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WHY CARDINAL

Question
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WHY CARDINAL

Question
Why cardinal utilities instead of ordinal?

Theorem (Immorlica et al. 2017)

There are matching markets in which cardinal mechanisms
can improve the utility of all agents by a 6(log(n))-factor over
ordinal mechanisms.
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WHY FRACTIONAL

Question
Why do we allow fractional matchings?

1. Without, we cannot be fair.

2. Birkhoff-von-Neumann theorem gives polynomial time
lottery.



ENVY-FREENESS

Definition (Envy-Freeness)
Agent i envies agent i’ in allocation x if u; - x; < u; - x;. X IS
envy-free (EF) if no agent envies another.

Definition (Utility)
For an agent i, we use

ui . xi 5= Z lzll'jxi]'

j€G

to denote the (expected) utility of .



ENVY-FREENESS II

Envy-freeness alone is trivial: assign goods uniformly!
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PARETO-OPTIMALITY

Definition (Pareto-Optimality)

Allocation y is Pareto-better than x, if u; - y; > u; - x; for all i
and u; - y; > u; - x; for at least one i. x is Pareto-optimal (PO) if
there is no Pareto-better allocation.



PARETO-OPTIMALITY

Definition (Pareto-Optimality)

Allocation y is Pareto-better than x, if u; - y; > u; - x; for all i
and u; - y; > u; - x; for at least one i. x is Pareto-optimal (PO) if
there is no Pareto-better allocation.

Question
Can we achieve EF and PO at the same time?
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HYLLAND-ZECKHAUSER MECHANISM I

Definition

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation x
and prices p such that

1. x is a fractional perfect matching.

2. No agent overspends, i.e.p-x; < 1.

3. Every agent maximizes utility, i.e.
u; - x; = max{u; -y | Z].eGy]- =1lp-y<1h

4. Every agent minimizes expense, i.e.
p-xp=min{p-y Y cqy;=1u -y =ux)



HYLLAND-ZECKHAUSER MECHANISM lII

Theorem (Hylland, Zeckhauser 1979)
An HZ equilibrium always exists. Moreover, if (x,p) is an HZ
equilibrium, x is Pareto-optimal and envy-free.

Theorem (He et al. 2018)

The HZ mechanism is incentive-compatible (=~ cannot be
gamed by individuals) in the large.



BuT WAIT...

Question
But... how do we actually find an HZ equilibrium?
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BuT WAIT...

Question
But... how do we actually find an HZ equilibrium?

1. Hylland-Zeckhauser 1979: Kakutani fixed-point theorem,
Scarf’s method
2. Alaei et al. 2017: algebraic cell decomposition

3. Vazirani, Yannakakis 2020: DPSV-like algorithm for
{0, 1}-utilities

10



INTRACTIBILITY

Theorem (Chen, Chen, Peng, Yannakakis 2022)
The problem of computing an e-approximate HZ-equilibrium is
PPAD-hard when € = 1/n¢ for any constant ¢ > 0.
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INTRACTIBILITY

Theorem (Chen, Chen, Peng, Yannakakis 2022)
The problem of computing an e-approximate HZ-equilibrium is
PPAD-hard when € = 1/n¢ for any constant ¢ > 0.

- PPAD is a class of total search problems with rational
solutions.
- Other famous PPAD-complete problems:
- Nash-equilibrium,
- Market equilibria with non-linear utilities,
- Brouwer’s fixed-point theorem.

"



CENTRAL QUESTION

Question
Can we find an envy-free and Pareto-optimal allocation
polynomial time?

12



CENTRAL QUESTION

Question
Can we find an envy-free and Pareto-optimal allocation
polynomial time?

Answer
No, this is already PPAD-hard!

12



CENTRAL QUESTION

Question
Can we find an envy-free and Pareto-optimal allocation
polynomial time?

Answer
No, this is already PPAD-hard!

Question
Can we at least get an approximate solution?

12



CENTRAL QUESTION

Question
Can we find an envy-free and Pareto-optimal allocation
polynomial time?

Answer
No, this is already PPAD-hard!

Question
Can we at least get an approximate solution?

Answer
Yes, we can get (2 + €)-EF and PO via Nash bargaining!

12



PPAD-HARDNESS



PROOF STRATEGY

Theorem (Trobst, Vazirani 2024)

There is a polynomial reduction from %-approximate HZ to
finding EF+PO allocations.
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PROOF STRATEGY

Theorem (Trobst, Vazirani 2024)

There is a polynomial reduction from %—approximate HZ to
finding EF+PO allocations.

Strategy:

1. Use the second welfare theorem, to conjure up prices and
budgets from Pareto-optimality.

2. Use envy-freeness to show that budgets must be
(approximately) equal.

13



BACKGROUND

Theorem (Ashlagi, Shi 2016)
In continuum markets, HZ and EF+PO are the same.
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BACKGROUND

Theorem (Ashlagi, Shi 2016)
In continuum markets, HZ and EF+PO are the same.

Theorem (Miralles, Pycia 2016)
In large finite markets, HZ and EF+PO need not be

approximately the same, even if the markets converge to a
continuum market.
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SECOND WELFARE THEOREM

Theorem (Second Welfare Theorem)
Under certain conditions, any Pareto-optimal allocation can be
supported as a competitive equilibrium for some budgets.
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SECOND WELFARE THEOREM

Theorem (Second Welfare Theorem)
Under certain conditions, any Pareto-optimal allocation can be
supported as a competitive equilibrium for some budgets.

Careful: technically HZ does not satisfy the conditions!
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CHARACTERIZATION OF PARETO-OPTIMALITY

Lemma

Let x be Pareto-optimal, then there are positive («;);c4 SUch
that x maximizes 3, , a;u; - x;. & can be found in polynomial
time.



CHARACTERIZATION OF PARETO-OPTIMALITY

Lemma

Let x be Pareto-optimal, then there are positive («;);c4 SUch
that x maximizes 3, , a;u; - x;. & can be found in polynomial

time.

Proof Sketch. Look at the LP below and apply duality:

max Z u; - X;

icA

SAid Uj-X; 2 Uj - X

jeG
Y %=1
i€A

% >0

Vie A,
Vie A,

VjeG,

VieAjeEG.



LET THERE BE PRICES

Primal:
max Z &l - X;
i€EA
s.t. Z =1 Vie 4,
ieG
Z Xjj = 1 V] € G,
jEA
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LET THERE BE PRICES

Primal:
max
s.t.
Dual:
min
s.t.

i€A

Z xj=1 Vi€eA,
ieG

Z Xjj = 1 V] € G,
JEA

ZQH‘ pr

iEA JEG

qtp zamy; Vi€EAJEG
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LET THERE BE PRICES Il

Lemma (Optimal Bundles)
For every agent i, x; is an optimum solution to

max U; - X;
s.t. Z Xij <
jeG
px; =by
X; > 0.

Where bi = 061-1/[1' cXi— Qi-



EQUAL BUDGETS FROM ENVY-FREENESS

Lemma
Leti,i" € A such that u; = u;. Assume that neither i nori' is
satiated. Then b; = b;.
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EQUAL BUDGETS FROM ENVY-FREENESS

Lemma
Leti,i" € A such that u; = u;. Assume that neither i nori' is

satiated. Then b; = b;.

Proof. Assume otherwise, wlog. b; > b;:.
Both agents agree, x; is an optimal bundle at budget b;.

i’ is not satiated so increasing their budget increases utility.

Thus u;x; > u;x;, i.e. envy!

19



KEY IDEA 1: ALMOST EQUAL BUDGETS FROM ALMOST ENVY-FREENESS

Lemma
Leti,i" € A be such that utilities agree up to one good where
they differ by at most €. Then |b; — b;| < e max{a;, a;}.

20



KEY IDEA 1: ALMOST EQUAL BUDGETS FROM ALMOST ENVY-FREENESS

Lemma
Leti,i" € A be such that utilities agree up to one good where
they differ by at most €. Then |b; — b;| < e max{a;, a;}.

Proof Sketch. Substantially higher budget still implies envy
since utilities are close.

20



KEY IDEA 1: ALMOST EQUAL BUDGETS FROM ALMOST ENVY-FREENESS

Lemma
Leti,i" € A be such that utilities agree up to one good where
they differ by at most €. Then |b; — b;| < e max{a;, a;}.

Proof Sketch. Substantially higher budget still implies envy
since utilities are close.

Non-satiation is replaced by dependence on max{a;, a; }. O
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KEY IDEA 2: INTERPOLATION
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KEY IDEA 3: EXPAND THE INSTANCE (k = 4)
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KEY IDEA 3: EXPAND THE INSTANCE (k = 4)

22



EXPANDING WORKS OUT

Lemma
If j and j" are goods of the same type, then pj = pj-

Lemma
If i and i" are agents of the same type, then b; = b;:.

Note: technically need non-satiation - next slide!
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GOAL: APPROXIMATE HZ

Definition (e-Approximate HZ)
(x,p) Is an e-approximate HZ equilibrium if and only if
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* no agent overspends, i.e.p-x; <1,

2%



GOAL: APPROXIMATE HZ

Definition (e-Approximate HZ)
(x,p) Is an e-approximate HZ equilibrium if and only if

- each agent i satisfies Z}EG ;i € [1-¢,1],
- each good j satisfies ZieA x5 € [1—€,1],
* no agent overspends, i.e.p-x; <1,

- each agent i gets an almost optimal bundle, i.e.

Zyjzl,p-ysl}—e.

U; - xX; 2 max{ui -y
jeG

2%



KEY IDEA 4: NON-SATIATION

Add k/n awesome goods with utility 2 for all agents.

Lemma
No agent gets 0.6 of any awesome good.
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KEY IDEA 4: NON-SATIATION

Add k/n awesome goods with utility 2 for all agents.

Lemma
No agent gets 0.6 of any awesome good.

Proof. Lets say i gets 0.6 of an awesome good. Let i’ € A. Then
uy -x; > 1.2. So to avoid envy, i" must get 0.2 of an awesome
good. Not enough awesome goods for that! O

25



CONSEQUENCES OF NON-SATIATION

Corollary
FOfCllliEA, U; - X; < 1.6.
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Corollary
Forallie A, u;-x; < 1.6.

Lemma

Rescale so that the largest budget is 1. Then, for any i, we have
a; < 5n
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CONSEQUENCES OF NON-SATIATION

Corollary
Forallie A, u;-x; < 1.6.

Lemma
Rescale so that the largest budget is 1. Then, for any i, we have
a; < 5n

Corollary
Let i,i" € A be such that utilities agree up to one good where
they differ by at most e. Then |b; — b;| < 5n%e.

26



BUT DOES THIS HELP?

Question
How many interpolating agents are there between any two
normal agents?
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BUT DOES THIS HELP?

Question
How many interpolating agents are there between any two
normal agents?

Answer: Up to %.

So |b; — by| < 5n3. Completely useless! @

27



STRUCTURE OF OPTIMAL BUNDLES

Optimal bundles at budgets ¢ for i are:

max U;-X;
s.t. Z x; <1,
jeG
p-X; <t

xiZO.
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STRUCTURE OF OPTIMAL BUNDLES Il

The dual is the key:

min y + pt
st u+pio=uy
e =0.
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GEOMETRY OF OPTIMAL BUNDLES
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OPTIMAL BUNDLE FUNCTION

Definition (Optimal Bundle Function)
Fori € A and t > 0 define:

;(t) :={j € G|jcan be in optimum bundle at budget t}

Lemma
Leti,i" € A be such that 0, = 6;, then b; = b;.
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OPTIMAL BUNDLE FUNCTION

Definition (Optimal Bundle Function)
Forie A and t > 0 define:

0;(t) := {j € G |j can be in optimum bundle at budget ¢}

Lemma
Leti,i" € A be such that 0, = 6;, then b; = b;.

Proof Sketch. Assume otherwise and wlog. b; > b;;. Can use
0, = 6, to show that x; is optimum bundle for i" at budget b;..
Causes envy due to non-satiation!

O
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KEY IDEA 5: 6, RARELY CHANGES
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BRINGING IT TOGETHER

Lemma

Letiy,..., i, be aset of agents such that all agents agree on
all utilities except for possibly one type of good. Then

|{9i1, ...,Gim}l <2n+1
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Lemma

Letiy,..., i, be aset of agents such that all agents agree on
all utilities except for possibly one type of good. Then

|{9i1, ...,Gim}l <2n+1

Lemma
Leti,i’ € A, then |b; — by| < 5en*.
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BRINGING IT TOGETHER

Lemma

Letiy,..., i, be aset of agents such that all agents agree on
all utilities except for possibly one type of good. Then
6;,...,6; Y <2n+1

Lemma
Leti,i’ € A, then |b; — by| < 5en*.

Proof. Between two agents, at most 2n? changes can happen.

Each contributes at most 5en?.

33



BRINGING IT TOGETHER Il

Theorem

Ife < # and k = ”—: then (x,p) is a >-approximate HZ
equilibrium in the original instance.
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BRINGING IT TOGETHER Il

Theorem

Ife < # and k = ”—: then (x,p) is a >-approximate HZ
equilibrium in the original instance.

Theorem

The problem of finding an EF+PO allocation in one-sided
cardinal-utility matching market is PPAD-complete.
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EXISTENCE AND CHARACTERIZATION

Theorem (Nash 1950)
Let U, set of utility vectors, be convex. Then
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1. There is a unique point satisfying certain axioms:
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- independence of irrelevant alternatives.
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EXISTENCE AND CHARACTERIZATION

Theorem (Nash 1950)
Let U, set of utility vectors, be convex. Then

1. There is a unique point satisfying certain axioms:
- Pareto-optimality,
- symmetry,
- invariance under affine transformations,
- independence of irrelevant alternatives.

2. Itis the maximizer of [ [,c,(u; —d;) foru € U.

36



NASH BARGAINING CONVEX PROGRAM

Hosseini, Vazirani 2021: Let’s use this for matching markets!

max Z log (u;(x))

ieA

s.t. Z x;<1 VjegG,
i€eA
Y xj<1 VieA,
jEA

x > 0.

37



ENVY-FREENESS OF NASH BARGAINING

Theorem (Trébst, Vazirani 2024)
If x Is a Nash bargaining solution, then x is 2-envy-free.

Definition (Approximate Envy-Freeness)

An allocation x is a-envy-free if u; - x; > %ui -xp foralli,i" € A.

38



ENVY-FREENESS OF NASH BARGAINING I

Proof. Assume otherwise, i.e. there are i,i’ € A with
U; - Xy =2 (24 €)u; - x;.
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Proof. Assume otherwise, i.e. there are i,i’ € A with

u;-xp > (2 + e)u; - x;. Now exchange a d fraction of x; and x;.

Agenti: u;-x; > (1 —0)u; - x; + 62+ €)u; - x; .

Agent i’ uy - xp — (1= 0)uy - Xxp.
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Proof. Assume otherwise, i.e. there are i,i’ € A with

u;-xp > (2 + e)u; - x;. Now exchange a d fraction of x; and x;.

Agenti: u;-x; > (1 —0)u; - x; + 62+ €)u; - x; .
Ageﬂt i’ Ujr = Xjr — a- (S)ul'r * Xjr.

Product of utilities changes by factor

1-64+62+¢€))A-9).
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ENVY-FREENESS OF NASH BARGAINING I

Proof. Assume otherwise, i.e. there are i,i’ € A with
u;-xp > (2 + e)u; - x;. Now exchange a d fraction of x; and x;.

Agenti: u;-x; > (1 —0)u; - x; + 62+ €)u; - x; .
Ageﬂt i’ Ujr = Xjr — a- (S)ul'r * Xjr.
Product of utilities changes by factor

1-64+62+¢€))A-9).

Positive derivative at 6 = 0, so x was not optimal!
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ENVY-FREENESS OF NASH BARGAINING Il

Theorem (Trobst, Vazirani 2024)
If x is within (1 + €) of an optimum Nash bargaining point,
then x is (2 + 3+/€)-envy-free.

40



ENVY-FREENESS OF NASH BARGAINING Il

Theorem (Trobst, Vazirani 2024)
If x is within (1 + €) of an optimum Nash bargaining point,
then x is (2 + 3+/€)-envy-free.

Theorem (Panageas, Trobst, Vazirani 2021)
A (1 + e)-approximate Nash bargaining point can be found in
polynomial time (and efficient in practice).

40



CONCLUSION

This mostly resolves the question of EF+PO allocations in
one-sided cardinal-utility matching markets.
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CONCLUSION

This mostly resolves the question of EF+PO allocations in
one-sided cardinal-utility matching markets.

- Can we beat 2-EF + PO?

- Can we get 1-EF + a-PO?

- What about two-sided markets?
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THANK YOUR FOR LISTENING!
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