
Copyright © Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. All rights reserved.

Intro to Domain-
Specific Software

Engineering

Software Architecture
Lecture 23

Software Architecture: Foundations, Theory, and Practice

Objectives

 Concepts
 What is domain-specific software engineering

(DSSE)
 The “Three Lampposts” of DSSE: Domain,

Business, and Technology
 Domain Specific Software Architectures

 Product Lines
 Relationship between DSSAs, Product Lines, and

Architectural Styles
 Examples of DSSE at work

2



Software Architecture: Foundations, Theory, and Practice

Objectives

 Concepts
 What is domain-specific software engineering

(DSSE)
 The Three Key Factors of DSSE: Domain,

Business, and Technology
 Domain Specific Software Architectures

 Product Lines
 Relationship between DSSAs, Product Lines, and

Architectural Styles
 Examples of DSSE at work

3

Software Architecture: Foundations, Theory, and Practice

Domain-Specific Software
Engineering

 The traditional view of software engineering shows us
how to come up with solutions for problems de novo

 But starting from scratch every time is infeasible
 This will involve re-inventing many wheels

 Once we have built a number of systems that do similar
things, we gain critical knowledge that lets us exploit
common solutions to common problems
 In theory, we can simply build “the difference”

between our new target system and systems that
have come before

4



Software Architecture: Foundations, Theory, and Practice

Examples of Domains

 Compilers for programming languages
 Consumer electronics
 Electronic commerce system/Web stores
 Video game
 Business applications

 Basic/Standard/“Pro”

 We can subdivide, too:
 Avionics systems

 Boeing Jets
 Boeing 747-400

5

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Traditional Software Engineering

 One particular problem can be solved in innumerable
ways

6

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 



Software Architecture: Foundations, Theory, and Practice

Architecture-Based Software
Engineering

 Given a single problem, we select from a handful of
potential architectural styles or architectures, and go
from these into specific implementations 7

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Domain-Specific Software
Engineering

 We map regions of the problem space (domains) into domain-
specific software architectures (DSSAs)

 These are specialized into application-specific architectures
 These are implemented

8

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 



Software Architecture: Foundations, Theory, and Practice

Three Key Factors of DSSE

 Domain
 Must have a domain to constrain the problem space and

focus development
 Technology

 Must have a variety of technological solutions—tools,
patterns, architectures & styles, legacy systems—to
bring to bear on a domain

 Business
 Business goals motivate the use of DSSE

 Minimizing costs: reuse assets when possible
 Maximize market: develop many related applications

for different kinds of end users
9

Software Architecture: Foundations, Theory, and Practice

Three Key Factors

 Domain
 Must have a domain

to constrain the
problem space
and focus
development

10

Domain Business

Technology



Software Architecture: Foundations, Theory, and Practice

Three Key Factors
 Technology

 Must have a variety
of technological
solutions—tools,
patterns,
architectures &
styles, legacy
systems—to bring
to bear on a
domain

11

Domain Business

Technology

Software Architecture: Foundations, Theory, and Practice

Three Key Factors
 Business

 Business goals
motivate the use of
DSSE
 Minimizing

costs: reuse
assets
when possible

 Maximize
market: develop
many related
applications for
different kinds
of end users

12

Domain Business

Technology



Software Architecture: Foundations, Theory, and Practice

Three Key Factors

 Domain + Business
 “Corporate Core

Competencies”
 Domain expertise

augmented by
business
acumen and
knowledge of
the market

13

Domain Business

Technology

Software Architecture: Foundations, Theory, and Practice

Three Key Factors
 Domain + Technology
 “Application Family

Architectures”
 All possible

technological
solutions to
problems in a
domain

 Uninformed
and unconstrained by
business goals
and knowledge

14

Domain Business

Technology



Software Architecture: Foundations, Theory, and Practice

Three Key Factors
 Business + Technology
 “Domain independent

infrastructure”
 Tools and

techniques for
constructing
systems
independent of any
particular domain

 E.g., most generic ADLs,
UML, compilers, word
processors, general-
purpose PCs 15

Domain Business

Technology

Software Architecture: Foundations, Theory, and Practice

Three Key Factors
 Domain + Business +

Technology
 “Domain-specific

software engineering”
 Applies technology

to domain-specific
goals, tempered by
business and market
knowledge

16

Domain Business

Technology



Software Architecture: Foundations, Theory, and Practice

Three Key Factors
 Product-Line Architectures
 A specific, related set

of solutions within
a broader DSSE

 More focus on
commonalities and
variability between
individual solutions

17

Domain Business

Technology

Software Architecture: Foundations, Theory, and Practice

Becoming More Concrete

 Applying DSSE means developing a set of artifacts more
specific than an ordinary software architecture
 Focus on aspects of the domain
 Focus on domain-specific solutions, techniques, and

patterns
 These are

 A domain model and
 A domain-specific software architecture (DSSA)

18



Software Architecture: Foundations, Theory, and Practice

Domain Model

 A domain model is a set of artifacts that capture
information about a domain
 Functions performed
 Objects (also known as entities) that perform the

functions, and on which the functions are performed
 Data and information that flows through the system

 Standardizes terminology and semantics
 Provides the basis for standardizing (or at least

normalizing) descriptions of problems to be solved in the
domain

19

Software Architecture: Foundations, Theory, and Practice

Domain Model

20

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 



Software Architecture: Foundations, Theory, and Practice

Domain Model

 Defines vocabulary for the domain
21

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Domain Model

 Describes the entities and data in the domain
22

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 



Software Architecture: Foundations, Theory, and Practice

Domain Model

 Defines how entities and data combine to provide features 23

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Domain Model

 Defines how data and control flow through entities 24

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 



Software Architecture: Foundations, Theory, and Practice

(Partial) Domain Dictionary

25

Lunar Module (LM): this is the portion of the spacecraft that lands on the moon.
It consists of two main parts: the Ascent Stage (which holds the crew cabin) and the
Descent Stage, which contains thrusters used for controlling the landing of the LM.

Reaction Control System (RCS): a system on the Lunar Module responsible for the
stabilization during lunar surface ascent/descent and control of the spacecraft’s orientation
(attitude) and motion (translation) during maneuvers

Vertical velocity (see also One-dimensional motion):
For a free-falling object with no air resistance, ignoring the rotation of the lunar surface,
the altitude is calculated as follows:

y = ½ * a * t2 + vi * t + yi
y = altitude

a = constant acceleration due to gravity on a lunar body (see Acceleration for sample values)
t = time in seconds; vi = initial velocity; yi = initial altitude
When thrust is applied, the following equation is used:

y = ½ * (aburner – agravity) * t2 + vi * t + yi
y = altitude

aburner = constant acceleration upward due to thrust
agravity = constant acceleration due to gravity on a lunar
(see Acceleration for sample values)
t = time in seconds; vi = initial velocity; yi = initial altitude

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Info Model: Context Info Diagram

 Defines high-
level entities

 Defines what is
considered
inside and
outside the
domain (or
subdomains)

 Defines
relationships and
high-level flows

26

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 



Software Architecture: Foundations, Theory, and Practice

Info Model: Entity-Relationship
Diagram

 Defines entities
and cardinal
relationships
between them

27

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Info Model: Object Diagram

 Defines attributes
and operations on
entities

 Closely resembles
class diagram in
UML but may be
more abstract

28

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 



Software Architecture: Foundations, Theory, and Practice

Feature Model: Feature
Relationship Diagram

 Describes overall mission operations of a system
 Describes major features and decomposition 29

Feature Relationship Diagram – Landing Phase
 

Mandatory: The Lunar Lander must continually read altitude from the Landing Radar and 
relay that data to Houston with less than 500 msec of latency. Astronauts must be able to 
control the descent of the Lunar Lander using manual control on the descent engine. 
The descent engine must respond to control commands in 250msec, with or without 
a functioning DSKY…
Optional/Variant: Lunar Lander provides the option to land automatically or allow the 
crew to manually steer the spacecraft.
Quality Requirements:
Real-time requirements: The thrusters and the descent engine must be able to respond to 
commands from the computer system in real-time.
Fault tolerance: Lunar Lander must be able to continue in its flight-path even when the 
main computer system (Primary Navigation Guidance & Control) goes down. Lunar Lander 
must be able to maintain system altitude even when one of the thrusters and propellant 
supplies goes down in the Reaction Control System. 

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Feature Model: Use Case Diagram

 Defines use cases
within the domain

 Similar to use case
models in UML

30

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 



Software Architecture: Foundations, Theory, and Practice

Feature Model: Representation
Diagram
 Defines how

information is
presented to
human users

31

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Operational Model: Data Flow
Diagram

32

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

 Focuses on
data flow
between
entities
with no
notion of
control



Software Architecture: Foundations, Theory, and Practice

Operational
Model:
Control Flow
Diagram

 Focuses on
control flow between
entities separate from
data flow

33

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Operational Model: State
Transition Diagram

 Focuses on states
of systems and
transitions between
them

 Resembles UML
state diagrams

34

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 



Software Architecture: Foundations, Theory, and Practice

Reference Requirements
 Mandatory

 Must display the current status of the Lunar Lander (horizontal and
vertical velocities, altitude, remaining fuel)

 Must indicate points earned by player based on quality of landing
 Optional

 May display time elapsed
 Variant

 May have different levels of difficulty based on pilot experience
(novice, expert, etc)

 May have different types of input depending on whether
 Auto Navigation is enabled
 Auto Throttle is enabled

 May have to land on different celestial bodies
 Moon
 Mars
 Jupiter’s moons
 Asteroid

35

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 

Software Architecture: Foundations, Theory, and Practice

Domain-Specific Software
Architecture

 Definition: Definition. A domain-specific software
architecture (DSSA) comprises:
 a reference architecture, which describes a general

computational framework for a significant domain of
applications;

 a component library, which contains reusable chunks
of domain expertise; and

 an application configuration method for selecting and
configuring components within the architecture to
meet particular application requirements.

36

(Hayes-Roth)



Software Architecture: Foundations, Theory, and Practice

Reference Architecture

 Definition. Reference architecture is the set of principal
design decisions that are simultaneously applicable to
multiple related systems, typically within an application
domain, with explicitly defined points of variation.

 Reference architectures are still architectures (since they
are also sets of principal design decisions)
 Distinguished by the presence of explicit points of

variation (explicitly “unmade” decisions)

37

Software Architecture: Foundations, Theory, and Practice

Different Kinds of Reference
Architecture
 Complete single product architecture

 A fully worked out exemplar of a system in a
domain, with optional documentation as to how to
diversify
 Can be relatively weak due to lack of explicit

guidance and possibility that example is a ‘toy’
 Incomplete invariant architecture

 Points of commonality as in ordinary architecture,
points of variation are indicated but omitted

 Invariant architecture with explicit variation
 Points of commonality as in ordinary architecture,

specific variations indicated and enumerated
38



Software Architecture: Foundations, Theory, and Practice

Example Reference Architecture

 Structural view
of Lunar Lander
DSSA

 Invariant with
explicit points
of variation
 Satellite relay
 Sensors

39

Software Architecture: Foundations, Theory, and Practice; Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy; (C) 2008 John Wiley & Sons, Inc. Reprinted with permission. 


