDs

 Structuring mechanisms ...
– <<include>>: to specify “suboperation”
– <<extend>> + precondition: to specify “variant” operation
 in exception case

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

31
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Use case diagram: example

Determine
Schedule

Collect
Constraints

Scheduler

Check Request

Initiator

Conflict
Resolver

Participant
<<extend>>
Unauthorized

<<include>>

Deny Request

Ask
Constraints

Merge
Constraints

Resolve
 ConflictsParticipant

operation interactionenvironment
component

software
component

variant
operation

suboperation
every thing good in UML is not new,
every thing new in UML is not good operation performer

32
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Requirements specification & documentation:
outline

 Free documentation in unrestricted natural language
 Disciplined documentation in structured natural language

– Local rules on writing statements
– Global rules on organizing the Requirements Document

 Use of diagrammatic notations
– System scope: context, problem, frame diagrams
– Conceptual structures: entity-relationship diagrams
– Activities and data: SADT diagrams
– Information flows: dataflow diagrams
– System operations: use case diagrams
–– Interaction scenarios: event trace diagramsInteraction scenarios: event trace diagrams
–– System behaviors: state machine diagramsSystem behaviors: state machine diagrams
–– Stimuli and responses: R-net diagramsStimuli and responses: R-net diagrams
– Integrating multiple system views, multi-view spec in UML

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

33
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Interaction scenarios: event trace diagrams

 Capture positive scenarios by sequences of interactions among
instances of system components (cf. Chap. 2)

– variants: MSC (ITU), sequence diagrams (UML, cf. Chap. 13)

 Parallel composition of timelines
– one per component instance

 Pairwise directed interactions down timelines
– information transmission through event attributes

 Interaction event synchronously controlled by source instance
& monitored by target instance
– total order on events along timeline (event precedence)
– partial order on all diagram events

34
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Event trace diagram: example

SchedulerInitiator Participant
meetingRequest

(dateRange, withWhom)

OK-request
? constraints
(dateRange)

! constraints

OK-constr

scheduleDetermination

notification (date, location)notification (date, location)

interaction event attribute component instance

controls
interaction

monitors
interaction

self-interaction
timeline

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

35
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

System behaviors: state machine diagrams
 Capture the admissible behaviors of system components

 BehaviorBehavior of component instance =
 sequence of state transitions for the items it controls

 SM statestate = set of situations where a variable characterizing
 a controlled item has always the same value

– e.g. state MeetingScheduled: always same value for Date, Location
 (while other variable WithWhom on Meeting may change value)

–– InitialInitial, finalfinal states = states where item appears, disappears
– States may have some duration

 SM state transitionstate transition: caused by associated event
–– ifif item in source state and event ev occurs
 thenthen it gets to target state
– Events are instantaneous phenomena

36
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Example of state machine diagram:
meeting controlled by a meeting scheduler

meeting
Request

OK-request

notification

[No
conflicts]

Gathering
Meeting
Data

Constraints
Requested

Planning

Resolving

MeetingNotified

[All available]

[Unauthorized]

[Conflicts]

RequestDenied

MeetingScheduled

weakening
Request

schedule
Determination

KO-request

Validating
Meeting
Data

[Authorized]

initial state final state

state

event

guard

state
transition

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

37
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

State machine diagrams:
transitions and guards

 Event occurrence is a sufficient condition for transition firing
– Event can be external stimulus (e.g. meetingRequest) or

application of internal operation (e.g. determineSchedule)

 Guard = necessary condition for transition firing
– Item gets to target state

ifif item is in source state and event ev occurs
 and only if and only if guard condition is true
– Guarded transition with no event label:
 fires as soon as guard gets true (= trigger condition)

 Non-deterministic behavior: multiple outgoing transitions with
same event and no or overlapping guards
– often to be avoided for safety, security reasons

38
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Scenarios and state machines

 SM tracetrace = sequence of successive SM states up to some point
– e.g. < GatheringMeetingData, RequestDenied >

– always finite, but SM diagram may have infinitely many traces

 A SM diagram generalizesgeneralizes ET diagram scenarios:
– from specific instances to any component instance

– trace coverage: SM traces include ET traces, and (many) more

 e.g. scenario/SM trace from previous slides:
 < ValidatingMeetingData; ConstraintsRequested; Planning;
 MeetingScheduled; MeetingNotified >

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

39
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Concurrent behaviors and statecharts

 Components often control multiple items in parallel

 Problems with flat SM diagram ...
– N item variables each with M values => MN states !
– same SM state mixing up different variables

 StatechartStatechart = parallel composition of SM diagrams [Harel, 1987]

– one per variable evolving in parallel
– statechart statestate = aggregation of concurrent substates
– from MN explicit SM states to M × N statechart states !

 Statechart trace = sequence of successive aggregated SM
states up to some point

 Interleaving semantics: for 2 transitions firing in same state,
one is taken after the other (non-deterministic choice)

40
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Statechart example

 Trace example:
 < (doorsClosed, trainStopped); (doorsClosed, trainMoving);

 (doorsClosed, trainStopped); (doorsOpen, trainStopped) >

 Model-checking tools can generate counterexample traces
leading to violation of desired property (cf. chap. 5)

doorsClosed doorsOpen
opening

closing

[speed = 0]

trainStopped trainMoving
trainStart

[speed = 0]

[doorsState
 = ‘closed’]

parallel
composition

variable
doorsState

variable
trainSpeed

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

41
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Stimuli and responses: R-net diagrams

 Capture all required responses to single stimulus [Alford, 1977]

– chain of response operations to be performed by a system
component

– operation may generate stimuli for other R-nets

 Decision points, operation application under conditions

 Good for visualizing ...
– answers to WHAT IFWHAT IF ? ? questions
– required software reactions to environment events

42
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

R-net diagram: example

Check that initiator is authorized

meetingRequest

 begin

 end

Check dateRange, withWhom

Ask revised meeting dataAsk constraints

Deny meeting

OK KO

 end

 end

Authorized Unauthorized

input stimulus

precedence
response operation

decision point

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

43
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Integrating multiple system views

 Diagrams of different types cover different, complementary
views of the system (as-is or to-be)
– components & interfaces, conceptual structures, operations,

flows, interaction scenarios, behaviors,
 Overlapping aspects => integration mechanism needed for

ensuring compatibility & complementarity among diagrams
 Standard mechanism: inter-view consistency rules inter-view consistency rules the

specifier should meet
– cf. static semantics rules enforced by compilers

“every used variable must be declared”
“every declared variable must be used”, ...

– can be used for inspection checklists
– enforceable by tools
– constrain diagram evolution

44
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Inter-view consistency rules: examples

 Every component & interconnection in a problem diagramproblem diagram must
be further specified in an ET diagramET diagram

 Every shared phenomenon in a problem diagramproblem diagram must appear as
event in an ET diagramET diagram or as entity, attribute, or relationship in
an ER diagramER diagram

 Every data in a flow or repository of a DFD diagramDFD diagram must be
declared as entity, attribute, or relationship in an ER diagramER diagram

 Every state in a SM diagramSM diagram must correspond to some value for
some attribute or relationship in an ER diagramER diagram

 Every interaction event in an ET scenarioET scenario must appear in a
corresponding SM diagramSM diagram

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

45
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Multi-view specification in UML

The Unified Modeling Language (UML) has standardized notations
for diagrams relevant to RE

 Class diagramsClass diagrams: ER diagrams for structural view

 Use case diagramsUse case diagrams: outline of operational view

 Sequence diagramsSequence diagrams: ET diagrams for scenarios

 State diagramsState diagrams: SM diagrams for behavioral view

Further studied in Chaps. 10-13 in a systematic method for
building multi-view models

46
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Diagrammatic notations:
pros & cons

 Formal declaration of different system facets
 + informal annotations of properties for higher precision
 Graphical declaration =>

 overview & structuring of important aspects
 easy to understand, communicate
 surface-level analysis, supported by tools (e.g. query engines)

 Semi-formal specification =>
 language semantics may be vague (different interpretations)

 only surface-level aspects formalized, not item properties
 limited forms of analysis
 functional and structural aspects only

=> formal specification needed for mission-critical aspects

 © A. van Lamsweerde

Axel van Lamsweerde
Requirements Engineering: From System Goals to UML Models to Software Specifications

47
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Requirements specification & documentation (1) :
summary

 Free documentation in unrestricted NL is subject to errors & flaws
 Disciplined documentation in structured NL is always necessary

– Local rules on statements: stylistic rules, decision tables, statement
templates

– Global rules on RD organization: grouping rules, structure templates
 Diagrams for graphical, semi-formal spec of complementary aspects

–– System scopeSystem scope: context, problem, frame diagrams
–– Conceptual structuresConceptual structures: entity-relationship diagrams
–– Activities and dataActivities and data: SADT diagrams
–– Information flowsInformation flows: dataflow diagrams
–– System operationsSystem operations: use case diagrams
–– Interaction scenariosInteraction scenarios: event trace diagrams
–– System behaviorsSystem behaviors: state machine diagrams
–– Stimuli and responsesStimuli and responses: R-net diagrams
– Integrating multiple viewsmultiple views, multi-view spec in UML

48
© 2009 John Wiley and Sons
www.wileyeurope.com/college/van lamsweerde

Requirements specification & documentation (2) :
formal specification

 Logic as a basis for formalizing statements

 History-based specification

 State-based specification

 Event-based specification

 Algebraic specification

