
Fair and Efficient Allocations of Chores
under Bivalued Preferences⋆

Thorben Tröbst
Theory Seminar, May 6, 2022

Department of Computer Science, University of California, Irvine

⋆ based on AAAI 2022 paper by Jugal Garg, Aniket Murhekar, and John Qin



Fair Division

Fair division is a classic problem in AGT:

• Given 𝑛 agents 𝑁, and

• 𝑚 goods 𝑀,
• allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

Assume: Linear utilities: 𝑢𝑖𝑗 for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀.

1



Fair Division

Fair division is a classic problem in AGT:

• Given 𝑛 agents 𝑁, and
• 𝑚 goods 𝑀,

• allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

Assume: Linear utilities: 𝑢𝑖𝑗 for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀.

1



Fair Division

Fair division is a classic problem in AGT:

• Given 𝑛 agents 𝑁, and
• 𝑚 goods 𝑀,
• allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

Assume: Linear utilities: 𝑢𝑖𝑗 for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀.

1



Fair Division

Fair division is a classic problem in AGT:

• Given 𝑛 agents 𝑁, and
• 𝑚 goods 𝑀,
• allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

Assume: Linear utilities: 𝑢𝑖𝑗 for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀.

1



Fair Division

Fair division is a classic problem in AGT:

• Given 𝑛 agents 𝑁, and
• 𝑚 goods 𝑀,
• allocate goods to agents in an efficient and fair manner.

Note: Multiple goods can go to one agent!

Assume: Linear utilities: 𝑢𝑖𝑗 for all 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀.

1



Fairness

What is fairness?

• Proportional: 𝑢𝑖(𝑥𝑖) ≥ 1
𝑛𝑢𝑖(𝑀)?

• Egalitarian: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑗(𝑥𝑗)?
• Envy-free: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑖(𝑥𝑗)?

Problem: none of these work for indivisible goods!

2



Fairness

What is fairness?

• Proportional: 𝑢𝑖(𝑥𝑖) ≥ 1
𝑛𝑢𝑖(𝑀)?

• Egalitarian: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑗(𝑥𝑗)?
• Envy-free: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑖(𝑥𝑗)?

Problem: none of these work for indivisible goods!

2



Fairness

What is fairness?

• Proportional: 𝑢𝑖(𝑥𝑖) ≥ 1
𝑛𝑢𝑖(𝑀)?

• Egalitarian: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑗(𝑥𝑗)?

• Envy-free: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑖(𝑥𝑗)?

Problem: none of these work for indivisible goods!

2



Fairness

What is fairness?

• Proportional: 𝑢𝑖(𝑥𝑖) ≥ 1
𝑛𝑢𝑖(𝑀)?

• Egalitarian: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑗(𝑥𝑗)?
• Envy-free: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑖(𝑥𝑗)?

Problem: none of these work for indivisible goods!

2



Fairness

What is fairness?

• Proportional: 𝑢𝑖(𝑥𝑖) ≥ 1
𝑛𝑢𝑖(𝑀)?

• Egalitarian: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑗(𝑥𝑗)?
• Envy-free: 𝑢𝑖(𝑥𝑖) ≥ 𝑢𝑖(𝑥𝑗)?

Problem: none of these work for indivisible goods!

2



Discrete Fairness

To get notions of discrete fairness, simply remove one good:

• Proportional up to one good: 𝑢𝑖(𝑥𝑖) ≥ min𝑘
1
𝑛𝑢𝑖(𝑀 − 𝑘)?

• Egalitarian up to one good (EQ1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑗(𝑥𝑗 − 𝑘)?
• Envy-free up to one good (EF1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑖(𝑥𝑗 − 𝑘)?

Note: replacing min with max yields stronger EQX / EFX fairness.

3



Discrete Fairness

To get notions of discrete fairness, simply remove one good:

• Proportional up to one good: 𝑢𝑖(𝑥𝑖) ≥ min𝑘
1
𝑛𝑢𝑖(𝑀 − 𝑘)?

• Egalitarian up to one good (EQ1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑗(𝑥𝑗 − 𝑘)?
• Envy-free up to one good (EF1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑖(𝑥𝑗 − 𝑘)?

Note: replacing min with max yields stronger EQX / EFX fairness.

3



Discrete Fairness

To get notions of discrete fairness, simply remove one good:

• Proportional up to one good: 𝑢𝑖(𝑥𝑖) ≥ min𝑘
1
𝑛𝑢𝑖(𝑀 − 𝑘)?

• Egalitarian up to one good (EQ1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑗(𝑥𝑗 − 𝑘)?

• Envy-free up to one good (EF1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑖(𝑥𝑗 − 𝑘)?

Note: replacing min with max yields stronger EQX / EFX fairness.

3



Discrete Fairness

To get notions of discrete fairness, simply remove one good:

• Proportional up to one good: 𝑢𝑖(𝑥𝑖) ≥ min𝑘
1
𝑛𝑢𝑖(𝑀 − 𝑘)?

• Egalitarian up to one good (EQ1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑗(𝑥𝑗 − 𝑘)?
• Envy-free up to one good (EF1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑖(𝑥𝑗 − 𝑘)?

Note: replacing min with max yields stronger EQX / EFX fairness.

3



Discrete Fairness

To get notions of discrete fairness, simply remove one good:

• Proportional up to one good: 𝑢𝑖(𝑥𝑖) ≥ min𝑘
1
𝑛𝑢𝑖(𝑀 − 𝑘)?

• Egalitarian up to one good (EQ1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑗(𝑥𝑗 − 𝑘)?
• Envy-free up to one good (EF1): 𝑢𝑖(𝑥𝑖) ≥ min𝑘 𝑢𝑖(𝑥𝑗 − 𝑘)?

Note: replacing min with max yields stronger EQX / EFX fairness.

3



Efficiency

Fairness alone is not that impressive:

Phone Tablet
Alice 10 1
Bob 1 10

Allocation Alice – Tablet and Bob – Phone is EFX and EQX but
obviously bad!

4



Efficiency

Fairness alone is not that impressive:

Phone Tablet
Alice 10 1
Bob 1 10

Allocation Alice – Tablet and Bob – Phone is EFX and EQX but
obviously bad!

4



Efficiency

Fairness alone is not that impressive:

Phone Tablet
Alice 10 1
Bob 1 10

Allocation Alice – Tablet and Bob – Phone is EFX and EQX but
obviously bad!

4



Efficiency Notions

The classic efficiency notions are:

Definition
An allocation is Pareto-optimal (PO) if no allocation is weakly
better for all agents, and strictly better for at least one agent.

Definition
An allocation is fractionally Pareto-optimal (fPO) if no
fractional allocation is weakly better for all agents, and strictly
better for at least one agent.

5



Efficiency Notions

The classic efficiency notions are:

Definition
An allocation is Pareto-optimal (PO) if no allocation is weakly
better for all agents, and strictly better for at least one agent.

Definition
An allocation is fractionally Pareto-optimal (fPO) if no
fractional allocation is weakly better for all agents, and strictly
better for at least one agent.

5



Efficiency Notions

The classic efficiency notions are:

Definition
An allocation is Pareto-optimal (PO) if no allocation is weakly
better for all agents, and strictly better for at least one agent.

Definition
An allocation is fractionally Pareto-optimal (fPO) if no
fractional allocation is weakly better for all agents, and strictly
better for at least one agent.

5



Known Results

Theorem (Barman, Krishnamurthy, Vaish 2018)
EF1 + PO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EF1 + fPO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EFX + fPO allocations exist under bivalued utilities and can be
computed in polynomial time.

Open problem: Do EFX + PO allocations always exist?

6



Known Results

Theorem (Barman, Krishnamurthy, Vaish 2018)
EF1 + PO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EF1 + fPO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EFX + fPO allocations exist under bivalued utilities and can be
computed in polynomial time.

Open problem: Do EFX + PO allocations always exist?

6



Known Results

Theorem (Barman, Krishnamurthy, Vaish 2018)
EF1 + PO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EF1 + fPO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EFX + fPO allocations exist under bivalued utilities and can be
computed in polynomial time.

Open problem: Do EFX + PO allocations always exist?

6



Known Results

Theorem (Barman, Krishnamurthy, Vaish 2018)
EF1 + PO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EF1 + fPO allocations always exist an can be computed in
pseudo-polynomial time.

Theorem (Garg, Murhekar 2021)
EFX + fPO allocations exist under bivalued utilities and can be
computed in polynomial time.

Open problem: Do EFX + PO allocations always exist?

6



Chores

Sometimes we wish to assign chores instead of goods.

Dishes Laundry
Alice -5 -1
Bob -1 -2

Note: Notions of fairness and efficiency extend to chores!

7



Chores

Sometimes we wish to assign chores instead of goods.

Dishes Laundry
Alice -5 -1
Bob -1 -2

Note: Notions of fairness and efficiency extend to chores!

7



Chores

Sometimes we wish to assign chores instead of goods.

Dishes Laundry
Alice -5 -1
Bob -1 -2

Note: Notions of fairness and efficiency extend to chores!

7



Results

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

Theorem
EF + PO allocations of divisible chores exist under bivalued
utilities and can be computed in strongly polynomial time.

8



Results

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

Theorem
EF + PO allocations of divisible chores exist under bivalued
utilities and can be computed in strongly polynomial time.

8



Results

We want to show:

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

So our instance looks like:

• 𝑛 agents 𝑁,
• 𝑚 goods 𝑀,
• costs 𝑐𝑖𝑗 where wlog. 𝑐𝑖𝑗 ∈ {1, 𝑘} for some 𝑘 ∈ ℕ.

9



Results

We want to show:

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

So our instance looks like:

• 𝑛 agents 𝑁,
• 𝑚 goods 𝑀,
• costs 𝑐𝑖𝑗 where wlog. 𝑐𝑖𝑗 ∈ {1, 𝑘} for some 𝑘 ∈ ℕ.

9



Results

We want to show:

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

So our instance looks like:

• 𝑛 agents 𝑁,

• 𝑚 goods 𝑀,
• costs 𝑐𝑖𝑗 where wlog. 𝑐𝑖𝑗 ∈ {1, 𝑘} for some 𝑘 ∈ ℕ.

9



Results

We want to show:

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

So our instance looks like:

• 𝑛 agents 𝑁,
• 𝑚 goods 𝑀,

• costs 𝑐𝑖𝑗 where wlog. 𝑐𝑖𝑗 ∈ {1, 𝑘} for some 𝑘 ∈ ℕ.

9



Results

We want to show:

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

So our instance looks like:

• 𝑛 agents 𝑁,
• 𝑚 goods 𝑀,
• costs 𝑐𝑖𝑗 where wlog. 𝑐𝑖𝑗 ∈ {1, 𝑘} for some 𝑘 ∈ ℕ.

9



Relation to Market Equilibria

Given earning targets 𝑒𝑖 for all 𝑖 ∈ 𝑁, an allocation 𝑥 and prices
𝑝𝑗 for all 𝑗 ∈ 𝐺 form a market equilibrium if

• the market clears, i.e. all chores are allocated,
• every agent achieves their earning target, i.e. 𝑝(𝑥𝑖) ≥ 𝑒𝑖,
• agents only receive minimum bang per buck, i.e. chores
that minimize 𝑐𝑖𝑗/𝑝𝑗.

Note: If (𝑥, 𝑝) is a market equilibrium, then 𝑥 is fPO!

10



Relation to Market Equilibria

Given earning targets 𝑒𝑖 for all 𝑖 ∈ 𝑁, an allocation 𝑥 and prices
𝑝𝑗 for all 𝑗 ∈ 𝐺 form a market equilibrium if

• the market clears, i.e. all chores are allocated,

• every agent achieves their earning target, i.e. 𝑝(𝑥𝑖) ≥ 𝑒𝑖,
• agents only receive minimum bang per buck, i.e. chores
that minimize 𝑐𝑖𝑗/𝑝𝑗.

Note: If (𝑥, 𝑝) is a market equilibrium, then 𝑥 is fPO!

10



Relation to Market Equilibria

Given earning targets 𝑒𝑖 for all 𝑖 ∈ 𝑁, an allocation 𝑥 and prices
𝑝𝑗 for all 𝑗 ∈ 𝐺 form a market equilibrium if

• the market clears, i.e. all chores are allocated,
• every agent achieves their earning target, i.e. 𝑝(𝑥𝑖) ≥ 𝑒𝑖,

• agents only receive minimum bang per buck, i.e. chores
that minimize 𝑐𝑖𝑗/𝑝𝑗.

Note: If (𝑥, 𝑝) is a market equilibrium, then 𝑥 is fPO!

10



Relation to Market Equilibria

Given earning targets 𝑒𝑖 for all 𝑖 ∈ 𝑁, an allocation 𝑥 and prices
𝑝𝑗 for all 𝑗 ∈ 𝐺 form a market equilibrium if

• the market clears, i.e. all chores are allocated,
• every agent achieves their earning target, i.e. 𝑝(𝑥𝑖) ≥ 𝑒𝑖,
• agents only receive minimum bang per buck, i.e. chores
that minimize 𝑐𝑖𝑗/𝑝𝑗.

Note: If (𝑥, 𝑝) is a market equilibrium, then 𝑥 is fPO!

10



Relation to Market Equilibria

Given earning targets 𝑒𝑖 for all 𝑖 ∈ 𝑁, an allocation 𝑥 and prices
𝑝𝑗 for all 𝑗 ∈ 𝐺 form a market equilibrium if

• the market clears, i.e. all chores are allocated,
• every agent achieves their earning target, i.e. 𝑝(𝑥𝑖) ≥ 𝑒𝑖,
• agents only receive minimum bang per buck, i.e. chores
that minimize 𝑐𝑖𝑗/𝑝𝑗.

Note: If (𝑥, 𝑝) is a market equilibrium, then 𝑥 is fPO!

10



Market Equilibrium Example

Dishes Laundry Cleaning
Alice 5 1 3
Bob 1 2 4

Charlie 3 1 5

Allocate: Alice – Cleaning, Bob – Dishes, Charlie – Laundry

𝑝(Laundry) = 1, 𝑝(Dishes) = 1, 𝑝(Cleaning) = 3

Note: If all 𝑒𝑖 are the same, then this is very fair. This is possible
for divisible goods but no algorithm exists.

11



Market Equilibrium Example

Dishes Laundry Cleaning
Alice 5 1 3
Bob 1 2 4

Charlie 3 1 5

Allocate: Alice – Cleaning, Bob – Dishes, Charlie – Laundry

𝑝(Laundry) = 1, 𝑝(Dishes) = 1, 𝑝(Cleaning) = 3

Note: If all 𝑒𝑖 are the same, then this is very fair. This is possible
for divisible goods but no algorithm exists.

11



Price Envy

Market equilibria have a fairness notion too:

Definition
(𝑥, 𝑝) is price envy-free up to one chore (pEF1) if
min𝑘 𝑝(𝑥𝑖 − 𝑘) ≤ 𝑝(𝑥𝑗) for all 𝑖, 𝑗.

Lemma
If (𝑥, 𝑝) is pEF1 then 𝑥 is EF1.

12



Price Envy

Market equilibria have a fairness notion too:

Definition
(𝑥, 𝑝) is price envy-free up to one chore (pEF1) if
min𝑘 𝑝(𝑥𝑖 − 𝑘) ≤ 𝑝(𝑥𝑗) for all 𝑖, 𝑗.

Lemma
If (𝑥, 𝑝) is pEF1 then 𝑥 is EF1.

12



General Strategy

We can now give the general strategy:

• Compute some initial market equilibrium (𝑥, 𝑝)
• If (𝑥, 𝑝) is not pEF1, identify the big earner

𝑏 = argmax𝑖 min𝑗 𝑝(𝑥𝑖 − 𝑘) and the least earner
𝑙 = argmin𝑖 𝑝(𝑥𝑖).

• Try to funnel chores from the big earner to the least earner.
• If this is not possible, raise prices.

13



General Strategy

We can now give the general strategy:

• Compute some initial market equilibrium (𝑥, 𝑝)

• If (𝑥, 𝑝) is not pEF1, identify the big earner
𝑏 = argmax𝑖 min𝑗 𝑝(𝑥𝑖 − 𝑘) and the least earner
𝑙 = argmin𝑖 𝑝(𝑥𝑖).

• Try to funnel chores from the big earner to the least earner.
• If this is not possible, raise prices.

13



General Strategy

We can now give the general strategy:

• Compute some initial market equilibrium (𝑥, 𝑝)
• If (𝑥, 𝑝) is not pEF1, identify the big earner

𝑏 = argmax𝑖 min𝑗 𝑝(𝑥𝑖 − 𝑘) and the least earner
𝑙 = argmin𝑖 𝑝(𝑥𝑖).

• Try to funnel chores from the big earner to the least earner.
• If this is not possible, raise prices.

13



General Strategy

We can now give the general strategy:

• Compute some initial market equilibrium (𝑥, 𝑝)
• If (𝑥, 𝑝) is not pEF1, identify the big earner

𝑏 = argmax𝑖 min𝑗 𝑝(𝑥𝑖 − 𝑘) and the least earner
𝑙 = argmin𝑖 𝑝(𝑥𝑖).

• Try to funnel chores from the big earner to the least earner.

• If this is not possible, raise prices.

13



General Strategy

We can now give the general strategy:

• Compute some initial market equilibrium (𝑥, 𝑝)
• If (𝑥, 𝑝) is not pEF1, identify the big earner

𝑏 = argmax𝑖 min𝑗 𝑝(𝑥𝑖 − 𝑘) and the least earner
𝑙 = argmin𝑖 𝑝(𝑥𝑖).

• Try to funnel chores from the big earner to the least earner.
• If this is not possible, raise prices.

13



Phase 1: Initial Equilibrium

1
𝑘
1
1
𝑘

14



Phase 1: Initial Equilibrium

1
1

14



Phase 1: Initial Equilibrium

1
1

1
1
𝑘
𝑘
𝑘

14



Phase 1: Initial Equilibrium

1
1

1

1

14



Phase 1: Initial Equilibrium

1
1

1

1
𝑘
𝑘
𝑘
𝑘
𝑘

14



Phase 1: Initial Equilibrium

1
1

1

1

𝑘
𝑘

14



Phase 1: Initial Equilibrium

1
1

1

1

𝑘
𝑘

1

𝑘

1

𝑘

14



Phase 1: Initial Equilibrium II

𝑏 = argmax𝑖 min𝑘 𝑝(𝑥𝑖 − 𝑘)

𝑙 = argmin𝑖 𝑝(𝑥𝑖)

15



Phase 1: Initial Equilibrium II

𝑏 = argmax𝑖 min𝑘 𝑝(𝑥𝑖 − 𝑘)

𝑙 = argmin𝑖 𝑝(𝑥𝑖)

15



Phase 1: Initial Equilibrium III

Run the following algorithm:

1. Let 𝑏 be the biggest earner.
2. Is there some 𝑙 in the component of 𝑏 with

min𝑘 𝑝(𝑥𝑏 − 𝑘) > 𝑝(𝑥𝑙)?
3. If yes, funnel chores from 𝑏 to 𝑙 and go back to 1.
4. If no, remove the component of 𝑏 from the graph and go
back to 1.

16



Phase 1: Initial Equilibrium III

Run the following algorithm:

1. Let 𝑏 be the biggest earner.

2. Is there some 𝑙 in the component of 𝑏 with
min𝑘 𝑝(𝑥𝑏 − 𝑘) > 𝑝(𝑥𝑙)?

3. If yes, funnel chores from 𝑏 to 𝑙 and go back to 1.
4. If no, remove the component of 𝑏 from the graph and go
back to 1.

16



Phase 1: Initial Equilibrium III

Run the following algorithm:

1. Let 𝑏 be the biggest earner.
2. Is there some 𝑙 in the component of 𝑏 with

min𝑘 𝑝(𝑥𝑏 − 𝑘) > 𝑝(𝑥𝑙)?

3. If yes, funnel chores from 𝑏 to 𝑙 and go back to 1.
4. If no, remove the component of 𝑏 from the graph and go
back to 1.

16



Phase 1: Initial Equilibrium III

Run the following algorithm:

1. Let 𝑏 be the biggest earner.
2. Is there some 𝑙 in the component of 𝑏 with

min𝑘 𝑝(𝑥𝑏 − 𝑘) > 𝑝(𝑥𝑙)?
3. If yes, funnel chores from 𝑏 to 𝑙 and go back to 1.

4. If no, remove the component of 𝑏 from the graph and go
back to 1.

16



Phase 1: Initial Equilibrium III

Run the following algorithm:

1. Let 𝑏 be the biggest earner.
2. Is there some 𝑙 in the component of 𝑏 with

min𝑘 𝑝(𝑥𝑏 − 𝑘) > 𝑝(𝑥𝑙)?
3. If yes, funnel chores from 𝑏 to 𝑙 and go back to 1.
4. If no, remove the component of 𝑏 from the graph and go
back to 1.

16



Phase 1: Initial Equilibrium IV

𝑏3

𝑏2

𝑏1

𝐻3

𝐻2

𝐻1

17



Phase 1: Initial Equilibrium IV

𝑏3

𝑏2

𝑏1

𝐻3

𝐻2

𝐻1

pEF1

pEF1

pEF1

17



Phase 2: Raise Prices

𝑏

𝑙

18



Phase 2: Raise Prices

𝑏

𝑙

raise by ×𝑘

18



Phase 2: Raise Prices

𝑏

𝑙

18



Phase 2: Raise Prices

𝑏

𝑙

18



Phase 2: Raise Prices

𝑏

𝑙

18



Phase 2: Raise Prices

𝑏

𝑙

18



Phase 2: Raise Prices

𝑏

𝑙

18



Phase 2: Raise Prices

𝑏

𝑙

18



Phase 2: Raise Prices

𝑏

𝑙

𝑙′

18



Phase 3: Final Trades

𝑏

𝑙

19



Phase 3: Final Trades

𝑏

𝑙
𝑏′

19



Phase 3: Final Trades

𝑏

𝑙

19



Phase 3: Final Trades

𝑏

𝑙

𝑙′

19



Phase 3: Final Trades

𝑏

𝑙

𝑙′

19



Summary

The overall algorithm is:

• Create simple initial market equilibrium.
• Create pEF1 groups 𝐻1, … , 𝐻𝑟.
• Transfer chores from 𝑏 to 𝑙 by successively raising prices in
groups 𝐻1, … , 𝐻𝑟.

• If 𝑙 ends up in a raised group, transition to phase 3 and
trade along alternating paths.

20



Summary

The overall algorithm is:

• Create simple initial market equilibrium.

• Create pEF1 groups 𝐻1, … , 𝐻𝑟.
• Transfer chores from 𝑏 to 𝑙 by successively raising prices in
groups 𝐻1, … , 𝐻𝑟.

• If 𝑙 ends up in a raised group, transition to phase 3 and
trade along alternating paths.

20



Summary

The overall algorithm is:

• Create simple initial market equilibrium.
• Create pEF1 groups 𝐻1, … , 𝐻𝑟.

• Transfer chores from 𝑏 to 𝑙 by successively raising prices in
groups 𝐻1, … , 𝐻𝑟.

• If 𝑙 ends up in a raised group, transition to phase 3 and
trade along alternating paths.

20



Summary

The overall algorithm is:

• Create simple initial market equilibrium.
• Create pEF1 groups 𝐻1, … , 𝐻𝑟.
• Transfer chores from 𝑏 to 𝑙 by successively raising prices in
groups 𝐻1, … , 𝐻𝑟.

• If 𝑙 ends up in a raised group, transition to phase 3 and
trade along alternating paths.

20



Summary

The overall algorithm is:

• Create simple initial market equilibrium.
• Create pEF1 groups 𝐻1, … , 𝐻𝑟.
• Transfer chores from 𝑏 to 𝑙 by successively raising prices in
groups 𝐻1, … , 𝐻𝑟.

• If 𝑙 ends up in a raised group, transition to phase 3 and
trade along alternating paths.

20



Summary II

We showed:

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

Can use similar techniques for:

Theorem
EF + PO allocations of divisible chores exist under bivalued
utilities and can be computed in strongly polynomial time.

21



Summary II

We showed:

Theorem
EF1 + fPO allocations of chores exist under bivalued utilities
and can be computed in strongly polynomial time.

Can use similar techniques for:

Theorem
EF + PO allocations of divisible chores exist under bivalued
utilities and can be computed in strongly polynomial time.

21



Open Problems

Main open problems:

• Do EF1 + PO allocations always exist?
• If so: can we compute them? If not: is decidability hard?
• EF + PO allocations of divisible chores are known to always
exist. Is there a polynomial time algorithm?

22



Open Problems

Main open problems:

• Do EF1 + PO allocations always exist?

• If so: can we compute them? If not: is decidability hard?
• EF + PO allocations of divisible chores are known to always
exist. Is there a polynomial time algorithm?

22



Open Problems

Main open problems:

• Do EF1 + PO allocations always exist?
• If so: can we compute them? If not: is decidability hard?

• EF + PO allocations of divisible chores are known to always
exist. Is there a polynomial time algorithm?

22



Open Problems

Main open problems:

• Do EF1 + PO allocations always exist?
• If so: can we compute them? If not: is decidability hard?
• EF + PO allocations of divisible chores are known to always
exist. Is there a polynomial time algorithm?

22



Thank your for listening!

22


