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Definition

A linear ADHZ market consists a set A of agents and a set G of
goods with |A| = |G| = n. Each agent i comes to the market
with an endowment ¢;; > 0 of each good j and utilities u;; > 0.
The endowment vector e is a fractional (perfect) matching.

The goal is to find a fractional (perfect) matching x or allocation
with desirable fairness properties.
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The Hylland-Zeckhauser mechanism works by computing a
competitive equilibrium from equal incomes.

Definition

An HZ equilibrium consists of prices p; > 0 for every good and
an allocation x, such that every agent gets a cheapest optimal
bundle under a budget of 1.

Moreover, if p; > 0, then good j must be fully allocated.
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CHEAPEST OPTIMAL BUNDLES

In HZ, agents get optimal bundles of goods at given prices. If
there are multiple optimal bundles, pick a cheapest one.
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Xi1 = 03, Xip = 0,x;3 = 0.6 = u = 33
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HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and

- incentive-compatibility in the large.
Sadly, they can be computed only in a few special cases:

- constant number of goods / agents (Devanur and Kannan
2008, Alaei et al. 2017) and

- {0, 1}-utilities (Vazirani and Yannakakis 2021).
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HZ WiTH ENDOWMENTS

There is a natural extension of HZ to the case of endowments,
the ADHZ equilibrium: give agent i a budget of

b; := Z pieij-

j€G
= We automatically get:

- individual rationality and

- (weak) core stability.
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€-APPROXIMATE ADHZ EQUILIBRIA

We define a weaker notion of e-approximate ADHZ, where
(1-¢) Z pjeij, € + Z Pi€ij
jeG

Additionally, we require that b; = b;s if e; = e,
= e-approximate equilibria are still

- Pareto efficient,

- equal type envy-free,

- (1 — e)-individually rational,

- (1 + e)-approximately core stable.
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COMPUTING e-APPROXIMATE ADHZ EQUILIBRIA

Computing an e-approximate ADHZ equilibrium for
{0, 1}-utilities requires two ideas:

- We give a polynomial time algorithm for HZ with
non-uniform budgets.

- We show that iterating this algorithm converges to an

e-approximate ADHZ equilibrium in O(% log(%)) iterations.

Our algorithm works similar to the one by Vazirani and
Yannakakis for the uniform budget case (and DPSV):
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One can show:

- Total prices and budgets are bounded by n at all times.

-+ Our algorithm for HZ with non-uniform budgets behaves

monotonically, i.e. prices and budgets are non-decreasing
during iteration.

= b% and p© both converge, in the limit we get an a-slack
equilibrium.

= If one uses a := g then one gets an e-approximate ADHZ
equilbrium in O(%Z log(%)) phases. O
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