Center for Algorithms and Theory of Computation

CS 269S, Spring 2019: Theory Seminar
Bren Hall, Room 1423, 1pm


May 31, 2019:

Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and other Geometric Problems

James Liu

We present a polynomial time approximation scheme for Euclidean TSP in fixed dimensions. For every fixed c > 1 and given any n nodes in R2 , a randomized version of the scheme finds a (1 + 1/c)-approximation to the optimum traveling salesman tour in O(n(log n) O(c) ) time. When the nodes are in Rd, the running time increases to O(n(log n) (O( dc))d1 ). For every fixed c, d the running time is n poly(log n), i.e., nearly linear in n. The algorithm can be derandomized, but this increases the running time by a factor O(n d). The previous best approximation algorithm for the problem (due to Christofides) achieves a 3/2-approximation in polynomial time. We also give similar approximation schemes for some other NP-hard Euclidean problems: Minimum Steiner Tree, k-TSP, and k-MST. (The running times of the algorithm for k-TSP and k-MST involve an additional multiplicative factor k.) The previous best approximation algorithms for all these problems achieved a constant-factor approximation. We also give efficient approximation schemes for Euclidean Min-Cost Matching, a problem that can be solved exactly in polynomial time. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as ℓp for p 1 or other Minkowski norms). They also have efficient parallel (i.e., NC) implementations.

(Paper by Sanjeev Arora)