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Capacitated Vehicle Routing Problem (CVRP) II

Problem (Capacitated Vehicle Routing)
Input: a complete graph 𝐺 = (𝑉, 𝐸) with 𝑉 = 𝑃 ∪ {𝑠}, metric
edge lengths 𝑑 ∶ 𝐸 → ℝ≥0, and vertex demands 𝑏 ∶ 𝑃 → [0, 1].

Task: compute (possibly degenerate) cycles 𝐶1, … , 𝐶𝑘 ⊆ 𝐺
such that

• 𝑃 ⊆ ⋃𝑘
𝑖=1 𝑉(𝐶𝑖),

• each 𝐶𝑖 contains 𝑠,
• 𝑏(𝐶𝑖) ≤ 1 for all 𝑖, and
• ∑𝑘

𝑖=1 𝑑(𝐶𝑖) is minimum.
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Capacitated Vehicle Routing Problem (CVRP) III

A brief history:

• Introduced by Dantzig and Ramser (“The Truck Dispatching
Problem”) in 1959

• 3.5-Approximation by Altinkemer and Gavish in 1987 (based
on work by Rinnooy Kan and Haimovich in 1985)

• Improvements for special cases in recent years (e.g.
Bompadre 2006, Becker et al. 2019)

• General case improved by 𝜖 (Blauth et al. 2021)
• Current best: ≈ 3.2 (Friggstad et al. 2022)
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Classic Lower Bounds



TSP

Clearly, a lower bound for the CVRP is a TSP solution:

𝑠
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Radial Weighted Distance

A less obvious lower bound is:

Theorem

The optimal solution of the CVRP is lower bounded by:

∑
𝑝∈𝑃

2𝑏(𝑝)𝑑(𝑠, 𝑝).

Proof.
Consider some 𝐶𝑖 in OPT. For each 𝑝 ∈ 𝑃(𝐶𝑖), clearly
𝑑(𝐶𝑖) ≥ 2𝑑(𝑠, 𝑝) by the triangle inequality. So
𝑑(𝐶𝑖) ≥ ∑𝑝∈𝑃(𝐶𝑖)

2𝑏(𝑝)𝑑(𝑠, 𝑝) since 𝑏(𝐶𝑖) ≤ 1.

5



Radial Weighted Distance

A less obvious lower bound is:

Theorem

The optimal solution of the CVRP is lower bounded by:

∑
𝑝∈𝑃

2𝑏(𝑝)𝑑(𝑠, 𝑝).

Proof.
Consider some 𝐶𝑖 in OPT.

For each 𝑝 ∈ 𝑃(𝐶𝑖), clearly
𝑑(𝐶𝑖) ≥ 2𝑑(𝑠, 𝑝) by the triangle inequality. So
𝑑(𝐶𝑖) ≥ ∑𝑝∈𝑃(𝐶𝑖)

2𝑏(𝑝)𝑑(𝑠, 𝑝) since 𝑏(𝐶𝑖) ≤ 1.

5



Radial Weighted Distance

A less obvious lower bound is:

Theorem

The optimal solution of the CVRP is lower bounded by:

∑
𝑝∈𝑃

2𝑏(𝑝)𝑑(𝑠, 𝑝).

Proof.
Consider some 𝐶𝑖 in OPT. For each 𝑝 ∈ 𝑃(𝐶𝑖), clearly
𝑑(𝐶𝑖) ≥ 2𝑑(𝑠, 𝑝) by the triangle inequality.

So
𝑑(𝐶𝑖) ≥ ∑𝑝∈𝑃(𝐶𝑖)

2𝑏(𝑝)𝑑(𝑠, 𝑝) since 𝑏(𝐶𝑖) ≤ 1.

5



Radial Weighted Distance

A less obvious lower bound is:

Theorem

The optimal solution of the CVRP is lower bounded by:

∑
𝑝∈𝑃

2𝑏(𝑝)𝑑(𝑠, 𝑝).

Proof.
Consider some 𝐶𝑖 in OPT. For each 𝑝 ∈ 𝑃(𝐶𝑖), clearly
𝑑(𝐶𝑖) ≥ 2𝑑(𝑠, 𝑝) by the triangle inequality. So
𝑑(𝐶𝑖) ≥ ∑𝑝∈𝑃(𝐶𝑖)

2𝑏(𝑝)𝑑(𝑠, 𝑝) since 𝑏(𝐶𝑖) ≤ 1.

5



Tour Partitioning



Tour Partitioning Algorithm

Theorem

There is a polynomial time (𝛼 + 2)-approximation algorithm for
the CVRP where 𝛼 is the best approximation ratio for the TSP.

Sketch: Compute an 𝛼-approximate TSP tour through all vertices.
Partition the tour into segments of weight at most 1, connecting
each to the depot, such that the total distance is minimized.
(how?) It just works.™ �

6



Tour Partitioning Algorithm

Theorem

There is a polynomial time (𝛼 + 2)-approximation algorithm for
the CVRP where 𝛼 is the best approximation ratio for the TSP.

Sketch: Compute an 𝛼-approximate TSP tour through all vertices.

Partition the tour into segments of weight at most 1, connecting
each to the depot, such that the total distance is minimized.
(how?) It just works.™ �

6



Tour Partitioning Algorithm

Theorem

There is a polynomial time (𝛼 + 2)-approximation algorithm for
the CVRP where 𝛼 is the best approximation ratio for the TSP.

Sketch: Compute an 𝛼-approximate TSP tour through all vertices.
Partition the tour into segments of weight at most 1, connecting
each to the depot, such that the total distance is minimized.

(how?) It just works.™ �

6



Tour Partitioning Algorithm

Theorem

There is a polynomial time (𝛼 + 2)-approximation algorithm for
the CVRP where 𝛼 is the best approximation ratio for the TSP.

Sketch: Compute an 𝛼-approximate TSP tour through all vertices.
Partition the tour into segments of weight at most 1, connecting
each to the depot, such that the total distance is minimized.
(how?)

It just works.™ �

6



Tour Partitioning Algorithm

Theorem

There is a polynomial time (𝛼 + 2)-approximation algorithm for
the CVRP where 𝛼 is the best approximation ratio for the TSP.

Sketch: Compute an 𝛼-approximate TSP tour through all vertices.
Partition the tour into segments of weight at most 1, connecting
each to the depot, such that the total distance is minimized.
(how?) It just works.™ �

6



Tour Partitioning Example

𝑠
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Tour Partitioning Proof

Proof. If 𝐶 is the TSP solution, and 𝐶1, … , 𝐶𝑘 the result of tour
partitioning, then:

𝑘
∑
𝑖=1

𝑑(𝐶𝑖) ≤ 𝑑(𝐶) +
𝑘−1
∑
𝑖=1

4𝑑(𝑠, 𝑞𝑖).

For each 𝑝, ℙ[𝑝 = 𝑞𝑖 for some 𝑖] = 𝑏(𝑝). So

𝔼 ⎡⎢
⎣

𝑘
∑
𝑖=1

𝑑(𝐶𝑖)⎤⎥
⎦

≤ 𝛼TSP + ∑
𝑝∈𝑃

4𝑏(𝑝)𝑑(𝑠, 𝑝).

So there is a partition with distance ≤ (𝛼 + 2)OPT. �
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A 3.25-Approximation



Main Theorem

Our goal is to show:

Theorem (Friggstad et. al 2022)

There is a polynomial time (𝛼 + 1.75)-approximation algorithm
for the CVRP where 𝛼 is the best approximation ratio for the
TSP.

We will need a more fine-grained tour partitioning result!
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The 𝛿-Tank Lemma

Lemma

Let 𝐶 be a cycle on 𝑉 and 𝛿 ∈ [0, 1), then 𝐶 can be partitioned
into 𝐶1, … , 𝐶𝑘 with

𝑘
∑
𝑖=1

𝑑(𝐶𝑖) ≤ 𝑑(𝐶) +
1

1 − 𝛿𝐷≤𝛿 +
2

1 − 𝛿𝐷>𝛿 −
𝛿

1 − 𝛿𝐷′
>𝛿.

𝐷≤𝛿 ≔ ∑
𝑝∈𝑃,𝑏(𝑝)≤𝛿

2𝑏(𝑝)𝑑(𝑠, 𝑝), 𝐷>𝛿 ≔ ∑
𝑝∈𝑃,𝑏(𝑝)>𝛿

2𝑏(𝑝)𝑑(𝑠, 𝑝).

𝐷′
>𝛿 ≔ ∑

𝑝∈𝑃,𝑏(𝑝)>𝛿
2𝑑(𝑠, 𝑝)
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Proof of 𝛿-Tank Lemma II

Proof. There are three cases for 𝑝 ∈ 𝑃:

1. 𝑏(𝑝) ≤ 𝛿
• Cost: 2𝑑(𝑠, 𝑝)
• Probability: 1

1−𝛿 𝑏(𝑝)
2. 𝑏(𝑝) > 𝛿 and still fits in tank

• Cost: 2𝑑(𝑠, 𝑝)
• Probability: 𝛿

1−𝛿

3. 𝑏(𝑝) > 𝛿 and does not fit in tank
• Cost: 4𝑑(𝑠, 𝑝)
• Probability: 𝑏(𝑝)−𝛿

1−𝛿 �
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𝛿-Tank Algorithm

Algorithm 1: 𝛿-Tank Algorithm
1 For the first solution:
2 Match up 𝑝 ∈ 𝑃> 1

3
via min-cost perfect matching into 𝑇′.

3 Compute a TSP tour 𝐴 on {𝑠} ∪ 𝑃≤ 1
3
.

4 Apply 𝛿-tank lemma with 𝛿 = 1
3 to 𝐴 to get 𝑇″.

5 Let 𝑇 = 𝑇′ ∪ 𝑇″ be the solution.
6 For the second solution:
7 Compute a TSP tour 𝐴 on 𝑉.
8 Apply 𝛿-tank lemma with 𝛿 = 1

3 to get 𝐹.
9 return better of 𝑇 and 𝐹
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Matching Step

𝑠

𝑞

𝑝

⇒

𝑞

𝑝

𝑒

𝑤(𝑒) = 𝑑(𝑠, 𝑝) + 𝑑(𝑝, 𝑞) + 𝑑(𝑞, 𝑠)
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Proof of 𝛿-Tank Algorithm

Proof.

Clearly 𝑑(𝑇′) ≤ OPT and 𝑑(𝑇′) ≤ 𝐷′
> 1

3
. For the first

solution:

𝑑(𝑇) = 𝑑(𝑇′) + 𝑑(𝑇″) ≤ 𝑑(𝑇′) + 𝛼 ⋅ OPT +
3
2𝐷≤ 1

3
.

For the second solution:

𝑑(𝐹) ≤ 𝛼 ⋅ OPT +
3
2𝐷≤ 1

3
+ 3𝐷> 1

3
−

1
2𝐷′

> 1
3
.
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Proof of 𝛿-Tank Algorithm II

Now combine:

min{𝑑(𝑇), 𝑑(𝐹)} ≤
𝑑(𝑇) + 𝑑(𝐹)

2

≤
2𝛼 ⋅ OPT + 3𝐷≤ 1

3
+ 3𝐷> 1

3
+ 𝑑(𝑇′) − 1

2𝐷′
> 1

3

2

≤
2𝛼 ⋅ OPT + 3𝐷 + 1

2𝑑(𝑇′)
2

≤ (𝛼 + 1.75)OPT.

Clearly everything was polynomial time! �
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A 3.194-Approximation



Result

We can actually do slightly better than the previous section:

Theorem (Friggstad et. al 2022)

There is a (𝛼 + ln(2) + 𝛿)-approximation algorithm for the
CVRP that runs in 𝑛𝑂(1/𝛿) time where 𝛼 is the best
approximation ratio for the TSP.
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Configuration LP

The idea is to replace the matching by a configuration LP:

min ∑
𝐶∈𝒞

𝑑(𝐶)𝑥𝐶

s.t. ∑
𝐶∈𝒞
𝑝∈𝐶

𝑥𝐶 ≥ 1 ∀𝑝 ∈ 𝑃>𝛿,

𝑥 ≥ 0.

18



The Configuration LP Algorithm

Algorithm 2: Configuration LP Algorithm
1 Solve the configuration LP to get 𝑥⋆.
2 Let 𝑇 ≔ ∅.
3 for 𝐶 ∈ 𝒞 do
4 With probability min{1, ln(2)𝑥𝐶} add 𝐶 to 𝑇.

5 Compute a TSP tour 𝐴 on 𝑉 𝑃(𝑇).
6 Apply 𝛿-tank lemma to 𝐴 to get 𝑇′.
7 return 𝑇 ∪ 𝑇′

19



Proof of the Configuration LP Algorithm

Proof. First note 𝔼[𝑑(𝑇)] ≤ ln(2)OPT and:

ℙ[𝑝 uncovered by 𝑇] = ∏
𝐶∈𝒞

(1 − ln(2)𝑥𝐶) ≤ 𝑒− ln(2) =
1
2.

Recall by 𝛿-tank lemma (�̂� counts only uncovered parcels):

𝑑(𝑇′) ≤ 𝛼 ⋅ OPT +
1

1 − 𝛿�̂�≤𝛿 +
2

1 − 𝛿�̂�>𝛿.

Thus:

𝔼[𝑑(𝑇′)] ≤ 𝛼 ⋅ OPT +
1

1 − 𝛿𝐷≤𝛿 +
2

1 − 𝛿
1
2𝐷>𝛿.

20



Proof of the Configuration LP Algorithm II

Now combine:

𝔼[𝑑(𝑇) + 𝑑(𝑇′)] ≤ ln(2)OPT + 𝛼OPT +
1

1 − 𝛿𝐷≤𝛿 +
1

1 − 𝛿𝐷>𝛿

≤ (ln(2) + 𝛼 +
1

1 − 𝛿)OPT.

Note: the running time is 𝑛𝑂(1/𝛿). The algorithm can be
derandomized via method of conditional expectation. �
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Open Problems

Although there has been recent movement on the CVRP, there
are still exciting open problems:

• For the splittable and equal demand cases, can we do
better than 2.5 − 𝜖?

• This algorithm bounds against a natural LP. We know the
integrality gap is ≥ 2. Can we get a better bound?

• For the Euclidean plane, all cases have 2 + 𝜖 ratios. Can we
do better?
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Thank your for listening!
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