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FAIR DIVISION

Fair division is a classic problem in AGT:

- Given n agents N, and
- m goods M,
- allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

Assume: Linear utilities: u;; foralli € N, j € M.
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FAIRNESS

What is fairness?

- Proportional: u;(x;) > =u;(M)?
- Egalitarian: u;(x;) > ui(x;)?

- Envy-free: u;(x;) > ui(x]»)?

Problem: none of these work for indivisible goods!
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DISCRETE FAIRNESS

To get notions of discrete fairness, simply remove one good:

- Proportional up to one good: u;(x;) > min %ui(M —k)?
- Egalitarian up to one good (EQ1): u;(x;) > min; uj(x; — k)?

+ Envy-free up to one good (EF1): u;(x;) = ming u;(x; — k)?

Note: replacing min with max yields stronger EQX / EFX fairness.
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EFFICIENCY

Fairness alone is not that impressive:

‘ Phone Tablet
Alice 10 1
Bob 1 10

Allocation Alice — Tablet and Bob — Phone is EFX and EQX but
obviously bad!
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The classic efficiency notions are:

Definition
An allocation is Pareto-optimal (PO) if no allocation is weakly
better for all agents, and strictly better for at least one agent.

Definition

An allocation is fractionally Pareto-optimal (fPO) if no
fractional allocation is weakly better for all agents, and strictly
better for at least one agent.



KNOWN RESULTS

Theorem (Barman, Krishnamurthy, Vaish 2018)
EF1 + PO allocations always exist an can be computed in
pseudo-polynomial time.



KNOWN RESULTS

Theorem (Barman, Krishnamurthy, Vaish 2018)

EF1 + PO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)

EF1 + fPO allocations always exist an can be computed in
pseudo-polynomial time.



KNOWN RESULTS

Theorem (Barman, Krishnamurthy, Vaish 2018)

EF1 + PO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)

EF1 + fPO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)

EFX + fPO allocations exist under bivalued utilities and can be
computed in polynomial time.



KNOWN RESULTS

Theorem (Barman, Krishnamurthy, Vaish 2018)

EF1 + PO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
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Theorem (Garg, Murhekar 2021)

EFX + fPO allocations exist under bivalued utilities and can be
computed in polynomial time.

Open problem: Do EFX + PO allocations always exist?
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CHORES

Sometimes we wish to assign chores instead of goods.

‘ Dishes Laundry
Alice =5 =1
Bob =1l =

Note: Notions of fairness and efficiency extend to chores!
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RESULTS

We want to show:

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

So our instance looks like:

- nagents N,
- m goods M,
© COsts ¢y where wlog. ¢y € {1,k} for some k € N.
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RELATION TO MARKET EQUILIBRIA

Given earning targets e; for all i € N, an allocation x and prices
p;j for all j € G form a market equilibrium if

- the market clears, i.e. all chores are allocated,
- every agent achieves their earning target, i.e. p(x;) > e;,

- agents only receive minimum bang per buck, i.e. chores
that minimize c;;/p;.

Note: If (x,p) is @ market equilibrium, then x is fPO!

10



MARKET EQUILIBRIUM EXAMPLE

Dishes Laundry Cleaning

Alice 5 1 3
Bob 1 2 4
Charlie 3 1 5

Allocate: Alice — Cleaning, Bob - Dishes, Charlie — Laundry

p(Laundry) = 1, p(Dishes) = 1, p(Cleaning) = 3
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MARKET EQUILIBRIUM EXAMPLE

Dishes Laundry Cleaning

Alice 5 1 3
Bob 1 2 4
Charlie 3 1 5

Allocate: Alice — Cleaning, Bob - Dishes, Charlie — Laundry

p(Laundry) = 1, p(Dishes) = 1, p(Cleaning) = 3

Note: If all e; are the same, then this is very fair. This is possible
for divisible goods but no algorithm exists.

1
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PRICE ENVY

Market equilibria have a fairness notion too:

Definition
(x,p) is price envy-free up to one chore (pEF1) if
ming p(x; — k) < p(x)) for all 7,;.

Lemma
If (x,p) is pEF1 then x is EF1.

12
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GENERAL STRATEGY

We can now give the general strategy:

- Compute some initial market equilibrium (x, p)
- If (x,p) is not pEF1, identify the big earner
b = argmax, min; p(x; — k) and the least earner
| = argmin_ p(x;).
- Try to funnel chores from the big earner to the least earner.

- If this is not possible, raise prices.

13



PHASE 1: INITIAL EQUILIBRIUM
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PHASE 1: INITIAL EQUILIBRIUM I

b = arg max, ming p(x; — k) \

| = argmin p(x;) e~~~
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PHASE 1: INITIAL EQUILIBRIUM Il

Run the following algorithm:

1. Let b be the biggest earner.
2. Is there some [ in the component of b with
ming p(x, — k) > p(x;)?
3. If yes, funnel chores from b to [ and go back to 1.

4. If no, remove the component of b from the graph and go
back to 1.
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SUMMARY

The overall algorithm is:

- Create simple initial market equilibrium.

- Create pEF1 groups Hy, ..., H,.

- Transfer chores from b to [ by successively raising prices in
groups Hy, ..., H,.

- If I ends up in a raised group, transition to phase 3 and
trade along alternating paths.

20
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SUMMARY I

We showed:

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

Can use similar techniques for:

Theorem
EF + PO allocations of divisible chores exist under bivalued
utilities and can be computed in strongly polynomial time.

A
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OPEN PROBLEMS

Main open problems:

- Do EF1 + PO allocations always exist?
- If so: can we compute them? If not: is decidability hard?

- EF + PO allocations of divisible chores are known to always
exist. Is there a polynomial time algorithm?

22



THANK YOUR FOR LISTENING!
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