One-Sided Matching Markets with Endowments: EQUILIBRIA AND ALGORITHMS

Jugal Garg, Thorben Tröbst, Vijay V. Vazirani
AAMAS 2022

One-Sided Matching Markets

One-Sided Matching Markets

One-Sided Matching Markets

A CLASSIFICATION OF ONE-SIdED MATCHING MARKETS

One-sided matching markets can be classified on two criteria:

	Without Endowment	With Endowment
Ordinal Pref.		
Cardinal Pref.		

A CLASSIFICATION OF ONE-SIdED MATCHING MARKETS

One-sided matching markets can be classified on two criteria:

	Without Endowment	With Endowment
Ordinal Pref.	PS / RP	
Cardinal Pref.		

A CLASSIFICATION OF ONE-SIdED MATCHING MARKETS

One-sided matching markets can be classified on two criteria:

	Without Endowment	With Endowment
Ordinal Pref.	PS / RP	Top Trading Cycle
Cardinal Pref.		

A CLASSIFICATION OF ONE-SIdED MATCHING MARKETS

One-sided matching markets can be classified on two criteria:

	Without Endowment	With Endowment
Ordinal Pref.	PS / RP	Top Trading Cycle
Cardinal Pref.	Hylland-Zeckhauser	

A CLASSIFICATION OF ONE-SIdED MATCHING MARKETS

One-sided matching markets can be classified on two criteria:

	Without Endowment	With Endowment
Ordinal Pref.	PS / RP	Top Trading Cycle
Cardinal Pref.	Hylland-Zeckhauser	ADHZ

Formal Setup

Formally, we study the following kind of market:

Formal Setup

Formally, we study the following kind of market:

Definition

A linear ADHZ market consists a set A of agents and a set G of goods with $|A|=|G|=n$. Each agent i comes to the market with an endowment $e_{i j} \geq 0$ of each good j and utilities $u_{i j} \geq 0$.
The endowment vector e is a fractional (perfect) matching.

Formal Setup

Formally, we study the following kind of market:

Definition

A linear ADHZ market consists a set A of agents and a set G of goods with $|A|=|G|=n$. Each agent i comes to the market with an endowment $e_{i j} \geq 0$ of each good j and utilities $u_{i j} \geq 0$.
The endowment vector e is a fractional (perfect) matching.

The goal is to find a fractional (perfect) matching x or allocation with desirable fairness properties.

HYLLAND-ZECKHAUSER

The Hylland-Zeckhauser mechanism works by computing a competitive equilibrium from equal incomes.

HyLLAND-ZECKHAUSER

The Hylland-Zeckhauser mechanism works by computing a competitive equilibrium from equal incomes.

Definition

An HZ equilibrium consists of prices $p_{j} \geq 0$ for every good and an allocation x, such that every agent gets a cheapest optimal bundle under a budget of 1 .

Moreover, if $p_{j}>0$, then good j must be fully allocated.

Cheapest Optimal Bundles

In HZ , agents get optimal bundles of goods at given prices. If there are multiple optimal bundles, pick a cheapest one.

Cheapest Optimal Bundles

In HZ , agents get optimal bundles of goods at given prices. If there are multiple optimal bundles, pick a cheapest one.

Cheapest Optimal Bundles

In HZ , agents get optimal bundles of goods at given prices. If there are multiple optimal bundles, pick a cheapest one.

$$
x_{i 1}=0, x_{i 2}=0 . \overline{6}, x_{i 3}=0 \Rightarrow \mathbf{u}_{\mathbf{i}}=3
$$

Cheapest Optimal Bundles

In HZ , agents get optimal bundles of goods at given prices. If there are multiple optimal bundles, pick a cheapest one.

Cheapest Optimal Bundles

In HZ , agents get optimal bundles of goods at given prices. If there are multiple optimal bundles, pick a cheapest one.

$$
x_{i 1}=0, x_{i 2}=0.5, x_{i 3}=0.5 \Rightarrow \mathbf{u}_{\mathbf{i}}=3.25
$$

Cheapest Optimal Bundles

In HZ , agents get optimal bundles of goods at given prices. If there are multiple optimal bundles, pick a cheapest one.

Properties of HZ EquILIbria

HZ equilibria enjoy many nice properties such as:

Properties of HZ Equilibria

HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,

Properties of HZ EQuilibria

HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and

Properties of HZ EquILIbriA

HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Properties of HZ EquILIbriA

HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

Properties of HZ EquILIBrIA

HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

- constant number of goods / agents (Devanur and Kannan 2008, Alaei et al. 2017) and

Properties of HZ EquILIBRIA

HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

- constant number of goods / agents (Devanur and Kannan 2008, Alaei et al. 2017) and
- \{0,1\}-utilities (Vazirani and Yannakakis 2021).

HZ wITH Endowments

There is a natural extension of HZ to the case of endowments, the ADHZ equilibrium: give agent i a budget of

$$
b_{i}:=\sum_{j \in G} p_{j} e_{i j} .
$$

HZ wITH Endowments

There is a natural extension of HZ to the case of endowments, the ADHZ equilibrium: give agent i a budget of

$$
b_{i}:=\sum_{j \in G} p_{j} e_{i j} .
$$

\Rightarrow We automatically get:

HZ wITH Endowments

There is a natural extension of HZ to the case of endowments, the ADHZ equilibrium: give agent i a budget of

$$
b_{i}:=\sum_{j \in G} p_{j} e_{i j} .
$$

\Rightarrow We automatically get:

- individual rationality and

HZ wITH Endowments

There is a natural extension of HZ to the case of endowments, the ADHZ equilibrium: give agent i a budget of

$$
b_{i}:=\sum_{j \in G} p_{j} e_{i j} .
$$

\Rightarrow We automatically get:

- individual rationality and
- (weak) core stability.

NoN-EXISTENCE OF ADHZ EQUILIBRIA

Unfortunately, even for $\{0,1\}$-utilities and strong connectivity assumptions, ADHZ equilibria may not exist:

NoN-EXISTENCE OF ADHZ EQUILIBRIA

Unfortunately, even for $\{0,1\}$-utilities and strong connectivity assumptions, ADHZ equilibria may not exist:

Non-ExISTENCE OF ADHZ EQUILIBRIA

Unfortunately, even for $\{0,1\}$-utilities and strong connectivity assumptions, ADHZ equilibria may not exist:

Non-ExISTENCE OF ADHZ EQUILIBRIA

Unfortunately, even for $\{0,1\}$-utilities and strong connectivity assumptions, ADHZ equilibria may not exist:

ϵ-Approximate ADHZ EQUILIBRIA

We define a weaker notion of ϵ-approximate ADHZ, where

$$
b_{i} \in\left[(1-\epsilon) \sum_{j \in G} p_{j} e_{i j}, \epsilon+\sum_{j \in G} p_{j} e_{i j}\right] .
$$

Additionally, we require that $b_{i}=b_{i^{\prime}}$ if $e_{i}=e_{i^{\prime}}$.

ϵ-Approximate ADHZ EQUILIBRIA

We define a weaker notion of ϵ-approximate ADHZ, where

$$
b_{i} \in\left[(1-\epsilon) \sum_{j \in G} p_{j} e_{i j}, \epsilon+\sum_{j \in G} p_{j} e_{i j}\right] .
$$

Additionally, we require that $b_{i}=b_{i^{\prime}}$ if $e_{i}=e_{i^{\prime}}$.
$\Rightarrow \epsilon$-approximate equilibria are still

ϵ-Approximate ADHZ EQUILIBRIA

We define a weaker notion of ϵ-approximate ADHZ, where

$$
b_{i} \in\left[(1-\epsilon) \sum_{j \in G} p_{j} e_{i j}, \epsilon+\sum_{j \in G} p_{j} e_{i j}\right] .
$$

Additionally, we require that $b_{i}=b_{i^{\prime}}$ if $e_{i}=e_{i^{\prime}}$.
$\Rightarrow \epsilon$-approximate equilibria are still

- Pareto efficient,

ϵ-Approximate ADHZ EQUILIBRIA

We define a weaker notion of ϵ-approximate ADHZ, where

$$
b_{i} \in\left[(1-\epsilon) \sum_{j \in G} p_{j} e_{i j}, \epsilon+\sum_{j \in G} p_{j} e_{i j}\right] .
$$

Additionally, we require that $b_{i}=b_{i^{\prime}}$ if $e_{i}=e_{i^{\prime}}$.
$\Rightarrow \epsilon$-approximate equilibria are still

- Pareto efficient,
- equal type envy-free,

ϵ-APPROXIMATE ADHZ EQUILIBRIA

We define a weaker notion of ϵ-approximate ADHZ, where

$$
b_{i} \in\left[(1-\epsilon) \sum_{j \in G} p_{j} e_{i j}, \epsilon+\sum_{j \in G} p_{j} e_{i j}\right]
$$

Additionally, we require that $b_{i}=b_{i^{\prime}}$ if $e_{i}=e_{i^{\prime}}$.
$\Rightarrow \epsilon$-approximate equilibria are still

- Pareto efficient,
- equal type envy-free,
- (1 $-\epsilon$)-individually rational,

ϵ-APPROXIMATE ADHZ EQUILIBRIA

We define a weaker notion of ϵ-approximate ADHZ, where

$$
b_{i} \in\left[(1-\epsilon) \sum_{j \in G} p_{j} e_{i j}, \epsilon+\sum_{j \in G} p_{j} e_{i j}\right]
$$

Additionally, we require that $b_{i}=b_{i^{\prime}}$ if $e_{i}=e_{i^{\prime}}$.
$\Rightarrow \epsilon$-approximate equilibria are still

- Pareto efficient,
- equal type envy-free,
- (1 $-\epsilon$)-individually rational,
- $(1+\epsilon)$-approximately core stable.

COMPUTING e-Approximate ADHZ EQUILIBRIA

Computing an ϵ-approximate ADHZ equilibrium for $\{0,1\}$-utilities requires two ideas:

COMPUTING ϵ-Approximate ADHZ EQUILIBRIA

Computing an ϵ-approximate ADHZ equilibrium for $\{0,1\}$-utilities requires two ideas:

- We give a polynomial time algorithm for HZ with non-uniform budgets.

Computing ϵ-Approximate ADHZ EquILIBRIA

Computing an ϵ-approximate ADHZ equilibrium for $\{0,1\}$-utilities requires two ideas:

- We give a polynomial time algorithm for HZ with non-uniform budgets.
- We show that iterating this algorithm converges to an ϵ-approximate ADHZ equilibrium in $O\left(\frac{n}{\epsilon} \log \left(\frac{n}{\epsilon}\right)\right)$ iterations.

COMPUTING ϵ-Approximate ADHZ EQUILIBRIA

Computing an ϵ-approximate ADHZ equilibrium for $\{0,1\}$-utilities requires two ideas:

- We give a polynomial time algorithm for HZ with non-uniform budgets.
- We show that iterating this algorithm converges to an ϵ-approximate ADHZ equilibrium in $O\left(\frac{n}{\epsilon} \log \left(\frac{n}{\epsilon}\right)\right)$ iterations.

Our algorithm works similar to the one by Vazirani and Yannakakis for the uniform budget case (and DPSV):

EXAMPLE FOR HZ WITH NON-UNIFORM BUDGETS

Let $\alpha \in(0,1)$ and consider the following iteration:

Let $\alpha \in(0,1)$ and consider the following iteration:

Let $\alpha \in(0,1)$ and consider the following iteration:

$$
b^{(1)}:=\alpha
$$

$p^{(1)}:=H Z$ prices for $b^{(1)}$

Let $\alpha \in(0,1)$ and consider the following iteration:

$$
\begin{aligned}
& b^{(2)}:=\alpha+(1-\alpha) e \cdot p^{(1)} \\
& p^{(1)}:=\mathrm{HZ} \text { prices for } b^{(1)}
\end{aligned}
$$

Let $\alpha \in(0,1)$ and consider the following iteration:

$$
b^{(2)}:=\alpha+(1-\alpha) e \cdot p^{(1)}
$$

$p^{(2)}:=\mathrm{HZ}$ prices for $b^{(2)}$

Let $\alpha \in(0,1)$ and consider the following iteration:

$$
\begin{aligned}
& b^{(3)}:=\alpha+(1-\alpha) e \cdot p^{(2)} \\
& p^{(2)}:=\mathrm{HZ} \text { prices for } b^{(2)}
\end{aligned}
$$

Let $\alpha \in(0,1)$ and consider the following iteration:

$$
\begin{aligned}
& b^{(3)}:=\alpha+(1-\alpha) e \cdot p^{(2)} \\
& p^{(3)}:=\mathrm{HZ} \text { prices for } b^{(3)}
\end{aligned}
$$

One can show:

One can show:

- Total prices and budgets are bounded by n at all times.

ITERATION YieldS ϵ-Approximate ADHZ Equilibrium II

One can show:

- Total prices and budgets are bounded by n at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. prices and budgets are non-decreasing during iteration.

One can show:

- Total prices and budgets are bounded by n at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. prices and budgets are non-decreasing during iteration.
$\Rightarrow b^{(k)}$ and $p^{(k)}$ both converge, in the limit we get an α-slack equilibrium.

One can show:

- Total prices and budgets are bounded by n at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. prices and budgets are non-decreasing during iteration.
$\Rightarrow b^{(k)}$ and $p^{(k)}$ both converge, in the limit we get an α-slack equilibrium.
\Rightarrow If one uses $\alpha:=\frac{\epsilon}{2}$, then one gets an ϵ-approximate ADHZ equilbrium in $O\left(\frac{n}{\epsilon} \log \left(\frac{n}{\epsilon}\right)\right)$ phases. \square

THANK YOUR FOR LISTENING!

