ONE-SIDED MATCHING MARKETS WITH ENDOWMENTS: EQUILIBRIA AND ALGORITHMS

Jugal Garg, Thorben Tröbst, Vijay V. Vazirani AAMAS 2022

ONE-SIDED MATCHING MARKETS

ONE-SIDED MATCHING MARKETS

ONE-SIDED MATCHING MARKETS

	Without Endowment	With Endowment
Ordinal Pref.		
Cardinal Pref.		

	Without Endowment	With Endowment
Ordinal Pref.	PS / RP	
Cardinal Pref.		

	Without Endowment	With Endowment
Ordinal Pref.	PS / RP	Top Trading Cycle
Cardinal Pref.		

	Without Endowment	With Endowment
Ordinal Pref.	PS / RP	Top Trading Cycle
Cardinal Pref.	Hylland-Zeckhauser	

	Without Endowment	With Endowment
Ordinal Pref.	PS / RP	Top Trading Cycle
Cardinal Pref.	Hylland-Zeckhauser	ADHZ

Formally, we study the following kind of market:

Formally, we study the following kind of market:

Definition

A linear ADHZ market consists a set A of agents and a set G of goods with |A| = |G| = n. Each agent i comes to the market with an endowment $e_{ij} \ge 0$ of each good j and utilities $u_{ij} \ge 0$. The endowment vector e is a fractional (perfect) matching.

Formally, we study the following kind of market:

Definition

A linear ADHZ market consists a set A of agents and a set G of goods with |A| = |G| = n. Each agent i comes to the market with an endowment $e_{ij} \ge 0$ of each good j and utilities $u_{ij} \ge 0$. The endowment vector e is a fractional (perfect) matching.

The goal is to find a fractional (perfect) matching x or allocation with desirable fairness properties.

The Hylland-Zeckhauser mechanism works by computing a competitive equilibrium from equal incomes.

The Hylland-Zeckhauser mechanism works by computing a competitive equilibrium from equal incomes.

Definition

An HZ equilibrium consists of prices $p_j \ge 0$ for every good and an allocation x, such that every agent gets a cheapest optimal bundle under a budget of 1.

Moreover, if $p_i > 0$, then good *j* must be fully allocated.

• Pareto efficiency,

- Pareto efficiency,
- envy-freeness, and

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

• constant number of goods / agents (Devanur and Kannan 2008, Alaei et al. 2017) and

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

- constant number of goods / agents (Devanur and Kannan 2008, Alaei et al. 2017) and
- {0,1}-utilities (Vazirani and Yannakakis 2021).

$$b_i \coloneqq \sum_{j \in G} p_j e_{ij}.$$

$$b_i \coloneqq \sum_{j \in G} p_j e_{ij}.$$

 \Rightarrow We automatically get:

$$b_i \coloneqq \sum_{j \in G} p_j e_{ij}.$$

- \Rightarrow We automatically get:
 - individual rationality and

$$b_i \coloneqq \sum_{j \in G} p_j e_{ij}.$$

- \Rightarrow We automatically get:
 - individual rationality and
 - (weak) core stability.

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

Additionally, we require that $b_i = b_{i'}$ if $e_i = e_{i'}$.

 $\Rightarrow \epsilon$ -approximate equilibria are still

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

- $\Rightarrow \epsilon$ -approximate equilibria are still
 - Pareto efficient,

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

- $\Rightarrow \epsilon$ -approximate equilibria are still
 - Pareto efficient,
 - equal type envy-free,

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

- $\Rightarrow \epsilon$ -approximate equilibria are still
 - Pareto efficient,
 - equal type envy-free,
 - \cdot $(1-\epsilon)$ -individually rational,

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

- $\Rightarrow \epsilon$ -approximate equilibria are still
 - Pareto efficient,
 - equal type envy-free,
 - \cdot $(1-\epsilon)$ -individually rational,
 - $(1 + \epsilon)$ -approximately core stable.

• We give a polynomial time algorithm for HZ with **non-uniform budgets**.

- We give a polynomial time algorithm for HZ with **non-uniform budgets**.
- We show that **iterating this algorithm** converges to an ϵ -approximate ADHZ equilibrium in $O(\frac{n}{\epsilon} \log(\frac{n}{\epsilon}))$ iterations.

- We give a polynomial time algorithm for HZ with **non-uniform budgets**.
- We show that **iterating this algorithm** converges to an ϵ -approximate ADHZ equilibrium in $O(\frac{n}{\epsilon} \log(\frac{n}{\epsilon}))$ iterations.

Our algorithm works similar to the one by Vazirani and Yannakakis for the uniform budget case (and DPSV):

EXAMPLE FOR HZ WITH NON-UNIFORM BUDGETS

EXAMPLE FOR HZ WITH NON-UNIFORM BUDGETS

 \cdot Total prices and budgets are bounded by n at all times.

- \cdot Total prices and budgets are bounded by n at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. **prices and budgets are non-decreasing** during iteration.

- Total prices and budgets are bounded by n at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. **prices and budgets are non-decreasing** during iteration.

 $\Rightarrow b^{(k)}$ and $p^{(k)}$ both converge, in the limit we get an α -slack equilibrium.

- Total prices and budgets are bounded by n at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. **prices and budgets are non-decreasing** during iteration.

 $\Rightarrow b^{(k)}$ and $p^{(k)}$ both converge, in the limit we get an $\alpha\text{-slack}$ equilibrium.

⇒ If one uses $\alpha := \frac{\epsilon}{2}$, then one gets an ϵ -approximate ADHZ equilbrium in $O(\frac{n}{\epsilon}\log(\frac{n}{\epsilon}))$ phases. \Box

THANK YOUR FOR LISTENING!