FAIR AND EFFICIENT ALLOCATIONS OF CHORES UNDER BIVALUED PREFERENCES*

Thorben Tröbst Theory Seminar, May 6, 2022

Department of Computer Science, University of California, Irvine

* based on AAAI 2022 paper by Jugal Garg, Aniket Murhekar, and John Qin

• Given *n* agents *N*, and

- Given *n* agents *N*, and
- *m* goods *M*,

- Given *n* agents *N*, and
- *m* goods *M*,
- $\cdot\,$ allocate goods to agents in an efficient and fair manner.

- Given *n* agents *N*, and
- *m* goods *M*,
- $\cdot\,$ allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

- Given *n* agents *N*, and
- *m* goods *M*,
- allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

Assume: Linear utilities: u_{ij} for all $i \in N$, $j \in M$.

• Proportional: $u_i(x_i) \ge \frac{1}{n}u_i(M)$?

- Proportional: $u_i(x_i) \ge \frac{1}{n}u_i(M)$?
- Egalitarian: $u_i(x_i) \ge u_j(x_j)$?

- Proportional: $u_i(x_i) \ge \frac{1}{n}u_i(M)$?
- Egalitarian: $u_i(x_i) \ge u_j(x_j)$?
- Envy-free: $u_i(x_i) \ge u_i(x_j)$?

- Proportional: $u_i(x_i) \ge \frac{1}{n}u_i(M)$?
- Egalitarian: $u_i(x_i) \ge u_j(x_j)$?
- Envy-free: $u_i(x_i) \ge u_i(x_j)$?

Problem: none of these work for indivisible goods!

• Proportional up to one good: $u_i(x_i) \ge \min_k \frac{1}{n} u_i(M-k)$?

- Proportional up to one good: $u_i(x_i) \ge \min_k \frac{1}{n} u_i(M-k)$?
- Egalitarian up to one good (EQ1): $u_i(x_i) \ge \min_k u_i(x_i k)$?

- Proportional up to one good: $u_i(x_i) \ge \min_k \frac{1}{n} u_i(M-k)$?
- Egalitarian up to one good (EQ1): $u_i(x_i) \ge \min_k u_i(x_i k)$?
- Envy-free up to one good (EF1): $u_i(x_i) \ge \min_k u_i(x_j k)$?

- Proportional up to one good: $u_i(x_i) \ge \min_k \frac{1}{n} u_i(M-k)$?
- Egalitarian up to one good (EQ1): $u_i(x_i) \ge \min_k u_i(x_i k)$?
- Envy-free up to one good (EF1): $u_i(x_i) \ge \min_k u_i(x_j k)$?

Note: replacing min with max yields stronger EQX / EFX fairness.

Fairness alone is not that impressive:

Fairness alone is not that impressive:

	Phone	Tablet
Alice	10	1
Bob	1	10

Fairness alone is not that impressive:

	Phone	Tablet
Alice	10	1
Bob	1	10

Allocation Alice – Tablet and Bob – Phone is EFX and EQX but obviously bad!

The classic efficiency notions are:

The classic efficiency notions are:

Definition

An allocation is Pareto-optimal (PO) if no allocation is weakly better for all agents, and strictly better for at least one agent.

The classic efficiency notions are:

Definition

An allocation is Pareto-optimal (PO) if no allocation is weakly better for all agents, and strictly better for at least one agent.

Definition

An allocation is fractionally Pareto-optimal (fPO) if no fractional allocation is weakly better for all agents, and strictly better for at least one agent.

Theorem (Garg, Murhekar 2021) EF1 + fPO allocations always exist an can be computed in pseudo-polynomial time.

Theorem (Garg, Murhekar 2021) EF1 + fPO allocations always exist an can be computed in pseudo-polynomial time.

Theorem (Garg, Murhekar 2021) EFX + fPO allocations exist under bivalued utilities and can be computed in polynomial time.

Theorem (Garg, Murhekar 2021) EF1 + fPO allocations always exist an can be computed in pseudo-polynomial time.

Theorem (Garg, Murhekar 2021) EFX + fPO allocations exist under bivalued utilities and can be computed in polynomial time.

Open problem: Do EFX + PO allocations always exist?

Sometimes we wish to assign chores instead of goods.

Sometimes we wish to assign chores instead of goods.

	Dishes	Laundry
Alice	-5	-1
Bob	-1	-2

Sometimes we wish to assign chores instead of goods.

	Dishes	Laundry
Alice	-5	-1
Bob	-1	-2

Note: Notions of fairness and efficiency extend to chores!

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

Theorem

EF + *PO* allocations of divisible chores exist under bivalued utilities and can be computed in strongly polynomial time.

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

So our instance looks like:

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

So our instance looks like:

• *n* agents *N*,

Theorem EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

So our instance looks like:

- *n* agents *N*,
- *m* goods *M*,

Theorem EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

So our instance looks like:

- *n* agents *N*,
- *m* goods *M*,
- costs c_{ij} where wlog. $c_{ij} \in \{1, k\}$ for some $k \in \mathbb{N}$.
• the market clears, i.e. all chores are allocated,

- the market clears, i.e. all chores are allocated,
- every agent achieves their earning target, i.e. $p(x_i) \ge e_i$,

- the market clears, i.e. all chores are allocated,
- every agent achieves their earning target, i.e. $p(x_i) \ge e_i$,
- agents only receive minimum bang per buck, i.e. chores that minimize c_{ij}/p_j .

- the market clears, i.e. all chores are allocated,
- every agent achieves their earning target, i.e. $p(x_i) \ge e_i$,
- agents only receive minimum bang per buck, i.e. chores that minimize c_{ij}/p_j .

Note: If (x, p) is a market equilibrium, then x is fPO!

MARKET EQUILIBRIUM EXAMPLE

	Dishes	Laundry	Cleaning
Alice	5	1	3
Bob	1	2	4
Charlie	3	1	5

Allocate: Alice – Cleaning, Bob – Dishes, Charlie – Laundry p(Laundry) = 1, p(Dishes) = 1, p(Cleaning) = 3

MARKET EQUILIBRIUM EXAMPLE

	Dishes	Laundry	Cleaning
Alice	5	1	3
Bob	1	2	4
Charlie	3	1	5

Allocate: Alice – Cleaning, Bob – Dishes, Charlie – Laundry p(Laundry) = 1, p(Dishes) = 1, p(Cleaning) = 3

Note: If all e_i are the same, then this is very fair. This is possible for divisible goods but no algorithm exists.

Market equilibria have a fairness notion too:

Definition

(x,p) is price envy-free up to one chore (pEF1) if $\min_k p(x_i - k) \le p(x_j)$ for all i, j.

Market equilibria have a fairness notion too:

Definition

(x,p) is price envy-free up to one chore (pEF1) if $\min_k p(x_i - k) \le p(x_j)$ for all i, j.

Lemma If (x,p) is pEF1 then x is EF1.

• Compute some initial market equilibrium (x, p)

- Compute some initial market equilibrium (x, p)
- If (x, p) is not pEF1, identify the big earner $b = \arg \max_i \min_j p(x_i - k)$ and the least earner $l = \arg \min_i p(x_i)$.

- Compute some initial market equilibrium (x, p)
- If (x, p) is not pEF1, identify the big earner $b = \arg \max_i \min_j p(x_i - k)$ and the least earner $l = \arg \min_i p(x_i)$.
- Try to funnel chores from the big earner to the least earner.

- Compute some initial market equilibrium (x, p)
- If (x, p) is not pEF1, identify the big earner $b = \arg \max_i \min_j p(x_i - k)$ and the least earner $l = \arg \min_i p(x_i)$.
- \cdot Try to funnel chores from the big earner to the least earner.
- If this is not possible, raise prices.

Phase 1: Initial Equilibrium

Phase 1: Initial Equilibrium II

b

$$= \arg \max_{i} \min_{k} p(x_{i} - k) \bullet$$

Phase 1: INITIAL EQUILIBRIUM II

1. Let *b* be the biggest earner.

- 1. Let *b* be the biggest earner.
- 2. Is there some *l* in the component of *b* with $\min_k p(x_b k) > p(x_l)$?

- 1. Let *b* be the biggest earner.
- 2. Is there some *l* in the component of *b* with $\min_k p(x_b k) > p(x_l)$?
- 3. If yes, funnel chores from b to l and go back to 1.

- 1. Let *b* be the biggest earner.
- 2. Is there some *l* in the component of *b* with $\min_k p(x_b k) > p(x_l)$?
- 3. If yes, funnel chores from b to l and go back to 1.
- 4. If no, remove the component of *b* from the graph and go back to 1.

Phase 1: Initial Equilibrium IV

Phase 1: Initial Equilibrium IV

PHASE 2: RAISE PRICES

PHASE 2: RAISE PRICES

PHASE 2: RAISE PRICES

• Create simple initial market equilibrium.

- Create simple initial market equilibrium.
- Create pEF1 groups H_1, \ldots, H_r .

- Create simple initial market equilibrium.
- Create pEF1 groups H_1, \ldots, H_r .
- Transfer chores from b to l by successively raising prices in groups H_1, \ldots, H_r .

- Create simple initial market equilibrium.
- Create pEF1 groups H_1, \ldots, H_r .
- Transfer chores from b to l by successively raising prices in groups H_1, \ldots, H_r .
- If *l* ends up in a raised group, transition to phase 3 and trade along alternating paths.

We showed:

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

We showed:

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

Can use similar techniques for:

Theorem

EF + PO allocations of divisible chores exist under bivalued utilities and can be computed in strongly polynomial time.

• Do EF1 + PO allocations always exist?

- Do EF1 + PO allocations always exist?
- · If so: can we compute them? If not: is decidability hard?

- Do EF1 + PO allocations always exist?
- · If so: can we compute them? If not: is decidability hard?
- EF + PO allocations of divisible chores are known to always exist. Is there a polynomial time algorithm?

THANK YOUR FOR LISTENING!