One-Sided Matching Markets with Endowments: Equilibria and Algorithms

Thorben Tröbst (joint work with Jugal Garg and Vijay Vazirani)
April 23, 2021

CS Theory Seminar, UC Irvine
Introduction
One-Sided Matching Markets
One-Sided Matching Markets
One-Sided Matching Markets
One-sided matching markets can be classified on two criteria:

<table>
<thead>
<tr>
<th></th>
<th>Without Endowment</th>
<th>With Endowment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinal Pref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardinal Pref.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
One-sided matching markets can be classified on two criteria:

<table>
<thead>
<tr>
<th>Ordinal Pref.</th>
<th>Without Endowment</th>
<th>With Endowment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic Serial / Random Priority</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardinal Pref.</th>
<th>With Endowment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
One-sided matching markets can be classified on two criteria:

<table>
<thead>
<tr>
<th>Ordinal Pref.</th>
<th>Without Endowment</th>
<th>With Endowment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic Serial / Random Priority</td>
<td>Top Trading Cycles</td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Pref.
A Classification of One-Sided Matching Markets

One-sided matching markets can be classified on two criteria:

<table>
<thead>
<tr>
<th></th>
<th>Without Endowment</th>
<th>With Endowment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordinal Pref.</td>
<td>Probabilistic Serial / Random Priority</td>
<td>Top Trading Cycles</td>
</tr>
<tr>
<td>Cardinal Pref.</td>
<td>Hylland-Zeckhauser</td>
<td></td>
</tr>
</tbody>
</table>
One-sided matching markets can be classified on two criteria:

<table>
<thead>
<tr>
<th>Ordinal Pref.</th>
<th>Without Endowment</th>
<th>With Endowment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probabilistic Serial / Random Priority</td>
<td>Top Trading Cycles</td>
<td></td>
</tr>
</tbody>
</table>

Cardinal Pref. | Hylland-Zeckhauser | ??? |
Formally, we study the following kind of market:

Definition

A linear ADHZ market consists a set A of agents and a set G of goods with $|A| = |G| = n$. Each agent i comes to the market with an endowment $e_{ij} \geq 0$ of each good j and utilities $u_{ij} \geq 0$.

The endowment vector e is a fractional (perfect) matching. The goal is to find a fractional (perfect) matching or allocation with desirable fairness properties.
Formally, we study the following kind of market:

Definition

A linear ADHZ market consists a set A of agents and a set G of goods with $|A| = |G| = n$. Each agent i comes to the market with an endowment $e_{ij} \geq 0$ of each good j and utilities $u_{ij} \geq 0$. The endowment vector e is a fractional (perfect) matching.
Formally, we study the following kind of market:

Definition

A linear ADHZ market consists a set A of agents and a set G of goods with $|A| = |G| = n$. Each agent i comes to the market with an endowment $e_{ij} \geq 0$ of each good j and utilities $u_{ij} \geq 0$. The endowment vector e is a fractional (perfect) matching.

The goal is to find a fractional (perfect) matching x or allocation with desirable fairness properties.
Why do we allow endowments and allocations to be \textit{fractional}?
Why do we allow endowments and allocations to be **fractional**?

- In some applications, the goods are either inherently divisible or fractional allocations represent **time-sharing**.
Why do we allow endowments and allocations to be **fractional**?

- In some applications, the goods are either inherently divisible or fractional allocations represent **time-sharing**.
- Given a fractional allocation, one may run a **lottery** over (integral) perfect matchings y such that $\mathbb{P}[y_{ij} = 1] = x_{ij}$ using the **Birkhoff-von-Neumann theorem**.
A Note on Integrality

Why do we allow endowments and allocations to be **fractional**?

- In some applications, the goods are either inherently divisible or fractional allocations represent **time-sharing**.
- Given a fractional allocation, one may run a **lottery** over (integral) perfect matchings y such that $\mathbb{P}[y_{ij} = 1] = x_{ij}$ using the **Birkhoff-von-Neumann theorem**.

⇒ We will focus on fractional allocations.
The Hylland-Zeckhauser mechanism works by computing a competitive equilibrium from equal incomes.
The Hylland-Zeckhauser mechanism works by computing a competitive equilibrium from equal incomes.

Definition

An HZ equilibrium consists of prices $p_j \geq 0$ for every good and an allocation x, such that every agent gets a cheapest optimal bundle under a budget of 1.

Moreover, if $p_j > 0$, then good j must be fully allocated.
In HZ, agents get **optimal bundles** of goods at given prices. If there are multiple optimal bundles, pick a **cheapest** one.

\[
u_{i1} = 6 \quad p_1 = 2
\]
\[
u_{i2} = 4.5 \quad p_2 = 1.5
\]
\[
u_{i3} = 2 \quad p_3 = 0.5
\]
Cheapest Optimal Bundles

In HZ, agents get **optimal bundles** of goods at given prices. If there are multiple optimal bundles, pick a **cheapest** one.

\[
\begin{align*}
\mathbf{u}_1 &= 6 \\
\mathbf{u}_2 &= 4.5 \\
\mathbf{u}_3 &= 2
\end{align*}
\]

\[
x_{i1} = 0.5, x_{i2} = 0, x_{i3} = 0 \Rightarrow \mathbf{u}_i = 3
\]
In HZ, agents get **optimal bundles** of goods at given prices. If there are multiple optimal bundles, pick a **cheapest** one.

\[
x_{i1} = 0, x_{i2} = 0.6, x_{i3} = 0 \Rightarrow u_i = 3
\]
In HZ, agents get **optimal bundles** of goods at given prices. If there are multiple optimal bundles, pick a **cheapest** one.

\[u_{i1} = 6 \]
\[u_{i2} = 4.5 \]
\[u_{i3} = 2 \]

\[x_{i1} = 0, x_{i2} = 0, x_{i3} = 1 \implies u_i = 2 \]
In HZ, agents get **optimal bundles** of goods at given prices. If there are multiple optimal bundles, pick a **cheapest** one.

\[
\begin{align*}
 u_{i1} &= 6 \\
 u_{i2} &= 4.5 \\
 u_{i3} &= 2
\end{align*}
\]

\[
\begin{align*}
 p_1 &= 2 \\
 p_2 &= 1.5 \\
 p_3 &= 0.5
\end{align*}
\]

\[
x_{i1} = 0, x_{i2} = 0.5, x_{i3} = 0.5 \Rightarrow u_i = 3.25
\]
In HZ, agents get **optimal bundles** of goods at given prices. If there are multiple optimal bundles, pick a **cheapest** one.

\[
\begin{align*}
 u_{i1} &= 6, \\
 u_{i2} &= 4.5, \\
 u_{i3} &= 2
\end{align*}
\]

\[
\begin{align*}
 p_1 &= 2, \\
 p_2 &= 1.5, \\
 p_3 &= 0.5
\end{align*}
\]

\[
x_{i1} = 0.3, x_{i2} = 0, x_{i3} = 0.6 \Rightarrow u_i = 3.3
\]
HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

- constant number of goods / agents (Devanur and Kannan 2008, Alaei et al. 2017)
- \{0, 1\} utilities (Vazirani and Yannakakis 2021).
HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
Properties of HZ Equilibria

HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and

Sadly, they can be computed only in a few special cases:

- constant number of goods / agents (Devanur and Kannan 2008, Alaei et al. 2017) and
- \{0, 1\}-utilities (Vazirani and Yannakakis 2021).
Properties of HZ Equilibria

HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.
HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:
HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

- constant number of goods / agents (Devanur and Kannan 2008, Alaei et al. 2017) and
HZ equilibria enjoy many nice properties such as:

- Pareto efficiency,
- envy-freeness, and
- incentive-compatibility in the large.

Sadly, they can be computed only in a few special cases:

- constant number of goods / agents (Devanur and Kannan 2008, Alaei et al. 2017) and
- \{0, 1\}-utilities (Vazirani and Yannakakis 2021).
There is a natural extension of HZ to the case of endowments, the **ADHZ equilibrium**: give agent i a budget of

$$b_i := \sum_{j \in G} p_j e_{ij}.$$
There is a natural extension of HZ to the case of endowments, the **ADHZ equilibrium**: give agent i a budget of

$$b_i := \sum_{j \in G} p_j e_{ij}.$$

\Rightarrow We automatically get:

- individual rationality
- (weak) core stability.
There is a natural extension of HZ to the case of endowments, the **ADHZ equilibrium**: give agent i a budget of

$$b_i := \sum_{j \in G} p_j e_{ij}.$$

⇒ We automatically get:

- individual rationality and
There is a natural extension of HZ to the case of endowments, the ADHZ equilibrium: give agent i a budget of

$$b_i := \sum_{j \in G} p_j e_{ij}.$$

⇒ We automatically get:

- individual rationality and
- (weak) core stability.
Results on ADHZ

Our results are:

• ADHZ equilibria may not exist (already known to Hylland and Zeckhauser). This holds even with \{0, 1\}-utilities and strong conditions.

• There is a notion of ϵ-approximate ADHZ equilibria which always exist and satisfy approximate individual rationality and core stability.

• We give a combinatorial FPTAS to compute ϵ-approximate ADHZ equilibria for \{0, 1\}-utilities.
Our results are:

- ADHZ equilibria may not exist (already known to Hylland and Zeckhauser). This holds even with \{0, 1\}-utilities and strong conditions.
Our results are:

- ADHZ equilibria may not exist (already known to Hylland and Zeckhauser). This holds even with \{0, 1\}-utilities and strong conditions.
- There is a notion of \(\epsilon\)-approximate ADHZ equilibria which always exist and satisfy approximate individual rationality and core stability.
Results on ADHZ

Our results are:

- ADHZ equilibria may not exist (already known to Hylland and Zeckhauser). This holds even with \{0, 1\}-utilities and strong conditions.
- There is a notion of ϵ-approximate ADHZ equilibria which always exist and satisfy approximate individual rationality and core stability.
- We give a combinatorial FPTAS to compute ϵ-approximate ADHZ equilibria for \{0, 1\}-utilities.
Since HZ equilibria are difficult to compute in almost all cases, the Nash bargaining point is a good alternative.
Since HZ equilibria are difficult to compute in almost all cases, the **Nash bargaining point** is a good alternative.

Definition

Given a convex set C of potential allocations (matchings), the **Nash bargaining point** or **proportionally fair allocation** is

$$\arg \max_{x \in C} \prod_{i \in A} u_i(x).$$
Since HZ equilibria are difficult to compute in almost all cases, the **Nash bargaining point** is a good alternative.

Definition

Given a convex set C of potential allocations (matchings), the **Nash bargaining point** or **proportionally fair allocation** is

$$\arg\max_{x \in C} \prod_{i \in A} u_i(x).$$

For $\{0, 1\}$-utilities, these notions coincide!
There is also a natural extension of Nash bargaining to endowments: simply optimize

$$\arg\max_{x \in C} \prod_{i \in A} (u_i(x) - u_i(e)) = \arg\max_{x \in C} \sum_{i \in A} \log(u_i(x) - u_i(e)).$$

This does not coincide with ADHZ even for \(\{0, 1\}\)-utilities. For these utilities, we show:
Nash Bargaining with Endowments

There is also a natural extension of Nash bargaining to endowments: simply optimize

$$\arg \max_{x \in C} \prod_{i \in A} (u_i(x) - u_i(e)) = \arg \max_{x \in C} \sum_{i \in A} \log(u_i(x) - u_i(e)).$$

This does not coincide with ADHZ even for \{0, 1\}-utilities. For these utilities, we show:

- Solutions are always rational, i.e. the above is a rational convex program.
There is also a natural extension of Nash bargaining to endowments: simply optimize

$$\arg \max_{x \in C} \prod_{i \in A} (u_i(x) - u_i(e)) = \arg \max_{x \in C} \sum_{i \in A} \log(u_i(x) - u_i(e)).$$

This does not coincide with ADHZ even for \{0, 1\}-utilities. For these utilities, we show:

- Solutions are always rational, i.e. the above is a rational convex program.
- There is a combinatorial, strongly polynomial time algorithm to compute x.

Hylland-Zeckhauser with Endowments (ADHZ)
Non-Existence of ADHZ Equilibria

Unfortunately, even for \{0, 1\}-utilities and strong connectivity assumptions, ADHZ equilibria may not exist:
Non-Existence of ADHZ Equilibria

Unfortunately, even for \{0, 1\}-utilities and strong connectivity assumptions, ADHZ equilibria may not exist:

\[p_a = 0 \]
Non-Existence of ADHZ Equilibria

Unfortunately, even for \(\{0, 1\}\)-utilities and strong connectivity assumptions, ADHZ equilibria may not exist:

\[
\begin{align*}
 p_a &= 0 \\
p_c &= 0 \\
p_d &= 0
\end{align*}
\]
Unfortunately, even for $\{0, 1\}$-utilities and strong connectivity assumptions, ADHZ equilibria may not exist:
The problem can be resolved by infusing agents with a small amount of \textit{external budget}.
Existence of Approximate ADHZ Equilibria

The problem can be resolved by infusing agents with a small amount of external budget.

Echenique et al. (2019) showed that there always exist α-slack ADHZ equilibria where

$$b_i := \alpha + (1 - \alpha) \sum_{j \in G} p_j e_{ij}.$$
The problem can be resolved by infusing agents with a small amount of **external budget**.

Echenique et al. (2019) showed that there always exist \(\alpha \)-**slack** ADHZ equilibria where

\[
b_i := \alpha + (1 - \alpha) \sum_{j \in G} p_j e_{ij}.
\]

Existence follows via non-trivial Kakutani fixed point argument.
We define a weaker notion of ϵ-approximate ADHZ, where

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

Additionally, we require that $b_i = b_{i'}$ if $e_i = e_{i'}$.
We define a weaker notion of ϵ-approximate ADHZ, where

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

Additionally, we require that $b_i = b_{i'}$ if $e_i = e_{i'}$.

\Rightarrow ϵ-approximate equilibria are still

• Pareto efficient,
• equal type envy-free,
• $(1 - \epsilon)$-individually rational,
• $(1 + \epsilon)$-approximately core stable.
We define a weaker notion of ϵ-approximate ADHZ, where

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

Additionally, we require that $b_i = b_{i'}$ if $e_i = e_{i'}$.

\Rightarrow ϵ-approximate equilibria are still

- Pareto efficient,
\(\epsilon \)-Approximate ADHZ Equilibria

We define a weaker notion of \(\epsilon \)-approximate ADHZ, where

\[
b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].
\]

Additionally, we require that \(b_i = b_i' \) if \(e_i = e_i' \).

\[\Rightarrow \] \(\epsilon \)-approximate equilibria are still

- Pareto efficient,
- equal type envy-free,
We define a weaker notion of ϵ-approximate ADHZ, where

$$b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].$$

Additionally, we require that $b_i = b_{i'}$ if $e_i = e_{i'}$.

\Rightarrow ϵ-approximate equilibria are still

- Pareto efficient,
- equal type envy-free,
- $(1 - \epsilon)$-individually rational,
\(\epsilon \)-Approximate ADHZ Equilibria

We define a weaker notion of \(\epsilon \)-approximate ADHZ, where

\[
b_i \in \left[(1 - \epsilon) \sum_{j \in G} p_j e_{ij}, \epsilon + \sum_{j \in G} p_j e_{ij} \right].
\]

Additionally, we require that \(b_i = b_i' \) if \(e_i = e_i' \).

\(\Rightarrow \) \(\epsilon \)-approximate equilibria are still

- Pareto efficient,
- equal type envy-free,
- \((1 - \epsilon)\)-individually rational,
- \((1 + \epsilon)\)-approximately core stable.
Computing ϵ-Approximate ADHZ Equilibria

Computing an ϵ-approximate ADHZ equilibrium for \{0, 1\}-utilities requires two ideas:
Computing ϵ-Approximate ADHZ Equilibria

Computing an ϵ-approximate ADHZ equilibrium for \{0, 1\}-utilities requires two ideas:

- We give a polynomial time algorithm for HZ with non-uniform budgets.

- We show that iterating this algorithm converges to an ϵ-approximate ADHZ equilibrium in $O(n\epsilon \log(n\epsilon))$ iterations.
Computing an ϵ-approximate ADHZ equilibrium for $\{0, 1\}$-utilities requires two ideas:

- We give a polynomial time algorithm for HZ with non-uniform budgets.
- We show that iterating this algorithm converges to an ϵ-approximate ADHZ equilibrium in $O\left(\frac{n}{\epsilon} \log\left(\frac{n}{\epsilon}\right)\right)$ iterations.
Computing ϵ-Approximate ADHZ Equilibria

Computing an ϵ-approximate ADHZ equilibrium for \{0, 1\}-utilities requires two ideas:

• We give a polynomial time algorithm for HZ with non-uniform budgets.

• We show that iterating this algorithm converges to an ϵ-approximate ADHZ equilibrium in $O\left(\frac{n}{\epsilon} \log\left(\frac{n}{\epsilon}\right)\right)$ iterations.

Our algorithm works similar to the one by Vazirani and Yannakakis for the uniform budget case (and DPSV):
Algorithm for HZ with Non-Uniform Budgets

1. Compute a minimum vertex cover $A' \cup G'$ in the bipartite graph of utility 1 edges.
Algorithm for HZ with Non-Uniform Budgets

1. Compute a minimum vertex cover $A' \cup G'$ in the bipartite graph of utility 1 edges.
2. Set $p_j := \min_{i \in A \setminus A'} b_i$ for all $j \in G'$.
Algorithm for HZ with Non-Uniform Budgets

1. Compute a minimum vertex cover $A' \cup G'$ in the bipartite graph of utility 1 edges.
2. Set $p_j := \min_{i \in A \setminus A'} b_i$ for all $j \in G'$.
3. Raise all prices in G' uniformly until some $S \subseteq G'$ goes **tight**, i.e.

\[
\sum_{i \in \Gamma(S)} \min\{b_i, p^*_i\} = \sum_{j \in S} p_j
\]

where $p^*_i := \min\{p_j \mid u_{ij} = 1\}$ and $\Gamma(S)$ consists of all $i \in A \setminus A'$ s.t. there is some $j \in S$ with $p_j = p^*_i$ and $u_{ij} = 1$.

4. Set $G' := G' \setminus S$ and $A' := A' \cup \Gamma(S)$ and go back to 3 if $G' \neq \emptyset$.

5. Finally, use a max flow to find an equilibrium allocation (as in DPSV).
Algorithm for HZ with Non-Uniform Budgets

1. Compute a minimum vertex cover $A' \cup G'$ in the bipartite graph of utility 1 edges.
2. Set $p_j := \min_{i \in A \setminus A'} b_i$ for all $j \in G'$.
3. Raise all prices in G' uniformly until some $S \subseteq G'$ goes tight, i.e.
 \[
 \sum_{i \in \Gamma(S)} \min\{b_i, p_i^*\} = \sum_{j \in S} p_j
 \]
 where $p_i^* := \min\{p_j \mid u_{ij} = 1\}$ and $\Gamma(S)$ consists of all $i \in A \setminus A'$ s.t. there is some $j \in S$ with $p_j = p_i^*$ and $u_{ij} = 1$.
4. Set $G' := G' \setminus S$ and $A' := A \cup \Gamma(S)$ and go back to 3 if $G' \neq \emptyset$.

Finally, use a max flow to find an equilibrium allocation (as in DPSV).
Algorithm for HZ with Non-Uniform Budgets

1. Compute a minimum vertex cover $A' \cup G'$ in the bipartite graph of utility 1 edges.
2. Set $p_j := \min_{i \in A \setminus A'} b_i$ for all $j \in G'$.
3. Raise all prices in G' uniformly until some $S \subseteq G'$ goes tight, i.e.
 \[
 \sum_{i \in \Gamma(S)} \min\{b_i, p_i^*\} = \sum_{j \in S} p_j
 \]
 where $p_i^* := \min\{p_j \mid u_{ij} = 1\}$ and $\Gamma(S)$ consists of all $i \in A \setminus A'$ s.t. there is some $j \in S$ with $p_j = p_i^*$ and $u_{ij} = 1$.
4. Set $G' := G' \setminus S$ and $A' := A \cup \Gamma(S)$ and go back to 3 if $G' \neq \emptyset$.
5. Finally, use a max flow to find an equilibrium allocation (as in DPSV).
Example for HZ with Non-Uniform Budgets
Example for HZ with Non-Uniform Budgets
Example for HZ with Non-Uniform Budgets

![Diagram](image-url)
Example for HZ with Non-Uniform Budgets

A

2

G

3

1

3

4 (3)

Example for HZ with Non-Uniform Budgets
Let $\alpha \in (0, 1)$ and consider the following iteration:
Let $\alpha \in (0, 1)$ and consider the following iteration:

\[b^{(2)} := \alpha + (1 - \alpha) e \cdot p^{(1)} \]

\[b^{(1)} := \alpha \]
Let $\alpha \in (0, 1)$ and consider the following iteration:

\[
b^{(1)} := \alpha
\]

\[
p^{(1)} := \text{HZ prices for } b^{(1)}
\]
Let $\alpha \in (0, 1)$ and consider the following iteration:

$$b^{(2)} := \alpha + (1 - \alpha)e \cdot p^{(1)}$$

$$p^{(1)} := \text{HZ prices for } b^{(1)}$$
Let $\alpha \in (0, 1)$ and consider the following iteration:

$$b^{(2)} := \alpha + (1 - \alpha)e \cdot p^{(1)}$$

$$p^{(2)} := \text{HZ prices for } b^{(2)}$$
Let $\alpha \in (0, 1)$ and consider the following iteration:

$$b^{(3)} := \alpha + (1 - \alpha)e \cdot p^{(2)}$$

$$p^{(2)} := \text{HZ prices for } b^{(2)}$$
Let $\alpha \in (0, 1)$ and consider the following iteration:

\[
b^{(3)} := \alpha + (1 - \alpha)e \cdot p^{(2)}
\]

\[
p^{(3)} := \text{HZ prices for } b^{(3)}
\]
One can show:

- Total prices and budgets are bounded by n at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. prices and budgets are non-decreasing during iteration.

$\Rightarrow b(k)$ and $p(k)$ both converge, in the limit we get an α-slack equilibrium.

\Rightarrow If one uses $\alpha := \epsilon^2$, then one gets an ϵ-approximate ADHZ equilibrium in $O(n \epsilon \log(n \epsilon))$ phases.
One can show:

- Total prices and budgets are bounded by n at all times.
Iteration Yields \(\epsilon\)-Approximate ADHZ Equilibrium II

One can show:

- Total prices and budgets are bounded by \(n\) at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. *prices and budgets are non-decreasing* during iteration.
Iteration Yields ϵ-Approximate ADHZ Equilibrium II

One can show:

- Total prices and budgets are bounded by n at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. prices and budgets are non-decreasing during iteration.

$\Rightarrow b^{(k)}$ and $p^{(k)}$ both converge, in the limit we get an α-slack equilibrium.
One can show:

- Total prices and budgets are bounded by n at all times.
- Our algorithm for HZ with non-uniform budgets behaves monotonically, i.e. **prices and budgets are non-decreasing** during iteration.

⇒ $b^{(k)}$ and $p^{(k)}$ both converge, in the limit we get an α-slack equilibrium.

⇒ If one uses $\alpha := \frac{\epsilon}{2}$, then one gets an ϵ-approximate ADHZ equilibrium in $O\left(\frac{n}{\epsilon} \log\left(\frac{n}{\epsilon}\right)\right)$ phases. □
Nash-Bargaining with Endowments
Recall that the **Nash bargaining point** is the solution to

\[
\begin{align*}
\max_{X} & \quad \sum_{i \in A} \log(u_i(x) - c_i) \\
\text{s.t.} & \quad \sum_{i \in A} x_{ij} \leq 1 \quad \forall j \in G, \\
& \quad \sum_{j \in A} x_{ij} \leq 1 \quad \forall i \in A, \\
& \quad x \geq 0.
\end{align*}
\]

where \(c_i := u_i(e) \).
Recall that the **Nash bargaining point** is the solution to

\[
\max_X \sum_{i \in A} \log(u_i(x) - c_i)
\]

subject to

\[
\sum_{i \in A} x_{ij} \leq 1 \quad \forall j \in G,
\]

\[
\sum_{j \in A} x_{ij} \leq 1 \quad \forall i \in A,
\]

\[
x \geq 0.
\]

where \(c_i := u_i(e)\).

It turns out that \(x\) can also be seen as a kind of market equilibrium!
For \(\{0, 1\} \)-utilities, \(x \) may be characterized as an equilibrium where \(b_i = 1 + c_i p_i^* \) where \(p_i^* := \min\{p_j \mid u_{ij} = 1\} \).
Nash Bargaining Algorithm

For \{0, 1\}-utilities, \(x\) may be characterized as an equilibrium where \(b_i = 1 + c_i p_i^*\) where \(p_i^* := \min\{p_j \mid u_{ij} = 1\}\).

1. Compute a minimum vertex cover \(A' \cup G'\) in the bipartite graph of utility 1 edges.
For \{0, 1\}-utilities, \(x\) may be characterized as an equilibrium where \(b_i = 1 + c_i p^*_i\) where \(p^*_i := \min\{p_j \mid u_{ij} = 1\}\).

1. Compute a minimum vertex cover \(A' \cup G'\) in the bipartite graph of utility 1 edges.
2. Set \(p_j := \min_{i \in A \setminus A'} b_i\) for all \(j \in G'\).
Nash Bargaining Algorithm

For \(\{0, 1\} \)-utilities, \(x \) may be characterized as an equilibrium where \(b_i = 1 + c_i p_i^* \) where \(p_i^* := \min\{p_j \mid u_{ij} = 1\} \).

1. Compute a minimum vertex cover \(A' \cup G' \) in the bipartite graph of utility 1 edges.
2. Set \(p_j := \min_{i \in A \setminus A'} b_i \) for all \(j \in G' \).
3. Raise all prices in \(G' \) uniformly until some \(S \subseteq G' \) goes tight, i.e.

\[
\sum_{i \in \Gamma(S)} (1 + c_i p_i^*) = \sum_{j \in S} p_j.
\]
Nash Bargaining Algorithm

For \(\{0, 1\} \)-utilities, \(x \) may be characterized as an equilibrium where
\(b_i = 1 + c_i p_i^* \) where \(p_i^* := \min \{ p_j \mid u_{ij} = 1 \} \).

1. Compute a minimum vertex cover \(A' \cup G' \) in the bipartite graph of utility 1 edges.
2. Set \(p_j := \min_{i \in A \setminus A'} b_i \) for all \(j \in G' \).
3. Raise all prices in \(G' \) uniformly until some \(S \subseteq G' \) goes \textbf{tight}, i.e.
 \[
 \sum_{i \in \Gamma(S)} (1 + c_i p_i^*) = \sum_{j \in S} p_j.
 \]
4. Set \(G' := G' \setminus S \) and \(A' := A \cup \Gamma(S) \) and go back to 3 if \(G' \neq \emptyset \).

Finally, use a max flow to find an equilibrium allocation (as in DPSV).
Nash Bargaining Algorithm

For \{0, 1\}-utilities, \(x\) may be characterized as an equilibrium where \(b_i = 1 + c_i p_i^*\) where \(p_i^* := \min\{p_j \mid u_{ij} = 1\}\).

1. Compute a minimum vertex cover \(A' \cup G'\) in the bipartite graph of utility 1 edges.
2. Set \(p_j := \min_{i \in A \setminus A'} b_i\) for all \(j \in G'\).
3. Raise all prices in \(G'\) uniformly until some \(S \subseteq G'\) goes tight, i.e.
 \[
 \sum_{i \in \Gamma(S)} (1 + c_i p_i^*) = \sum_{j \in S} p_j.
 \]
4. Set \(G' := G' \setminus S\) and \(A' := A \cup \Gamma(S)\) and go back to 3 if \(G' \neq \emptyset\).
5. Finally, use a max flow to find an equilibrium allocation (as in DPSV).
As with the non-uniform variant of HZ, the main technical difference to DPSV is that budgets are rising with prices!
As with the non-uniform variant of HZ, the main technical difference to DPSV is that budgets are rising with prices! Nonetheless, both algorithms are quite similar (as is the analysis).
As with the non-uniform variant of HZ, the main technical difference to DPSV is that budgets are rising with prices! Nonetheless, both algorithms are quite similar (as is the analysis).

Correctness of the algorithm also implies rationality of Nash bargaining with endowments.
As with the non-uniform variant of HZ, the main technical difference to DPSV is that budgets are rising with prices! Nonetheless, both algorithms are quite similar (as is the analysis).

Correctness of the algorithm also implies rationality of Nash bargaining with endowments.

Rationality of general utilities is unknown but likely irrational.
Thank You!