APPROXIMATION ALGORITHMS FOR UNSPLITTABLE Capacitated Vehicle Routing ${ }^{1}$

Thorben Tröbst
Theory Seminar, April 21, 2023
Department of Computer Science, University of California, Irvine
${ }^{1}$ based on work by Friggstad et al. IPCO 2022

Capacitated Vehicle Routing Problem (CVRP)

Capacitated Vehicle Routing Problem (CVRP)

Capacitated Vehicle Routing Problem (CVRP)

Capacitated Vehicle Routing Problem (CVRP)

Capacitated Vehicle Routing Problem (CVRP)

Capacitated Vehicle Routing Problem (CVRP) II

Problem (Capacitated Vehicle Routing)

Input: a complete graph $G=(V, E)$ with $V=P \cup\{s\}$, metric edge lengths $d: E \rightarrow \mathbb{R}_{\geq 0}$, and vertex demands $b: P \rightarrow[0,1]$.

Capacitated Vehicle Routing Problem (CVRP) II

Problem (Capacitated Vehicle Routing)

Input: a complete graph $G=(V, E)$ with $V=P \cup\{s\}$, metric edge lengths $d: E \rightarrow \mathbb{R}_{\geq 0}$, and vertex demands $b: P \rightarrow[0,1]$.

Task: compute (possibly degenerate) cycles $C_{1}, \ldots, C_{k} \subseteq G$ such that

Capacitated Vehicle Routing Problem (CVRP) II

Problem (Capacitated Vehicle Routing)

Input: a complete graph $G=(V, E)$ with $V=P \cup\{s\}$, metric edge lengths $d: E \rightarrow \mathbb{R}_{\geq 0}$, and vertex demands $b: P \rightarrow[0,1]$.

Task: compute (possibly degenerate) cycles $C_{1}, \ldots, C_{k} \subseteq G$ such that

- $P \subseteq \bigcup_{i=1}^{k} V\left(C_{i}\right)$,

Capacitated Vehicle Routing Problem (CVRP) II

Problem (Capacitated Vehicle Routing)

Input: a complete graph $G=(V, E)$ with $V=P \cup\{s\}$, metric edge lengths $d: E \rightarrow \mathbb{R}_{\geq 0}$, and vertex demands $b: P \rightarrow[0,1]$.

Task: compute (possibly degenerate) cycles $C_{1}, \ldots, C_{k} \subseteq G$ such that

- $P \subseteq \bigcup_{i=1}^{k} V\left(C_{i}\right)$,
- each C_{i} contains s,

Capacitated Vehicle Routing Problem (CVRP) II

Problem (Capacitated Vehicle Routing)

Input: a complete graph $G=(V, E)$ with $V=P \cup\{s\}$, metric edge lengths $d: E \rightarrow \mathbb{R}_{\geq 0}$, and vertex demands $b: P \rightarrow[0,1]$.

Task: compute (possibly degenerate) cycles $C_{1}, \ldots, C_{k} \subseteq G$ such that

- $P \subseteq \bigcup_{i=1}^{k} V\left(C_{i}\right)$,
- each C_{i} contains s,
- $b\left(C_{i}\right) \leq 1$ for all i, and

Capacitated Vehicle Routing Problem (CVRP) II

Problem (Capacitated Vehicle Routing)

Input: a complete graph $G=(V, E)$ with $V=P \cup\{s\}$, metric edge lengths $d: E \rightarrow \mathbb{R}_{\geq 0}$, and vertex demands $b: P \rightarrow[0,1]$.

Task: compute (possibly degenerate) cycles $C_{1}, \ldots, C_{k} \subseteq G$ such that

- $P \subseteq \bigcup_{i=1}^{k} V\left(C_{i}\right)$,
- each C_{i} contains s,
- $b\left(C_{i}\right) \leq 1$ for all i, and
- $\sum_{i=1}^{k} d\left(C_{i}\right)$ is minimum.

Capacitated Vehicle Routing Problem (CVRP) III

A brief history:

Capacitated Vehicle Routing Problem (CVRP) III

A brief history:

- Introduced by Dantzig and Ramser ("The Truck Dispatching Problem") in 1959

Capacitated Vehicle Routing Problem (CVRP) III

A brief history:

- Introduced by Dantzig and Ramser ("The Truck Dispatching Problem") in 1959
- 3.5-Approximation by Altinkemer and Gavish in 1987 (based on work by Rinnooy Kan and Haimovich in 1985)

Capacitated Vehicle Routing Problem (CVRP) III

A brief history:

- Introduced by Dantzig and Ramser ("The Truck Dispatching Problem") in 1959
- 3.5-Approximation by Altinkemer and Gavish in 1987 (based on work by Rinnooy Kan and Haimovich in 1985)
- Improvements for special cases in recent years (e.g. Bompadre 2006, Becker et al. 2019)

Capacitated Vehicle Routing Problem (CVRP) III

A brief history:

- Introduced by Dantzig and Ramser ("The Truck Dispatching Problem") in 1959
- 3.5-Approximation by Altinkemer and Gavish in 1987 (based on work by Rinnooy Kan and Haimovich in 1985)
- Improvements for special cases in recent years (e.g. Bompadre 2006, Becker et al. 2019)
- General case improved by є (Blauth et al. 2021)

Capacitated Vehicle Routing Problem (CVRP) III

A brief history:

- Introduced by Dantzig and Ramser ("The Truck Dispatching Problem") in 1959
- 3.5-Approximation by Altinkemer and Gavish in 1987 (based on work by Rinnooy Kan and Haimovich in 1985)
- Improvements for special cases in recent years (e.g. Bompadre 2006, Becker et al. 2019)
- General case improved by є (Blauth et al. 2021)
- Current best: ≈ 3.2 (Friggstad et al. 2022)

CLASSIC LOWER BOUNDS

TSP

Clearly, a lower bound for the CVRP is a TSP solution:

TSP

Clearly, a lower bound for the CVRP is a TSP solution:

Radial Weighted Distance

A less obvious lower bound is:
Theorem
The optimal solution of the CVRP is lower bounded by:

$$
\sum_{p \in P} 2 b(p) d(s, p) .
$$

Radial Weighted Distance

A less obvious lower bound is:
Theorem
The optimal solution of the CVRP is lower bounded by:

$$
\sum_{p \in P} 2 b(p) d(s, p) .
$$

Proof.

Consider some C_{i} in OPT.

Radial Weighted Distance

A less obvious lower bound is:
Theorem
The optimal solution of the CVRP is lower bounded by:

$$
\sum_{p \in P} 2 b(p) d(s, p) .
$$

Proof.

Consider some C_{i} in OPT. For each $p \in P\left(C_{i}\right)$, clearly $d\left(C_{i}\right) \geq 2 d(s, p)$ by the triangle inequality.

Radial Weighted Distance

A less obvious lower bound is:
Theorem
The optimal solution of the CVRP is lower bounded by:

$$
\sum_{p \in P} 2 b(p) d(s, p) .
$$

Proof.

Consider some C_{i} in OPT. For each $p \in P\left(C_{i}\right)$, clearly $d\left(C_{i}\right) \geq 2 d(s, p)$ by the triangle inequality. So $d\left(C_{i}\right) \geq \sum_{p \in P\left(C_{i}\right)} 2 b(p) d(s, p)$ since $b\left(C_{i}\right) \leq 1$.

TOUR PARTITIONING

Tour Partitioning Algorithm

Theorem

There is a polynomial time $(\alpha+2)$-approximation algorithm for the CVRP where α is the best approximation ratio for the TSP.

Tour Partitioning Algorithm

Theorem

There is a polynomial time $(\alpha+2)$-approximation algorithm for the CVRP where α is the best approximation ratio for the TSP.

Sketch: Compute an α-approximate TSP tour through all vertices.

Tour Partitioning Algorithm

Theorem

There is a polynomial time $(\alpha+2)$-approximation algorithm for the CVRP where α is the best approximation ratio for the TSP.

Sketch: Compute an α-approximate TSP tour through all vertices. Partition the tour into segments of weight at most 1, connecting each to the depot, such that the total distance is minimized.

Tour Partitioning Algorithm

Theorem

There is a polynomial time $(\alpha+2)$-approximation algorithm for the CVRP where α is the best approximation ratio for the TSP.

Sketch: Compute an α-approximate TSP tour through all vertices. Partition the tour into segments of weight at most 1, connecting each to the depot, such that the total distance is minimized. (how?)

Tour Partitioning Algorithm

Theorem

There is a polynomial time $(\alpha+2)$-approximation algorithm for the CVRP where α is the best approximation ratio for the TSP.

Sketch: Compute an α-approximate TSP tour through all vertices. Partition the tour into segments of weight at most 1, connecting each to the depot, such that the total distance is minimized. (how?) It just works.'M

Tour Partitioning Example

Tour Partitioning Example

Tour Partitioning Example

$b\left(p_{1}\right)$	$b\left(p_{2}\right)$	$b\left(p_{3}\right)$	$b\left(p_{4}\right)$	$b\left(p_{5}\right)$	$b\left(p_{6}\right)$	$b\left(p_{7}\right)$	$b\left(p_{8}\right)$	$b\left(p_{9}\right)$	$b\left(p_{10}\right)\left\|b\left(p_{11}\right)\right\| b\left(p_{12}\right)$

Tour Partitioning Example

Tour Partitioning Example

Tour Partitioning Proof

Proof. If C is the TSP solution, and C_{1}, \ldots, C_{k} the result of tour partitioning, then:

$$
\sum_{i=1}^{k} d\left(C_{i}\right) \leq d(C)+\sum_{i=1}^{k-1} 4 d\left(s, q_{i}\right)
$$

Tour Partitioning Proof

Proof. If C is the TSP solution, and C_{1}, \ldots, C_{k} the result of tour partitioning, then:

$$
\sum_{i=1}^{k} d\left(C_{i}\right) \leq d(C)+\sum_{i=1}^{k-1} 4 d\left(s, q_{i}\right)
$$

For each $p, \mathbb{P}\left[p=q_{i}\right.$ for some $\left.i\right]=b(p)$.

Tour Partitioning Proof

Proof. If C is the TSP solution, and C_{1}, \ldots, C_{k} the result of tour partitioning, then:

$$
\sum_{i=1}^{k} d\left(C_{i}\right) \leq d(C)+\sum_{i=1}^{k-1} 4 d\left(s, q_{i}\right)
$$

For each $p, \mathbb{P}\left[p=q_{i}\right.$ for some $\left.i\right]=b(p)$. So

$$
\mathbb{E}\left[\sum_{i=1}^{k} d\left(C_{i}\right)\right] \leq \alpha \mathrm{TSP}+\sum_{p \in P} 4 b(p) d(s, p)
$$

Tour Partitioning Proof

Proof. If C is the TSP solution, and C_{1}, \ldots, C_{k} the result of tour partitioning, then:

$$
\sum_{i=1}^{k} d\left(C_{i}\right) \leq d(C)+\sum_{i=1}^{k-1} 4 d\left(s, q_{i}\right)
$$

For each $p, \mathbb{P}\left[p=q_{i}\right.$ for some $\left.i\right]=b(p)$. So

$$
\mathbb{E}\left[\sum_{i=1}^{k} d\left(C_{i}\right)\right] \leq \alpha \mathrm{TSP}+\sum_{p \in P} 4 b(p) d(s, p)
$$

So there is a partition with distance $\leq(\alpha+2)$ OPT.

A 3.25-APPROXIMATION

MAIN THEOREM

Our goal is to show:

Theorem (Friggstad et. al 2022)

There is a polynomial time ($\alpha+1.75$)-approximation algorithm for the CVRP where α is the best approximation ratio for the TSP.

MAIN Theorem

Our goal is to show:

Theorem (Friggstad et. al 2022)

There is a polynomial time ($\alpha+1.75$)-approximation algorithm for the CVRP where α is the best approximation ratio for the TSP.

We will need a more fine-grained tour partitioning result!

The δ-Tank Lemma

Lemma

Let C be a cycle on V and $\delta \in[0,1)$, then C can be partitioned into C_{1}, \ldots, C_{k} with

$$
\sum_{i=1}^{k} d\left(C_{i}\right) \leq d(C)+\frac{1}{1-\delta} D_{\leq \delta}+\frac{2}{1-\delta} D_{>\delta}-\frac{\delta}{1-\delta} D_{>\delta}^{\prime}
$$

The δ-Tank Lemma

Lemma

Let C be a cycle on V and $\delta \in[0,1)$, then C can be partitioned into C_{1}, \ldots, C_{k} with

$$
\sum_{i=1}^{k} d\left(C_{i}\right) \leq d(C)+\frac{1}{1-\delta} D_{\leq \delta}+\frac{2}{1-\delta} D_{>\delta}-\frac{\delta}{1-\delta} D_{>\delta}^{\prime}
$$

$$
\begin{gathered}
D_{\leq \delta}:=\sum_{p \in P, b(p) \leq \delta} 2 b(p) d(s, p), \quad D_{>\delta}:=\sum_{p \in P, b(p)>\delta} 2 b(p) d(s, p) . \\
D_{>\delta}^{\prime}:=\sum_{p \in P, b(p)>\delta} 2 d(s, p)
\end{gathered}
$$

Proof of δ-Tank Lemma

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

1. $b(p) \leq \delta$

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

1. $b(p) \leq \delta$

- Cost: $2 d(s, p)$

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

1. $b(p) \leq \delta$

- Cost: $2 d(s, p)$
- Probability: $\frac{1}{1-\delta} b(p)$

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

1. $b(p) \leq \delta$

- Cost: $2 d(s, p)$
- Probability: $\frac{1}{1-\delta} b(p)$

2. $b(p)>\delta$ and still fits in tank

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

1. $b(p) \leq \delta$

- Cost: $2 d(s, p)$
- Probability: $\frac{1}{1-\delta} b(p)$

2. $b(p)>\delta$ and still fits in tank

- Cost: $2 d(s, p)$

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

1. $b(p) \leq \delta$

- Cost: $2 d(s, p)$
- Probability: $\frac{1}{1-\delta} b(p)$

2. $b(p)>\delta$ and still fits in tank

- Cost: $2 d(s, p)$
- Probability: $\frac{\delta}{1-\delta}$

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

1. $b(p) \leq \delta$

- Cost: $2 d(s, p)$
- Probability: $\frac{1}{1-\delta} b(p)$

2. $b(p)>\delta$ and still fits in tank

- Cost: $2 d(s, p)$
- Probability: $\frac{\delta}{1-\delta}$

3. $b(p)>\delta$ and does not fit in tank

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

1. $b(p) \leq \delta$

- Cost: $2 d(s, p)$
- Probability: $\frac{1}{1-\delta} b(p)$

2. $b(p)>\delta$ and still fits in tank

- Cost: $2 d(s, p)$
- Probability: $\frac{\delta}{1-\delta}$

3. $b(p)>\delta$ and does not fit in tank

- Cost: $4 d(s, p)$

Proof of δ-Tank Lemma II

Proof. There are three cases for $p \in P$:

1. $b(p) \leq \delta$

- Cost: $2 d(s, p)$
- Probability: $\frac{1}{1-\delta} b(p)$

2. $b(p)>\delta$ and still fits in tank

- Cost: $2 d(s, p)$
- Probability: $\frac{\delta}{1-\delta}$

3. $b(p)>\delta$ and does not fit in tank

- Cost: $4 d(s, p)$
- Probability: $\frac{b(p)-\delta}{1-\delta}$

δ-TANK ALGORITHM

Algorithm 1: δ-TANK ALGORITHM

1 For the first solution:
2 Match up $p \in P_{>\frac{1}{3}}$ via min-cost perfect matching into T^{\prime}.
3 Compute a TSP tour A on $\{s\} \cup P_{\leq \frac{1}{3}}$.
4 Apply δ-tank lemma with $\delta=\frac{1}{3}$ to A to get $T^{\prime \prime}$.
5 Let $T=T^{\prime} \cup T^{\prime \prime}$ be the solution.
6 For the second solution:
7 Compute a TSP tour A on V.
8 Apply δ-tank lemma with $\delta=\frac{1}{3}$ to get F.
9 return better of T and F

Matching Step

PROOF OF δ-TANK ALGORITHM

Proof.

Proof of δ-Tank Algorithm

Proof. Clearly $d\left(T^{\prime}\right) \leq$ OPT and $d\left(T^{\prime}\right) \leq D_{>\frac{1}{3}}^{\prime}$.

Proof of δ-Tank Algorithm

Proof. Clearly $d\left(T^{\prime}\right) \leq$ OPT and $d\left(T^{\prime}\right) \leq D_{>\frac{1}{3}}^{\prime}$. For the first solution:

$$
d(T)=d\left(T^{\prime}\right)+d\left(T^{\prime \prime}\right) \leq d\left(T^{\prime}\right)+\alpha \cdot \mathrm{OPT}+\frac{3}{2} D_{\leq \frac{1}{3}} .
$$

Proof of δ-Tank Algorithm

Proof. Clearly $d\left(T^{\prime}\right) \leq$ OPT and $d\left(T^{\prime}\right) \leq D_{>\frac{1}{3}}^{\prime}$. For the first solution:

$$
d(T)=d\left(T^{\prime}\right)+d\left(T^{\prime \prime}\right) \leq d\left(T^{\prime}\right)+\alpha \cdot \mathrm{OPT}+\frac{3}{2} D_{\leq \frac{1}{3}}
$$

For the second solution:

$$
d(F) \leq \alpha \cdot \text { OPT }+\frac{3}{2} D_{\leq \frac{1}{3}}+3 D_{>\frac{1}{3}}-\frac{1}{2} D_{>\frac{1}{3}}^{\prime}
$$

Proof of δ-Tank Algorithm II

Now combine:

$$
\min \{d(T), d(F)\} \leq \frac{d(T)+d(F)}{2}
$$

Proof of δ-Tank Algorithm II

Now combine:

$$
\begin{aligned}
\min \{d(T), d(F)\} & \leq \frac{d(T)+d(F)}{2} \\
& \leq \frac{2 \alpha \cdot \mathrm{OPT}+3 D_{\leq \frac{1}{3}}+3 D_{>\frac{1}{3}}+d\left(T^{\prime}\right)-\frac{1}{2} D_{>\frac{1}{3}}^{\prime}}{2}
\end{aligned}
$$

Proof of δ-Tank Algorithm II

Now combine:

$$
\begin{aligned}
\min \{d(T), d(F)\} & \leq \frac{d(T)+d(F)}{2} \\
& \leq \frac{2 \alpha \cdot \mathrm{OPT}+3 D_{\leq \frac{1}{3}}+3 D_{>\frac{1}{3}}+d\left(T^{\prime}\right)-\frac{1}{2} D_{>\frac{1}{3}}^{\prime}}{2} \\
& \leq \frac{2 \alpha \cdot \mathrm{OPT}+3 D+\frac{1}{2} d\left(T^{\prime}\right)}{2}
\end{aligned}
$$

Proof of δ-Tank Algorithm II

Now combine:

$$
\begin{aligned}
\min \{d(T), d(F)\} & \leq \frac{d(T)+d(F)}{2} \\
& \leq \frac{2 \alpha \cdot \mathrm{OPT}+3 D_{\leq \frac{1}{3}}+3 D_{>\frac{1}{3}}+d\left(T^{\prime}\right)-\frac{1}{2} D_{>\frac{1}{3}}^{\prime}}{2} \\
& \leq \frac{2 \alpha \cdot \mathrm{OPT}+3 D+\frac{1}{2} d\left(T^{\prime}\right)}{2} \\
& \leq(\alpha+1.75) \mathrm{OPT} .
\end{aligned}
$$

Proof of δ-Tank Algorithm II

Now combine:

$$
\begin{aligned}
\min \{d(T), d(F)\} & \leq \frac{d(T)+d(F)}{2} \\
& \leq \frac{2 \alpha \cdot \mathrm{OPT}+3 D_{\leq \frac{1}{3}}+3 D_{>\frac{1}{3}}+d\left(T^{\prime}\right)-\frac{1}{2} D_{>\frac{1}{3}}^{\prime}}{2} \\
& \leq \frac{2 \alpha \cdot \mathrm{OPT}+3 D+\frac{1}{2} d\left(T^{\prime}\right)}{2} \\
& \leq(\alpha+1.75) \mathrm{OPT} .
\end{aligned}
$$

Clearly everything was polynomial time!

A 3.194-APPROXIMATION

Result

We can actually do slightly better than the previous section:
Theorem (Friggstad et. al 2022)
There is a $(\alpha+\ln (2)+\delta)$-approximation algorithm for the CVRP that runs in $n^{O(1 / \delta)}$ time where α is the best approximation ratio for the TSP.

CONFIGURATION LP

The idea is to replace the matching by a configuration LP:

$$
\begin{array}{ll}
\min & \sum_{C \in C} d(C) x_{C} \\
\text { s.t. } & \sum_{\substack{C \in C \\
p \in C}} x_{C} \geq 1 \quad \forall p \in P_{>\delta}, \\
& x \geq 0 .
\end{array}
$$

The Configuration LP Algorithm

Algorithm 2: CONFIGURATION LP ALGORITHM

1 Solve the configuration LP to get x^{\star}.
2 Let $T:=\varnothing$.
3 for $C \in C$ do
4 With probability $\min \left\{1, \ln (2) x_{C}\right\}$ add C to T.
5 Compute a TSP tour A on $V P(T)$.
6 Apply δ-tank lemma to A to get T^{\prime}.
7 return $T \cup T^{\prime}$

Proof of the Configuration LP Algorithm

Proof. First note $\mathbb{E}[d(T)] \leq \ln (2)$ OPT and:

$$
\mathbb{P}[p \text { uncovered by } T]=\prod_{C \in C}\left(1-\ln (2) x_{C}\right) \leq e^{-\ln (2)}=\frac{1}{2} .
$$

Recall by δ-tank lemma (\hat{D} counts only uncovered parcels):

$$
d\left(T^{\prime}\right) \leq \alpha \cdot \mathrm{OPT}+\frac{1}{1-\delta} \hat{D}_{\leq \delta}+\frac{2}{1-\delta} \hat{D}_{>\delta}
$$

Thus:

$$
\mathbb{E}\left[d\left(T^{\prime}\right)\right] \leq \alpha \cdot \mathrm{OPT}+\frac{1}{1-\delta} D_{\leq \delta}+\frac{2}{1-\delta} \frac{1}{2} D_{>\delta}
$$

Proof of the Configuration LP Algorithm II

Now combine:

Proof of the Configuration LP Algorithm II

Now combine:
$\mathbb{E}\left[d(T)+d\left(T^{\prime}\right)\right] \leq \ln (2) \mathrm{OPT}+\alpha \mathrm{OPT}+\frac{1}{1-\delta} D_{\leq \delta}+\frac{1}{1-\delta} D_{>\delta}$

Proof of the Configuration LP Algorithm II

Now combine:

$$
\begin{aligned}
\mathbb{E}\left[d(T)+d\left(T^{\prime}\right)\right] & \leq \ln (2) \mathrm{OPT}+\alpha \mathrm{OPT}+\frac{1}{1-\delta} D_{\leq \delta}+\frac{1}{1-\delta} D_{>\delta} \\
& \leq\left(\ln (2)+\alpha+\frac{1}{1-\delta}\right) \mathrm{OPT} .
\end{aligned}
$$

Proof of the Configuration LP Algorithm II

Now combine:

$$
\begin{aligned}
\mathbb{E}\left[d(T)+d\left(T^{\prime}\right)\right] & \leq \ln (2) \mathrm{OPT}+\alpha \mathrm{OPT}+\frac{1}{1-\delta} D_{\leq \delta}+\frac{1}{1-\delta} D_{>\delta} \\
& \leq\left(\ln (2)+\alpha+\frac{1}{1-\delta}\right) \mathrm{OPT} .
\end{aligned}
$$

Note: the running time is $n^{O(1 / \delta)}$. The algorithm can be derandomized via method of conditional expectation.

Open Problems

Although there has been recent movement on the CVRP, there are still exciting open problems:

Open Problems

Although there has been recent movement on the CVRP, there are still exciting open problems:

- For the splittable and equal demand cases, can we do better than $2.5-\epsilon$?

Open Problems

Although there has been recent movement on the CVRP, there are still exciting open problems:

- For the splittable and equal demand cases, can we do better than $2.5-\epsilon$?
- This algorithm bounds against a natural LP. We know the integrality gap is ≥ 2. Can we get a better bound?

Open Problems

Although there has been recent movement on the CVRP, there are still exciting open problems:

- For the splittable and equal demand cases, can we do better than $2.5-\epsilon$?
- This algorithm bounds against a natural LP. We know the integrality gap is ≥ 2. Can we get a better bound?
- For the Euclidean plane, all cases have $2+\epsilon$ ratios. Can we do better?

THANK YOUR FOR LISTENING!

