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One-sided matching markets can be classified on two criteria:
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Formal Setup

Formally, we study the following kind of market:

Definition
A linear ADHZ market consists a set 𝐴 of agents and a set 𝐺 of
goods with |𝐴| = |𝐺| = 𝑛. Each agent 𝑖 comes to the market
with an endowment 𝑒𝑖𝑗 ≥ 0 of each good 𝑗 and utilities 𝑢𝑖𝑗 ≥ 0.
The endowment vector 𝑒 is a fractional (perfect) matching.

The goal is to find a fractional (perfect) matching 𝑥 or allocation
with desirable fairness properties.
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Hylland-Zeckhauser

The Hylland-Zeckhauser mechanism works by computing a
competitive equilibrium from equal incomes.

Definition
An HZ equilibrium consists of prices 𝑝𝑗 ≥ 0 for every good and
an allocation 𝑥, such that every agent gets a cheapest optimal
bundle under a budget of 1.

Moreover, if 𝑝𝑗 > 0, then good 𝑗 must be fully allocated.
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Cheapest Optimal Bundles

In HZ, agents get optimal bundles of goods at given prices. If
there are multiple optimal bundles, pick a cheapest one.

𝑢 𝑖1
= 6

𝑢𝑖2 = 4.5

𝑢𝑖3 = 2

𝑝1 = 2

𝑝2 = 1.5

𝑝3 = 0.5
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Properties of HZ Equilibria

HZ equilibria enjoy many nice properties such as:

• Pareto efficiency,
• envy-freeness, and
• incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

• constant number of goods / agents (Devanur and Kannan
2008, Alaei et al. 2017) and

• {0, 1}-utilities (Vazirani and Yannakakis 2021).
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HZ with Endowments

There is a natural extension of HZ to the case of endowments,
the ADHZ equilibrium: give agent 𝑖 a budget of

𝑏𝑖 ≔ ∑
𝑗∈𝐺

𝑝𝑗𝑒𝑖𝑗.

⇒ We automatically get:

• individual rationality and
• (weak) core stability.
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Non-Existence of ADHZ Equilibria

Unfortunately, even for {0, 1}-utilities and strong connectivity
assumptions, ADHZ equilibria may not exist:

𝑠 𝑡

𝑎

𝑏

𝑐

𝑑

𝑒
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𝜖-Approximate ADHZ Equilibria

We define a weaker notion of 𝜖-approximate ADHZ, where

𝑏𝑖 ∈ ⎡⎢
⎣
(1 − 𝜖) ∑

𝑗∈𝐺
𝑝𝑗𝑒𝑖𝑗, 𝜖 + ∑

𝑗∈𝐺
𝑝𝑗𝑒𝑖𝑗

⎤⎥
⎦

.

Additionally, we require that 𝑏𝑖 = 𝑏𝑖′ if 𝑒𝑖 = 𝑒𝑖′ .

⇒ 𝜖-approximate equilibria are still

• Pareto efficient,
• equal type envy-free,
• (1 − 𝜖)-individually rational,
• (1 + 𝜖)-approximately core stable.
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Computing 𝜖-Approximate ADHZ Equilibria

Computing an 𝜖-approximate ADHZ equilibrium for
{0, 1}-utilities requires two ideas:

• We give a polynomial time algorithm for HZ with
non-uniform budgets.

• We show that iterating this algorithm converges to an
𝜖-approximate ADHZ equilibrium in 𝑂(𝑛

𝜖 log(𝑛
𝜖 )) iterations.

Our algorithm works similar to the one by Vazirani and
Yannakakis for the uniform budget case (and DPSV):
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Example for HZ with Non-Uniform Budgets
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Iteration Yields 𝜖-Approximate ADHZ Equilibrium

Let 𝛼 ∈ (0, 1) and consider the following iteration:

𝑏(2) ≔ 𝛼 + (1 − 𝛼)𝑒 ⋅ 𝑝(1)
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Iteration Yields 𝜖-Approximate ADHZ Equilibrium II

One can show:

• Total prices and budgets are bounded by 𝑛 at all times.
• Our algorithm for HZ with non-uniform budgets behaves
monotonically, i.e. prices and budgets are non-decreasing
during iteration.

⇒ 𝑏(𝑘) and 𝑝(𝑘) both converge, in the limit we get an 𝛼-slack
equilibrium.

⇒ If one uses 𝛼 ≔ 𝜖
2 , then one gets an 𝜖-approximate ADHZ

equilbrium in 𝑂(𝑛
𝜖 log(𝑛

𝜖 )) phases. �
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Thank your for listening!
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