

Asteroid Miner Game

INF 221 Software Architecture - Winter 2013

February, 13
th
 2013

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

2

Contents

1 Game Scenario ... 4

1.1 Introduction .. 4

1.2 Multi-player Goal .. 4

1.3 Glossary .. 4

1.4 Real-Time Data Sharing... 5

1.5 Simple User Story .. 6

1.6 Graphic User Interface (GUI) ... 7

1.7 Non Functional Requirements (NFR) ... 8

1.7.1 Extensibility for Fun and Engagement ... 8

1.7.2 Scalability ... 8

2 Software Architecture .. 9

2.1 Choice for Architectural Styles ... 9

2.1.1 Final Design Choice .. 10

2.1.2 Game Platform - ... 11

2.2 Architecture Description ... 13

2.2.1 Components and Connectors ... 13

2.2.2 Evaluating the Design Solution ... 15

2.2.3 UML Class Diagram .. 16

2.2.4 UMLState Diagram ... 17

2.2.5 Activities and Events Exchanged .. 18

2.2.6 UMLSequence Diagrams .. 20

2.2.7 Detailed Description of State Changes.. 22

3 Part-2 Comments on the Methods and Tools .. 23

3.1 xADL Modeling Methods and Tools ... 23

3.2 UML Modeling .. 25

3.3 AADL Modeling .. 26

3.4 Preliminary Conclusions ... 27

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

3

Tables

Table 1 Glossary .. 4

Table 2 Elements of the GUI .. 7

Table 3 Options considered and respective rationale ... 9

Table 4 Legends for Figure 3 ... 13

Table 5 Game Events .. 22

Figures

Figure 1 Game Console ... 7

Figure 2 Diagram with Control Flow for the Chosen Architecture ... 11

Figure 3 Architecture Diagram created in ArchStudio-4 .. 13

Figure 4 UML Class Diagram ... 16

Figure 5 UML State Diagram with the Spaceship states ... 17

Figure 6 Landing Loop ... 18

Figure 7 Server Loop ... 19

Figure 8 Sequence of method calls in the client side .. 20

Figure 9 Sequence of method calls in the server side .. 21

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

4

1 Game Scenario

“Year 2100, planet Earth is depleted of essential minerals, most dramatically Indio (used in

touchscreens), Gold (for digital circuitry), and Copper (for our electric grid).”

1.1 Introduction

With the above motivation in mind we have designed a software architecture for a multi-player,

networked Asteroid Lander game with an extra element of interaction through mineral mining and

fuel management. This document describes our game design and the architectural decisions

made.

1.2 Multi-player Goal

The goal is to explore one Asteroid rich in minerals which are essential to the current resource

depleted Earth. Players will cooperate to complete a goal of a predefined amount of minerals.

Players will have to land in specific plots of the Asteroid, load the minerals and bring them back

to the Base Station. For doing that, the players will share a total amount of fuel available fuel in

the Base Station. As the game progresses, players can buy extra fuel by with the minerals they

have already collected.

1.3 Glossary

Table 1 Glossary

Term Description

Asteroid
It has a name, a gravity measure, and a Mining Grid (see
definition below)

Base Station

It keeps track of the following data:
- Fuel shared by all game players
- Minerals already collected
- Mineral amount targeted (Goal Score)
- Grid of exploitable fields in the asteroid
- Asteroid being mined

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

Mining Grid

It keeps track of type and amount of minerals available in each
field. Each field has also a limited amount of mineral
exploitable per landing.

Spaceship

Provides all the graphic input and output information for the
user to play the game. An icon represents the Spaceship and
is viewed on a screen. The same screen displays the Asteroid
terrain and the gauges for fuel level, velocity, Leader Board,
field plots available and the Game Score.

Leader Board

It keeps track of the spaceships and their respective amount of
points.

Game Score
Amount of minerals collected and the Goal for each mineral
type. The Goal Score is kept updated for all players.

Goal
Total amount for each mineral that players should collect to
win the game.

1.4 Real-Time Data Sharing

The multi-player aspect implies sharing resources and information. Resources consist of

expendable items (Fuel and Minerals). Information consists of keeping all players aware of

important game states (Game Score, Fuel Level, Leader Board).

Players will share two real-time resources:

 The Fuel Reserve in the Base Station. Fuel is spent during landing is consumed from the

spaceship during landing. After spending all fuel, Spaceships have to request a refuel

from the Base Station

 The Asteroid Mining Field, which is divided in plots by types of minerals

Players will be kept aware of the information updates regarding advancements towards the game

goal and also how well their peers are landing. Regarding the latter, after each successful

landing, the player earns points as recognition of her skillful piloting. Points are displayed in a

Leader Board visible in real-time by all players.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

6

1.5 Simple User Story

1 Players join the game;

2 When there are at least 2 players, the game is started;

3 Player selects an available Mine Plot on the Asteroid;

4 After this choice the Spaceship starts descending and consuming fuel;

5 If landing is unsuccessful (i.e. a crash), the player is out of the game;

6 Otherwise, landing is successful, the player earns points and have the Spaceship loaded

with the minerals available in the Plot

7 Player can then choose among three options:

a Buy fuel to the Base Station

b Return to Base Station to Unload the Minerals (

i This will also refuel the Spaceship

c Quit the game

d Select another Mine Plot to land

8 The game terminates when

a The goal is accomplished

b Either all Spaceships have quitted or crashed

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

7

1.6 Graphic User Interface (GUI)

Table 2 Elements of the GUI

Element

Mine Plot Visually represents the surface on which the Spaceship will land.

Spaceship
An iconic representation of the Spaceship which will be guided by the
player to land on the Asteroid.

Fuel Gauge Displays the amount of fuel left in the Spaceship at any moment.

Horizontal Speed Gauge Displays the direction and amount of horizontal speed.

Vertical Speed Gauge Displays the amount of vertical speed.

Weight The amount of tons of minerals loaded in the Spaceship.

Game Score Gauge
Displays the up-to-date amount of minerals collected and the game
goal.

Leader Board
Displays the name of the Spaceships playing ranked by their earned
points.

Available Mine Plots
Displays how many plots are available per mineral type in the current
Asteroid.

Notifications
Text to make players aware of changes (“player A crashed”, “player B
refueled”, etc.).

Figure 1 has a mockup of the game.

Figure 1 Game Console

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

8

1.7 Non Functional Requirements (NFR)

1.7.1 Extensibility for Fun and Engagement

The following extension points were selected as possible extensions to make the game more

engaging. It is a real challenge to discovering the right features which would make the game

fun and engaging. The future decisions about such extension points depend on detailed

usability studies with final users. Therefore, our concern was to enable some extensibility in

aspects we find promising. Below are the possible extensions our architecture should be able

to support without major disruptions in the overall design.

Asteroid Conditions:

 Change Gravity

 Include Atmospheric Events such As Wind

Spaceship Types:

 Let the user customize her Spaceship by defining attributes of cargo capacity (weight

and volume), fuel capacity, speed, and landing system (e.g. parachutes, reverse

throttle).

Collective Prizes:

 For each set of Mine Plots exploited the Base Station receives extra fuel. A set of Mine

Plots correspond to a specific mineral, therefore, an Asteroid has as many Mine Field

SETs as the different types of minerals.

New Types of Minerals:

 Enable the addition of new types of minerals with different densities.

The solution for extensibility is to specify interfaces to enable loosely couple integration

between the components of our architecture.

1.7.2 Scalability

The game must support multi-users by replicating clients (Spaceships). The most process

intensive requirement expected is the calculation of the Spaceship position during landing.

The solution envisaged for that is to replicate in each client the engine responsible for such

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

9

calculations. Hence, we will have neither network traffic nor server-side concurrency due to

the calculation process.

2 Software Architecture

2.1 Choice for Architectural Styles

Table 3 Options considered and respective rationale

Option Analysis Evaluation

Peer-to-Peer

Components: GameServer,
BaseStation, Asteroid, and
Spaceship.

Positive: Handles each entity as an
independent actor forcing the establishment of
explicit interfaces. Opens the opportunity to
have more components distributed in different
machines.
Negative: Increases the network traffic.
Increases the points of failure in the system,
since local components would now be
accessible via network connections. Increases
complexity without an explicit and defensible
need for it.

Event-Based

Components: GameServer
and Spaceship
EventBus: Connector that
registers the componets
based on the events they are
interested to receive.

Positive: Decouples the server and client side
of the game while still keep the integration and
interaction consistent.
Negative: Requires a more complex connector
than a client-sever solution.

Blackboard

Shared memory = Mine
Fields, Mother Tank
Components = Spacecraft
and GameServer

Positive: One simple solution to share data.
Negative: Has no solution for the shared logic,
i.e., keeping track of the number of the active
Spaceships in the game and synchronizing
the game session.

C2

Level 0 (deepest): Physical
engine, Asteroid Mine Fields,
Monther Tank
Level 1: Spacecraft gauges
(speed, fuel, weight)
Level 2: Spacecraft speed
controls (up, left, right)
Level 3: Game ranking

Positive: clear separation of responsibilities
among components as well as their
interactions.
Negative: Replication of the Physical Engine
would be more difficult, since it would be a
component reused by the upper layers.

Client Server

Client: Spaceship with all the
intensive calculations and
processing.
Server: GameServer with the
shared date

Positive: All intensive processing and state
update could be implemented in the client.
Meanwhile the shared data with less frequent
update cycles could be maintained at the
server side. This would make the game
simple, scalable and elegant to implement.
Negative: Any change in the clients’ needs

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

11

Figure 2 Diagram with Control Flow for the Chosen Architecture

2.1.2 Game Platform -

Platform: Astral/Pygame

Programming Language: Python

The choice of programming languages, graphics and physics engines and networking libraries

impact many components of the development process. While selecting our tools, we were aware

of time constraints (1 month at design-time), robustness of networking features, game engine

stability, and availability of community support and documentation.

Pygame (http://pygame.org/wiki/about) is a widely used, stable, and user-friendly game

development framework written in Python. The Pygame community frequently holds week-long

game competitions, which is a testament to the kind learning curve and rich features of Pygame

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

12

framework. Python is a highly expressive language with many useful packages, and is a good

choice for rapid development projects like ours.

While researching PyGame, we encountered numerous networking libraries to implement

multiplayer functionality. Mastermind and PodSixNet are most commonly used for multiplayer

networked games, but are both fairly low level. We also considered a Tornado server and

Websockets, but we acknowledged that such an elaborate solution is more time-consuming and

bug-inducing than our limited timeline allows. Astral Networking

(http://code.google.com/p/astralnetworking/) is a high-level Python networking tool that provides

the functionality we need to build our Lander game. The system is built on top of the Mastermind

and PodSixNet libraries (used interchangeably as its adapters), and provides an out-of-the-box

implementation of networked multiplayer with a few examples. Nonetheless extensible and used

in numerous PyGame projects, it has limited documentation. Hence, we plan allocate more

networking and synchronization development time to make sure we work out bugs. We would

need to build the same functionality if we used Mastermind or PodSixNet (both quite stable), so

Astral is a very handy and PyGame-compatible head start. We elaborate on our design decisions

as a result of features of this framework later in the document. One of our team members has

developed games in PyGame previously and can provide insight on limitations and strengths of

that platform, as needed.

We seriously considered Java due to the mapping feature of the 1.x tool, and our team's

extensive experience with the language. However, there is a limited quantity of robust and stable

Java game development frameworks, and it is a difficult language in which to develop UI

features. By using PyGame and the Astral engine (developed by a PyGame developer

specifically for the framework), we will be able to create a functioning multiplayer game interface

within a week of our initial architectural style design meeting. In the event that we encounter

networking issues with the Astral tool, the Python Tornado webserver is a flexible, stable, and

well-documented alternative choice.

Ultimately, by balancing our combined experience levels and our cautious, we have selected a

framework system that provides rapid development functionality to bring our architectural design

to life.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

13

2.2 Architecture Description

2.2.1 Components and Connectors

The client side is implemented as Model-View-Controller pattern. Each of the components and

connectors are described below. Just below the figure, there is a legend with the names for each

element. Each name is traceable to the Class Diagram in available in Figure 3.

Figure 3 Architecture Diagram created in ArchStudio-4

Table 4 Legends for Figure 3

Component

Connector (xADL)
Description Class Diagram

(UML) Figure-3

MethodCall Integrates via method calls MethodCallConnector
TCP Integrates via TCP calls TCPConnector

Controller

Handles events generated by the GUI and

updates the GUI with data retrieved from the

GameServer

SpaceshipController

View Manages the GUI SpaceshipViewer

Server
GameServer keeps track of data shared among

players
GameServer

Physics

Performs the calculations needed to correctly

process the motion of the Spaceship in the

screen.

PhysicsEngine

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

14

2.2.1.1 Detailed Description of Connectors

TCP connector

Role: Communication

Type: Procedure Call Connector, Facilitator

Client and server both have an instance of this connector and they call the send()

method of this connector to push data to the other side.

Parameters: Host, Port, Data, Communication protocol. (default = 'TCP'), Network

Adapter (default = 'podsixnet')

Podsixnet library is a lightweight network layer that asynchronously serializes network

events and arbitrary data structures, which are delivered them via the TCP connector.

The TCP Connector in turn delivers the data to the required components. The TCP

connector will be an instance of podsixnet and will act as a facilitator.

MethodCall Connectors

Role: Communication

Type: Data Access Connectors

These are procedure call connectors. Different components have their instances and

these components call the required methods of these connectors to access data from

other components.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

2.2.2 Evaluating the Design Solution

2.2.2.1 Extensibility

We provided extensibility of the physical engine and the shared data server implementations.

It was accomplished by a layer of services which decouples the client from the specific

implementations.

2.2.2.2 Network Usage

Our architecture uses the network resources with parsimony due to the following design

decisions:

- Spaceship physical computations happen in client side

- Shared data is only transmitted in an event of change on it.

- No need for a unified clock, because players are synchronized by means “state change

events”

2.2.2.3 Game synchronization

Since it is a multiplayer game, we have the following two types of synchronizations among

players:

- Shared data is kept up to date for all players via “state change events”

- Players are made synchronously aware of the events of game start and finish

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

16

2.2.3 UML Class Diagram

The UML Class Diagram (Figure 4) provides a second level of detail to the System Architecture

diagram we saw in Figure 3. In the UML Class Diagram we can see the methods and attributes

for each component and connector. Moreover, some auxiliary data structures are also made

explicit, such as the Position, the BaseStation, the MiningGrid and the Plot.

Figure 4 UML Class Diagram

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

17

2.2.4 UMLState Diagram

Figure 5 depicts the state machine of the Spaceship. This simplicity of this state machine

contrasts with the amount and complexity of events exchanged between the client and the server

(shown in Table 5).

Figure 5 UML State Diagram with the Spaceship states

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

2.2.5 Activities and Events Exchanged

Complementary to the Spaceship state machine, we also designed the events shared between

the client and the server. For that we used a Graphical AADL Notation (Figure 6 and Figure 7)

depict the sequence of such events in the context of the loops in the client side and in server

side.

Figure 6 Landing Loop

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

19

Figure 7 Server Loop

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

20

2.2.6 UMLSequence Diagrams

In order to demonstrate how the methods in the class diagram generate the sequence of events

describe in the AADL diagram, we created two UML Sequence Diagrams (Figure 8 and Figure

9).

Figure 8 Sequence of method calls in the client side

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

21

Figure 9 Sequence of method calls in the server side

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

22

2.2.7 Detailed Description of State Changes

Some of our “state changes” trigger events while others do not. The reason is that some changes

impact solely the client that generated the event. For example, the event of Spaceship landed

impacts only the respective Spaceship client. In our game logic this information is not necessary

for the other players. On the other hand, when a Spaceship requests to buy fuel for the

BaseStation, this event affects the level of fuel seen by all the other players, hence a state

change event must be raised. The following table describes all events we will have in our game.

Table 5 Game Events

Name of Event Source Trigger Listener and Methods

Land Spaceship
Spaceship
Viewer

LandButton = = clicked SpaceshipController

Spaceship
landed

Spaceship
Viewer

(Altitude == 0.0) AND
(VerticalMomentum <= 50.0)
AND (HorizontalMomentum
<= 20.0)

SpaceshipController
Method: LandedSafely()

Spaceship
crashed

Spaceship
Viewer

(Altitude == 0.0) AND
(VerticalMomentum > 50.0)
OR (HorizontalMomentum >
20.0)

Spaceship Controller,
LeaderBoard
Method: CrashLanded()

Return to Earth
Spaceship
Viewer

EarthButton = = clicked
Spaceship Controller,
BaseStation
Method:ReturnToEarth()

Buy fuel
Spaceship
Viewer

BuyFuelButton = = clicked
GameServer
Method: BuyFuel()

Choose plot to
land

Spaceship
Viewer

(PlotType = = available) AND
(Plot Type clicked)

GameServer
Method: RequestPlot

Quit game
Spaceship
Viewer

QuitButton = = clicked
GameServer
Method:QuitGame()

Game Start GameServer
(NumberOfPlayers > = 2)
AND (StartFlag <> 1)

SpaceshipController
Method:
Network_response()

Game Over GameServer
(NumberOfPlayers < 2) AND
(StartFlag == 1)

SpaceshipController
Method:
Network_response()

Base fuel
changed

GameServer
FuelLevel.add(value) OR
FuelLevel.subtract(value)

SpaceshipController
Method:
Network_response()

Leader Board
changed

GameServer
leaderList.update(Spaceship,
point)

SpaceshipController
Method:
Network_response()

MiningGrid
changed

GameServer
grid.setFieldAvailable
(latitude, longitude, 0)

SpaceshipController
Method:
Network response()

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

3 Part-2 Comments on the Methods and Tools

3.1 xADL Modeling Methods and Tools

Learning about Modeling: One of the most important lessons we learned is that modeling

demands the mastering of the tools. The designer will always lack the confidence unless she

doesn’t know how the various components or connectors can be manipulated with the tool.

Besides that, the modeling experience showed us how options are generated and discarded in

the process. Awareness and knowledge of the platform improved as we advanced. We initially

designed the architecture as a hybrid of blackboard and events based system. Soon, when we

started studying about Pygame and Astral networking library, we realized that our decisions were

too different from the standard model offered by the game platform.

Modeling Notations: Archstudio has options to create structures representing parts of a system.

We are using three structures, one for client, one for server and one to integrate client and

server. We came across the following elements while designing our architecture:

 component: can be used to represent any component in the system

 connector: can be used to represent any connector in the system

 interfaces : define how a connector or component will interact to the outer system. It has

four different options, in/out/none/inout.

 links: links are to join of two interfaces.

 substructures: these are very important if you want to depict hierarchy in the system.

 types

o component type: to make use of the substructure, we need to create a component

type and then assign a structure to the type. We created two component types -

client and server.

o constructor type: similarly we can make custom constructor elements using the

types.

Tool - ArchStudio 4:

Installation: We enjoyed the Archstudio 4 for most of the time during this exercise. We

faced some difficulties while installing the plugin of Archstudio 4 on Eclipse Juno. The error

messages pointed out that there is a problem with the version of Eclipse and Archstudio, as

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

24

they were not compatible. After updating the Eclipse we could easily install Archstudio on

our machine.

Learning Curve: Nearly everything on Archstudio is done through context menu. We took

time to understand, and we think we are still not very comfortable with this approach. The

grid background is something that cannot be enabled from the context menu. So, we had to

go through the series of button clicks exploring our way to enable grid view. The tutorial

available online is very limited and also we think there is not enough material (tutorials)

available to understand different editors and their uses in Archstudio.

Bugs/Issues: we still have not yet figured out how to draw a link that is parallel to the

horizontal lines or to the vertical lines in the grid.

Creating Substructures: while getting familiarized with Archstudio, we created some

components and connectors and also fiddled around with different editors. But soon we

realized that doing modeling with one level of structures was very straight forward. The

majority of our time was spent in learning how to create hierarchy of structures. We are still

trying to understand if it is possible to create a link that joins a sub-structure component to

a connector that is outside the parent structure. We really wish we could open the xml for

structures and directly make modifications to the xml.

Font size: we are not sure if it is possible to modify the font size of the description of

components and connectors as we have not yet figured it out.

Future work: we need to learn about different editors that come with Archstudio. So far we

only tried Archipelago and ArchEdit.

xADL 2.0: Archstudio generates xADL behind the scenes and it designers are required to

know xADL to work with Archstudio.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

25

3.2 UML Modeling

Tool: Creately (www.creately.com), which is a cloud-based tool running inside a browser. The

tool enables multiple users to edit one diagram at same time. We have been using this tool in the

last two years without any issues. The tool also has a catalog of sample models that are very

illustrative for beginners.

Learning about Modeling: UML has a minimalistic approach to diagrams, which makes the

learning curve very smooth. On the other hand, such simplicity leaves excessive responsibility to

the user to guarantee consistency and coherence among the depicted models. Based on the

industrial experience of one our team members, we could realize the pitfalls our team faced while

modeling with UML.

Modeling Notation

Concerning coherence, we had issues with the labels in the diagrams, because such properties

are not enforced by the language. For instance, in the activity diagrams we must use sentences

denoting actions instead of substantives. In the state diagrams we must use substantives to

denote states and actions in the arrows to denote change.

Concerning consistency, we had to manually verify whether method names in the classes

matched the activities and method calls in the sequence diagram. Further complicating the job,

any later change implied in a huge impact on reviewing all the diagrams.

In our opinion UML seems useful to rapidly sketch ideas and to plan ahead the implementation.

We would neither use UML to validate/verify our model against our requirements nor to generate

code from it. Since the effort to create an UML diagram is low, the cost of discarding it is also

negligible.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

26

3.3 AADL Modeling

We chose AADL to model the interactions and control flow between elements of the game loop,

game server, and clients. AADL may be installed through a number of toolkits, though their

stability and ease of use varies. We used multiple versions to find an optimal one - a combination

of TOPCASED with its Adele editor proved most streamlined. Documentation on AADL is

extensively example-focused, particularly in the embedded systems and mission-critical

engineering domains (much more complicated and device oriented than a Lunar Lander game).

Some tutorials exist but finding a concrete guide to AADL components is practically impossible.

AADL is designed to be extensible as a modeling language. While it is indeed possible to

customize, the core language appears oriented to the software transactions and control flows

between hardware components. It was challenging to portray the control flow and particularly

decision junctions in our Lunar Lander game with the core elements of the language.

AADL components don't map clearly to gameplay configurations and multi-option game menus; a

simple decision tree or multi-branch junction gets messy. However, the simplicity of the language

made modeling the overall flow of control between the game server and lander actions smooth.

Many AADL editors/modelers use layered systems to organize the graphic editor view. We found

AADL easier to program than to diagram in its core language form once we understood the

syntax. Many AADL toolkits are dependency-heavy Eclipse plugins; a single one (Ocarina) that

we found had adequate Vim/Emacs integration. A good workflow for future modeling activities

would be a Vim or Emacs plugin with hooks to a simple diagram modeling UI such as Dia (which

has a user-friendly AADL diagraming feature, actually).

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

27

3.4 Preliminary Conclusions

Tool mastering was definitely paramount. By which we mean both the tool and the diagraming

language. We realized that learning while doing has its challenges. Since it is difficult to discern

between the situations we are learning with the tool or about the tool, we have to accept initial

imprecisions and work iteratively as our comprehension and skill together evolve.

Modeling forced us to think about how various components and connectors would interact and

also gave us some insight about which properties our system would exhibit. For example, initially

we thought of using a database to maintain the game state, but later understanding that the

states could be shared at the server side, we confidently dropped the database idea. This also

implied in a compromise. On one hand, we would have lesser complexity by stripping out a

persistent data access layer and all its database connectors. On the other hand, we would

decrease scalability, since the server will now be keeping the complete game state in memory.

Hence, our system would be at closer limit to the maximum number of players we could host.

Another similar important decision was sharing game data and not the visual space among the

different players. This decision does not have any impact on the architecture of the system but it

saved us a lot of accidental complexity related to drawing objects of one player on the screens of

all the other players. Moreover, we realized that such operations would require a lot of

synchronization triggered by every movement made by one player and the respective and

necessary propagation to all other players. Such would end up in slowing down the user

experience.

Ultimately, concerning the level of detail provided to the implementation phase. The use of

multiple diagrams and the experimentation with three different modeling languages helped us

stress aspects we would probably only detect during code integration and testing. Holding us

back from diving in implementation issues definitely paid back not only in a more elegant

(consistent + coherent) design but also in less uncertainty during the near future implementation.

Asteroid Miner Game - Parts 3,4,5
INF 221 Software Architecture - Winter 2013

“Year 2100, planet Earth is depleted of essential minerals, most dramatically Iron (used in civil

engineering), Gold (for digital circuitry), and Copper (for our electric grid).”

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

2

Contents

1 Introduction ... 4

1.1 Objective .. 4

1.2 Simple User Story .. 4

2 Revised Architecture and Mapping to the Implementation ... 5

2.1 How our Glossary Mapped to our Entities? .. 5

2.2 We missed the Constant Values in our Design! ... 6

2.3 How did we implement the real-time data sharing? .. 6

2.4 Graphic User Interface (GUI) ... 8

2.4.1 So, what is New in the GUI? ... 9

2.5 How did we (and did not) implement the Non Functional Requirements? 11

2.5.1 Extensibility for Fun and Engagement ... 11

2.5.2 Scalability ... 12

2.6 How did we implement the Components and Connectors? .. 12

2.6.1 What changed in our Connector Model? ... 13

2.6.2 UML Class Diagram .. 16

2.6.3 UMLState Diagram ... 17

2.6.4 Activities and Events Exchanged .. 18

2.6.5 UMLSequence Diagrams .. 20

2.7 How did we implement the Events and State Changes? .. 22

3 Part-5 Assessment of our Experience ... 23

3.1 How hard was to maintain consistency? .. 23

3.2 How confident we are that consistency was maintained? ... 23

3.3 What kind of changes were made in the model in the course of the implementation 23

3.3.1 Changing Astral Networking Library to PodSixNet .. 24

3.3.2 Troubles with PodSixNet ... 24

3.3.3 GUI Integration Problems.. 25

3.4 How much the architectural model helped during the implementation? 25

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

3.4.1 Because Important Complexity was Pruned during Modeling 25

3.4.2 Because Non-Functional Requirements Were Realistically Set during Modeling .. 25

3.4.3 But Some Things Required Testing to Reason About ... 26

3.5 If we had to do it again, what would we have done differently? 26

3.5.1 Granularity Level of the Model .. 26

3.5.2 Performing Proofs of Technology during Design and Modeling 27

Tables

Table 1 Entities and Implementation Classes ... 5

Table 2 Elements of the GUI .. 8

Table 4 Legends and Traceability of Elements for Figure 3 .. 13

Table 4 Game Events .. 22

Figures

Figure 1 Game Console ... 8

Figure 2 GUI with Spaceship Landing above Crash Speed (red line on the bottom) 9

Figure 3 Architecture Diagram created in ArchStudio-4 .. 13

Figure 4 How we Implemented the TCPConnector .. 14

Figure 5 Final UML Class Diagram .. 16

Figure 6 UML State Diagram with the Spaceship states ... 17

Figure 7 Clients Waiting for Game to Start (notification on top right corner) 17

Figure 8 Landing Loop ... 18

Figure 9 Server Loop ... 19

Figure 10 Sequence of method calls in the client side .. 20

Figure 11 Sequence of method calls in the server side .. 21

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

4

1 Introduction

1.1 Objective

This document describes the following:

• The architectural models revised, screenshots and documentation based on the previous

report.

• A description of our implementation

• Evidence that the implementation and the model(s) are consistent.

For each section we comment how the implementation reifies the design. We accomplished that

by means of tracing each element to the classes and methods.

Just to remember our game logic, below is a synthetic description of it.

1.2 Simple User Story

1 Players join the game;

2 When there are at least 2 players, the game is started;

3 Player selects an available Mine Plot on the Asteroid;

4 After this choice the Spaceship starts descending and consuming fuel;

5 If landing is unsuccessful (i.e. a crash), the player is out of the game;

6 Otherwise, landing is successful, the player earns points and have the Spaceship loaded

with the minerals available in the Plot

7 Player can then choose among three options:

a Buy fuel to the Base Station

b Return to Base Station to Unload the Minerals (

i This will also refuel the Spaceship

c Quit the game

d Select another Mine Plot to land

8 The game terminates when

a The goal is accomplished

b Either all Spaceships have quitted or crashed

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

6

2.2 We missed the Constant Values in our Design!

Something we did not predict in design time was the need for initializations and constant

variables. Two sets of constants were needed. First the initial values for fuel, goal, conversion

rate from gold to fuel, number of plots available for each mineral, etc. The sheer amount of

constants emerged only when we got into the details of the methods. Second, we also needed

standard labels (strings) to reference the events unambiguously in the client and the server, so

each side is confident about what data and action is expected.

The solution was to place all of them in a class Constants.py . This class is shared by the server

and the client. Below is the list of constants adopted:

2.3 How did we implement the real-time data sharing?

The multi-player aspect implies sharing resources and information. Resources consist of

expendable items (Fuel and Minerals). Information consists of keeping all players aware of

important game states (Game Score, Fuel Level, Leader Board).

Players will share two real-time resources:

• The Fuel Reserve in the Base Station. Fuel is spent during landing is consumed from the

spaceship during landing. After spending all fuel, Spaceships have to request a refuel

from the Base Station.

o Implemented by class BaseStationModel.py, attribute “fuel”

o Maintained by the following methods in GameServer.py

� canRefuelSpaceship

� withdrawFuel

� canBuyFuel

� buyFuel

• The Asteroid Mining Field, which is divided in plots by types of minerals

o Implemented by class BaseStationModel.py, attribute “MiningGrid”

o Maintained by the following methods in GameServer.py

� canAssignPlot

� freePlot

� assignPlot

� conquerPlot

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

7

Players will be kept aware of the information updates regarding advancements towards the game

goal and also how well their peers are landing. Regarding the latter, after each successful

landing, the player earns points as recognition of her skillful piloting. Points are displayed in a

Leader Board visible in real-time by all players.

o Implemented by class BaseStationModel.py, attribute “LeaderBoard

o Maintained by the following methods in GameServer.py

� getLeaderBoard

� getPlayerScore

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

9

Figure 2 GUI with Spaceship Landing above Crash Speed (red line on the bottom)

2.4.1 So, what is New in the GUI?

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

10

We had two changes made in the UI. First, the inclusion of a notification text area – see on top right corner of

Figure 2. During functional testing we realized that, since we have a multi-player game and the

UI does not provide a visual representation of the other the state of the other players, it was very

difficult to coordinate with other players (towards the collective goal). The solution we found was

quite simple, reuse the event messages which were already part of our architecture and display

them. Examples of relevant messages for the user are:

• Base Station is running out of fuel

• Some player just bought fuel to the Base Station

• Some player quit or crashed

• Goal was accomplished

The second change was to remove the Weight because the PhysicalEngine ended up not

needing it to calculate the Spaceship position.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

11

2.5 How did we (and did not) implement the Non Functional Requirements?

2.5.1 Extensibility for Fun and Engagement

The following extension points were selected as possible extensions to make the game more

engaging. It is a real challenge to discovering the right features which would make the game

fun and engaging. The future decisions about such extension points depend on detailed

usability studies with final users. Therefore, our concern was to enable some extensibility in

aspects we find promising. Below are the possible extensions our architecture should be able

to support without major disruptions in the overall design.

Asteroid Conditions:

• Change Gravity

• Include Atmospheric Events such as Wind

• How-to

o Extend the PhysicsEngine.py and create new attributes in the Constants.py

class (for wind, different value for gravity, etc.)

Spaceship Types:

• Let the user customize her Spaceship by defining attributes of cargo capacity (weight

and volume), fuel capacity, speed, and landing system (e.g. parachutes, reverse

throttle).

• How-to

o Extend the PhysicsEngine.py and create new attributes in the Constants.py

class (for wind, different value for gravity, etc

Collective Prizes:

• For each set of Mine Plots exploited the Base Station receives extra fuel. A set of Mine

Plots correspond to a specific mineral, therefore, an Asteroid has as many Mine Field

SETs as the different types of minerals.

• How-to

o We did not support this extension . Major changes should be made in the

methods in the GameServer (buyFuel, returnToBaseStation)

New Types of Minerals:

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

12

• Enable the addition of new types of minerals with different densities.

o We did not support this extension . Major changes should be made in the

methods of the GameServer (selectPlot) and in the SpaceshipViewer (mineral

panel). All the game score and game goal calculations should also be modified.

2.5.2 Scalability

The game has no functional limitation of number of users. One possible technical limitation is

the fact that we keep client states in the server side. So, an excess of clients must start hurting

the server memory management at some point.

Besides that, the most process intensive requirement expected was the calculation of the

Spaceship position during landing. The solution designed and implemented was to replicate

in each client the engine responsible for such calculations. Hence, we will have neither

network traffic nor server-side concurrency due to the calculation process.

2.6 How did we implement the Components and Connectors?

The client side is implemented as Model-View-Controller pattern. Each of the components and

connectors are described below. Just below the figure, there is a legend with the names for each

element. Each name is traceable to the Class Diagram available in Figure 3.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

14

Figure 4 How we Implemented the TCPConnector

Role: Communication and Statefull

Type: Procedure Call Connector, Facilitator

Client and server both have an instance of this connector and they call the send()

method of this connector to push data to the other side by calling a method

network_<message-name>

Parameters: Host, Port, Data, Communication protocol. (default = 'TCP'), Network

Adapter (default = 'podsixnet')

Podsixnet library is a lightweight network layer that asynchronously serializes network

events and arbitrary data structures, which are delivered them via the TCPConnector.

The TCP Connector in turn delivers the data by calling a method in the with an specific

signature. The TCPConnector will be an instance of podsixnet Channel class and clearly

act as a facilitator.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

15

MethodCall Connectors

No changes were made in the design of the MethodCall Connectors. We used such

connector types for all the communication between components residing in the same

machine, such as:

o SpaceshipViewer and the PhysicsEngine

o TCPConnector and GameServer

o Client state representations in the server

Role: Communication

Type: Data Access Connectors

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

16

2.6.2 UML Class Diagram

The UML Diagram (Figure 5) maps directly to the classes we have in the source code. The few

minor changes made were method signatures and a simplification of data structures in the

BaseStationModel class. The simplification comprised the use of dictionary-like data structures (

{name:value, name:value}), instead of classes.

Figure 5 Final UML Class Diagram

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

17

2.6.3 UMLState Diagram

No changes were made in the UML State Diagram. Figure 6 depicts the state machine of the

Spaceship. This simplicity of this state machine contrasts with the amount and complexity of

events exchanged between the client and the server (shown in Table 4).

Figure 6 UML State Diagram with the Spaceship states

Below in Figure 7 are the two client interfaces waiting for the start event from the server.

Figure 7 Clients Waiting for Game to Start (notification on top right corner)

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

18

2.6.4 Activities and Events Exchanged

No changes were made in the Activities Diagram.

Complementary to the Spaceship state machine, we also designed the events shared between

the client and the server. For that we used a Graphical AADL Notation (Figure 8 and Figure 9)

depict the sequence of such events in the context of the loops in the client side and in server

side.

Figure 8 Landing Loop

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

19

Figure 9 Server Loop

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

20

2.6.5 UMLSequence Diagrams

Regarding the Sequence Diagrams, we had two changes. First the method signatures changed.

Second and most importantly, the inversion of control became clearer when we implemented.

Client and Server classes are called by the PodSixNet framework, this was not explicit in the

sequence diagrams.

In order to demonstrate how the methods in the class diagram generate the sequence of events

describe in the AADL diagram, we created two UML Sequence Diagrams (Figure 10 and Figure

11).

Figure 10 Sequence of method calls in the client side

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

21

Figure 11 Sequence of method calls in the server side

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

23

3 Part-5 Assessment of our Experience

3.1 How hard was to maintain consistency?

Concerning consistency, we had to manually verify whether method names in the classes

matched the activities and method calls in the sequence diagram. Further complicating the job,

any later change implied in a huge impact on reviewing all the diagrams.

Therefore, it was very hard to keep consistency of the UML Class diagrams and Sequence

diagrams. That was not the case for the State Diagrams and the XADL Activity Diagram. The

problem we faced with UML is that it is a too low level model, which ends up having too tightly

coupled mapping to the code. Hence, any minor change to the code renders the model

inconsistent.

As we said in the previous report, in our opinion UML seems useful to rapidly sketch ideas and to

plan ahead the implementation. We would neither use UML to validate/verify our model against

our requirements nor to generate code from it. Since the effort to create an UML diagram is low,

the cost of discarding it is also negligible.

3.2 How confident we are that consistency was maintained?

We are very confident in respect to the ADL and XADL diagrams, which were used respectively

to model the component-connectors and the states-activities. On the other hand, we are by no

means confident that the UML reflects 100% our code. If we were supposed to do that, we would

end up having gigantic diagrams with several lines of method signatures.

3.3 What kind of changes were made in the model in the course of the

implementation

We face three major changes related first to the choice and adaptation to the networking

framework; second related to integrating the GUI to our game logic. Minor functional changes

were already pointed in the previous sections. Below we describe the major changes.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

3.3.1 Changing Astral Networking Library to PodSixNet

In our prescribed architecture, we initially proposed implementing multi-player networking using

the Astral Networking Library. We quickly outstretched that plugin's functionality and

documentation; in particular, documentation in numerous advanced features was simply not

functioning. To implement our architecture, we instead used the PodSixNet networking adapter. It

is stable and well-documented, and allowed us greater flexibility in implementing our client and

server. This was a teachable moment for our team: the supposed "shortcut" of a framework such

as Astral was actually more trouble than it was worth. Our time was better spent with the core

plugin and we were able to carefully craft our system without the limitations of a higher-level

framework. We were also able to learn how to troubleshoot multiplayer network interaction in

Python.

3.3.2 Troubles with PodSixNet

The adaptation to PodSixNet were not larger because we had the time to study it thoroughly

during design and modeling time. Otherwise, we are sure to have had major changes to our

component-connector model. Two issues troubled us. First, is the communication truly both

ways. In other words, both the client and the server are allowed to initiate a communication? The

doubt stem from not initially reasoning how the server obtained the IP addresses of the clients,

because we only provided as input the server IP address. Only after carefully reading the

framework source code and digging three layers of classes (as demonstrated in our Class

Diagram), we found the point where the framework obtains the necessary data. We had some

hot group discussion concerning the effective need of this information, which in turn gave as a

good clarification of the basics of remote procedure call architecture. Second issue involved the

mapping between the events and the handing methods. We did not realize in the beginning (even

after having some code running) that the framework unmarshalls an specific message text

passed in the event and composes a call to a method. I.e., the name of the method is

composition of the words "Network_" and the text passed in the event (e.g., "response"). After

grasping that, we could create new methods instead of relying on single one letting it make all

unfolding calls based another data passed in the event.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

25

3.3.3 GUI Integration Problems

We used pygame, a Python gaming library, to build our game console and mining features. A

pygame application usually includes UI initialization and a game-update loop where components

of the game are drawn to the pygame canvas. One interesting aspect of our UI is that we

exchange more than lander coordinates across the network. We chose pgu, a GUI library for

python, to implement our Client-Side view. One advantage of this library is that it provided a

framework for us to add common UI elements such as dialogs, tables, and buttons easily.

However , the library has not been updated since 2011, and the documentation varies in quality.

We had to work around certain connector bugs with native event handling, but this was a

manageable task. We realized that these bugs in event handling existed later on in our

development process, so the logical choice was to work around them and not start from scratch.

It is likely that many software development teams encounter these decisions - at what point is the

architecture supporting too many legacy versions? Too many quick-fix hacks? Every decision is

expensive when you stray from your planned architecture.

3.4 How much the architectural model helped during the implementation?

3.4.1 Because Important Complexity was Pruned during Modeling

Modeling forced us to think about how various components and connectors would interact and

also gave us some insight about which properties our system would exhibit. For example, initially

we thought of using a database to maintain the game state, but later understanding that the

states could be shared at the server side, we confidently dropped the database idea. This also

implied in a compromise. On one hand, we would have lesser complexity by stripping out a

persistent data access layer and all its database connectors. On the other hand, we would

decrease scalability, since the server will now be keeping the complete game state in memory.

Hence, our system would be at closer limit to the maximum number of players we could host.

3.4.2 Because Non-Functional Requirements Were Realistically Set during

Modeling

Another similar important decision was sharing game data and not the visual space among the

different players. This decision does not have any impact on the architecture of the system but it

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

26

saved us a lot of accidental complexity related to drawing objects of one player on the screens of

all the other players. Moreover, we realized that such operations would require a lot of

synchronization triggered by every movement made by one player and the respective and

necessary propagation to all other players. Such would end up in slowing down the user

experience.

3.4.3 But Some Things Required Testing to Reason About

While testing our system, we found ourselves reflecting on many design decisions that we had

not realized would be challenging when we initially designed our architecture. We realized that

player experience - the experience of a user from network connection to finishing the program -

was something that we should have considered more deeply and perhaps even storyboarded in

great detail step by step. This realization came about as a result of the challenge of testing for

different GUI functionality. Even with modular network architecture, GUI testing is a slow and

painstaking process. No system like Selenium (http://docs.seleniumhq.org/, an automated test

framework for browser applications) exists for game applications.

3.5 If we had to do it again, what would we have done differently?

3.5.1 Granularity Level of the Model

Concerning the level of detail provided by the UML diagrams, we believe they did not pay off the

cost of creating and maintaining them. Many other classes and methods appeared which were

not represented in the UML class diagram. The same is true for the UML Sequence diagram.

The big take away for us is to learn how to master the modeling in the right level of abstraction

while we still are able to perform proofs of technology with the candidate frameworks. To make

sense of framework functioning and how it affects our initial model, some level of detail above

lines and boxes is needed. The solution, we suggest, is to rely more on the taxonomy of

connectors.

Asteroid Miner Game INF 221: Software Architecture – Winter 2013

3.5.2 Performing Proofs of Technology during Design and Modeling

The architectural uncertainty and trouble we faced with the frameworks for GUI and for

Networking could have been avoided if we had implemented small prototypes. Such would have

given us a better understanding of the how those would have affected our models.

