Fair and Efficient Allocations of Chores UNDER BIVALUED PREFERENCES*

Thorben Tröbst
Theory Seminar, May 6, 2022
Department of Computer Science, University of California, Irvine

* based on AAAI 2022 paper by Jugal Garg, Aniket Murhekar, and John Qin

FAIR Division

Fair division is a classic problem in AGT:

- Given n agents N, and

FAIR Division

Fair division is a classic problem in AGT:

- Given n agents N, and
- m goods M,

FAIR Division

Fair division is a classic problem in AGT:

- Given n agents N, and
- m goods M,
- allocate goods to agents in an efficient and fair manner.

FAIR Division

Fair division is a classic problem in AGT:

- Given n agents N, and
- m goods M,
- allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

FAIR Division

Fair division is a classic problem in AGT:

- Given n agents N, and
- m goods M,
- allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

Assume: Linear utilities: $u_{i j}$ for all $i \in N, j \in M$.

FAIRNESS

What is fairness?

FAIRNESS

What is fairness?

- Proportional: $u_{i}\left(x_{i}\right) \geq \frac{1}{n} u_{i}(M)$?

FAIRNESS

What is fairness?

- Proportional: $u_{i}\left(x_{i}\right) \geq \frac{1}{n} u_{i}(M)$?
- Egalitarian: $u_{i}\left(x_{i}\right) \geq u_{j}\left(x_{j}\right)$?

FAIRNESS

What is fairness?

- Proportional: $u_{i}\left(x_{i}\right) \geq \frac{1}{n} u_{i}(M)$?
- Egalitarian: $u_{i}\left(x_{i}\right) \geq u_{j}\left(x_{j}\right)$?
- Envy-free: $u_{i}\left(x_{i}\right) \geq u_{i}\left(x_{j}\right)$?

FAIRNESS

What is fairness?

- Proportional: $u_{i}\left(x_{i}\right) \geq \frac{1}{n} u_{i}(M)$?
- Egalitarian: $u_{i}\left(x_{i}\right) \geq u_{j}\left(x_{j}\right)$?
- Envy-free: $u_{i}\left(x_{i}\right) \geq u_{i}\left(x_{j}\right)$?

Problem: none of these work for indivisible goods!

DISCRETE FAIRNESS

To get notions of discrete fairness, simply remove one good:

DISCRETE FAIRNESS

To get notions of discrete fairness, simply remove one good:

- Proportional up to one good: $u_{i}\left(x_{i}\right) \geq \min _{k} \frac{1}{n} u_{i}(M-k)$?

DISCRETE FAIRNESS

To get notions of discrete fairness, simply remove one good:

- Proportional up to one good: $u_{i}\left(x_{i}\right) \geq \min _{k} \frac{1}{n} u_{i}(M-k)$?
- Egalitarian up to one good (EQ1): $u_{i}\left(x_{i}\right) \geq \min _{k} u_{j}\left(x_{j}-k\right)$?

DISCRETE FAIRNESS

To get notions of discrete fairness, simply remove one good:

- Proportional up to one good: $u_{i}\left(x_{i}\right) \geq \min _{k} \frac{1}{n} u_{i}(M-k)$?
- Egalitarian up to one good (EQ1): $u_{i}\left(x_{i}\right) \geq \min _{k} u_{j}\left(x_{j}-k\right)$?
- Envy-free up to one good (EF1): $u_{i}\left(x_{i}\right) \geq \min _{k} u_{i}\left(x_{j}-k\right)$?

DISCRETE FAIRNESS

To get notions of discrete fairness, simply remove one good:

- Proportional up to one good: $u_{i}\left(x_{i}\right) \geq \min _{k} \frac{1}{n} u_{i}(M-k)$?
- Egalitarian up to one good (EQ1): $u_{i}\left(x_{i}\right) \geq \min _{k} u_{j}\left(x_{j}-k\right)$?
- Envy-free up to one good (EF1): $u_{i}\left(x_{i}\right) \geq \min _{k} u_{i}\left(x_{j}-k\right)$?

Note: replacing min with max yields stronger EQX / EFX fairness.

Efficiency

Fairness alone is not that impressive:

EFFICIENCY

Fairness alone is not that impressive:

	Phone	Tablet
Alice	10	1
Bob	1	10

Efficiency

Fairness alone is not that impressive:

	Phone	Tablet
Alice	10	1
Bob	1	10

Allocation Alice - Tablet and Bob - Phone is EFX and EQX but obviously bad!

Efficiency Notions

The classic efficiency notions are:

Efficiency Notions

The classic efficiency notions are:

Definition

An allocation is Pareto-optimal (PO) if no allocation is weakly better for all agents, and strictly better for at least one agent.

EFFICIENCY Notions

The classic efficiency notions are:

Definition

An allocation is Pareto-optimal (PO) if no allocation is weakly better for all agents, and strictly better for at least one agent.

Definition

An allocation is fractionally Pareto-optimal (fPO) if no
fractional allocation is weakly better for all agents, and strictly better for at least one agent.

Known Results

Theorem (Barman, Krishnamurthy, Vaish 2018) EF1 + PO allocations always exist an can be computed in pseudo-polynomial time.

Known Results

Theorem (Barman, Krishnamurthy, Vaish 2018)
EF1 + PO allocations always exist an can be computed in pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EF1 + fPO allocations always exist an can be computed in pseudo-polynomial time.

Known Results

Theorem (Barman, Krishnamurthy, Vaish 2018)
EF1 + PO allocations always exist an can be computed in pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EF1 + fPO allocations always exist an can be computed in pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
$E F X+$ fPO allocations exist under bivalued utilities and can be computed in polynomial time.

Known Results

Theorem (Barman, Krishnamurthy, Vaish 2018)
EF1 + PO allocations always exist an can be computed in pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EF1 + fPO allocations always exist an can be computed in pseudo-polynomial time.

Theorem (Garg, Murhekar 2021) $E F X+$ fPO allocations exist under bivalued utilities and can be computed in polynomial time.

Open problem: Do EFX + PO allocations always exist?

CHORES

Sometimes we wish to assign chores instead of goods.

CHORES

Sometimes we wish to assign chores instead of goods.

	Dishes	Laundry
Alice	-5	-1
Bob	-1	-2

Chores

Sometimes we wish to assign chores instead of goods.

	Dishes	Laundry
Alice	-5	-1
Bob	-1	-2

Note: Notions of fairness and efficiency extend to chores!

Results

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

Results

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

Theorem
EF + PO allocations of divisible chores exist under bivalued utilities and can be computed in strongly polynomial time.

Results

We want to show:
Theorem
EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

Results

We want to show:
Theorem
EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

So our instance looks like:

Results

We want to show:
Theorem
EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

So our instance looks like:

- n agents N,

Results

We want to show:
Theorem
EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

So our instance looks like:

- n agents N,
- m goods M,

Results

We want to show:

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

So our instance looks like:

- n agents N,
- m goods M,
- costs $c_{i j}$ where wlog. $c_{i j} \in\{1, k\}$ for some $k \in \mathbb{N}$.

ReLation to Market Equilibria

Given earning targets e_{i} for all $i \in N$, an allocation x and prices p_{j} for all $j \in G$ form a market equilibrium if

ReLation to Market Equilibria

Given earning targets e_{i} for all $i \in N$, an allocation x and prices p_{j} for all $j \in G$ form a market equilibrium if

- the market clears, i.e. all chores are allocated,

ReLation to Market Equilibria

Given earning targets e_{i} for all $i \in N$, an allocation x and prices p_{j} for all $j \in G$ form a market equilibrium if

- the market clears, i.e. all chores are allocated,
- every agent achieves their earning target, i.e. $p\left(x_{i}\right) \geq e_{i}$,

ReLation to Market Equilibria

Given earning targets e_{i} for all $i \in N$, an allocation x and prices p_{j} for all $j \in G$ form a market equilibrium if

- the market clears, i.e. all chores are allocated,
- every agent achieves their earning target, i.e. $p\left(x_{i}\right) \geq e_{i}$,
- agents only receive minimum bang per buck, i.e. chores that minimize $c_{i j} / p_{j}$.

ReLation to Market Equilibria

Given earning targets e_{i} for all $i \in N$, an allocation x and prices p_{j} for all $j \in G$ form a market equilibrium if

- the market clears, i.e. all chores are allocated,
- every agent achieves their earning target, i.e. $p\left(x_{i}\right) \geq e_{i}$,
- agents only receive minimum bang per buck, i.e. chores that minimize $c_{i j} / p_{j}$.

Note: If (x, p) is a market equilibrium, then x is fPO!

MARKET EQUILIBRIUM EXAMPLE

	Dishes	Laundry	Cleaning
Alice	5	1	3
Bob	1	2	4
Charlie	3	1	5

Allocate: Alice - Cleaning, Bob - Dishes, Charlie - Laundry

$$
p(\text { Laundry })=1, p(\text { Dishes })=1, p(\text { Cleaning })=3
$$

MARKET EQUILIBRIUM EXAMPLE

	Dishes	Laundry	Cleaning
Alice	5	1	3
Bob	1	2	4
Charlie	3	1	5

Allocate: Alice - Cleaning, Bob - Dishes, Charlie - Laundry

$$
p(\text { Laundry })=1, p(\text { Dishes })=1, p(\text { Cleaning })=3
$$

Note: If all e_{i} are the same, then this is very fair. This is possible for divisible goods but no algorithm exists.

Price Envy

Market equilibria have a fairness notion too:

Definition

(x, p) is price envy-free up to one chore (pEF) if $\min _{k} p\left(x_{i}-k\right) \leq p\left(x_{j}\right)$ for all i, j.

Price Envy

Market equilibria have a fairness notion too:

Definition

(x, p) is price envy-free up to one chore (pEF) if $\min _{k} p\left(x_{i}-k\right) \leq p\left(x_{j}\right)$ for all i, j.

Lemma

If (x, p) is pEF1 then x is EF1.

General Strategy

We can now give the general strategy:

General Strategy

We can now give the general strategy:

- Compute some initial market equilibrium (x, p)

General Strategy

We can now give the general strategy:

- Compute some initial market equilibrium (x, p)
- If (x, p) is not $p E F 1$, identify the big earner $b=\arg \max _{i} \min _{j} p\left(x_{i}-k\right)$ and the least earner $l=\arg \min _{i} p\left(x_{i}\right)$.

General Strategy

We can now give the general strategy:

- Compute some initial market equilibrium (x, p)
- If (x, p) is not $p E F 1$, identify the big earner $b=\arg \max _{i} \min _{j} p\left(x_{i}-k\right)$ and the least earner $l=\arg \min _{i} p\left(x_{i}\right)$.
- Try to funnel chores from the big earner to the least earner.

General Strategy

We can now give the general strategy:

- Compute some initial market equilibrium (x, p)
- If (x, p) is not $p E F 1$, identify the big earner $b=\arg \max _{i} \min _{j} p\left(x_{i}-k\right)$ and the least earner
$l=\arg \min _{i} p\left(x_{i}\right)$.
- Try to funnel chores from the big earner to the least earner.
- If this is not possible, raise prices.

Phase 1: Initial Equilibrium

Phase 1: InItIAL EqUILIBRIUM

k
-k

PHASE 1: InITIAL EQUILIBRIUM II

$$
b=\arg \max _{i} \min _{k} p\left(x_{i}-k\right) .
$$

$$
l=\arg \min _{i} p\left(x_{i}\right) .
$$

PHASE 1: InITIAL EQUILIBRIUM II

$$
b=\arg \max _{i} \min _{k} p\left(x_{i}-k\right) .
$$

Phase 1: InITIAL EQUILIBRIUM III

Run the following algorithm:

Phase 1: INITIAL EQUILIBRIUM III

Run the following algorithm:

1. Let b be the biggest earner.

Phase 1: Initial Equilibrium III

Run the following algorithm:

1. Let b be the biggest earner.
2. Is there some l in the component of b with $\min _{k} p\left(x_{b}-k\right)>p\left(x_{l}\right) ?$

Phase 1: Initial Equilibrium III

Run the following algorithm:

1. Let b be the biggest earner.
2. Is there some l in the component of b with $\min _{k} p\left(x_{b}-k\right)>p\left(x_{l}\right) ?$
3. If yes, funnel chores from b to l and go back to 1 .

Phase 1: Initial Equilibrium III

Run the following algorithm:

1. Let b be the biggest earner.
2. Is there some l in the component of b with $\min _{k} p\left(x_{b}-k\right)>p\left(x_{l}\right)$?
3. If yes, funnel chores from b to l and go back to 1 .
4. If no, remove the component of b from the graph and go back to 1.

Phase 1: Initial Equilibrium IV

Phase 1: Initial Equilibrium IV

Phase 2: Raise Prices

PHASE 3: FINAL TRADES

SUMMARY

The overall algorithm is:

SUMMARY

The overall algorithm is:

- Create simple initial market equilibrium.

SUMMARY

The overall algorithm is:

- Create simple initial market equilibrium.
- Create pEF1 groups H_{1}, \ldots, H_{r}.

SUMMARY

The overall algorithm is:

- Create simple initial market equilibrium.
- Create pEF1 groups H_{1}, \ldots, H_{r}.
- Transfer chores from b to l by successively raising prices in groups H_{1}, \ldots, H_{r}.

SUMMARY

The overall algorithm is:

- Create simple initial market equilibrium.
- Create pEF1 groups H_{1}, \ldots, H_{r}.
- Transfer chores from b to l by successively raising prices in groups H_{1}, \ldots, H_{r}.
- If l ends up in a raised group, transition to phase 3 and trade along alternating paths.

SUMMARY II

We showed:

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

SUMMARY II

We showed:

Theorem

EF1 + fPO allocations of chores exist under bivalued utilities and can be computed in strongly polynomial time.

Can use similar techniques for:
Theorem
EF + PO allocations of divisible chores exist under bivalued utilities and can be computed in strongly polynomial time.

Open Problems

Main open problems:

Open Problems

Main open problems:

- Do EF1 + PO allocations always exist?

Open Problems

Main open problems:

- Do EF1 + PO allocations always exist?
- If so: can we compute them? If not: is decidability hard?

Open Problems

Main open problems:

- Do EF1 + PO allocations always exist?
- If so: can we compute them? If not: is decidability hard?
- EF + PO allocations of divisible chores are known to always exist. Is there a polynomial time algorithm?

THANK YOUR FOR LISTENING!

