#
All maximal independent sets and dynamic dominance for sparse graphs

##
Speaker: Elham Havvaei

We describe algorithms, based on Avis and Fukuda's reverse search paradigm, for listing all maximal independent sets in a sparse graph in polynomial time and delay per output. For bounded degree graphs, our algorithms take constant time per set generated; for minor-closed graph families, the time is O(n) per set, and for more general sparse graph families we achieve subquadratic time per set. We also describe new data structures for maintaining a dynamic vertex set S in a sparse or minor-closed graph family, and querying the number of vertices not dominated by S; for minor-closed graph families the time per update is constant, while it is sublinear for any sparse graph family. We can also maintain a dynamic vertex set in an arbitrary m-edge graph and test the independence of the maintained set in time O(\sqrt{m}) per update. We use the domination data structures as part of our enumeration algorithms.

In many cases, the extension problem can be reduced to simply finding a solution of size at most k. Furthermore, efficient algorithms for finding small solutions have been extensively studied in the field of parameterized algorithms. Directly applying these algorithms, our theorem yields in one stroke significant improvements over the best known exponential-time algorithms for several well-studied problems, including d-Hitting Set, Feedback Vertex Set, Node Unique Label Cover, and Weighted d-SAT. Our results demonstrate an interesting and very concrete connection between parameterized algorithms and exact exponential-time algorithms.

Paper by David Eppstein:
https://arxiv.org/abs/cs/0407036