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Why Cardinal

Question
Why cardinal utilities instead of ordinal?

Theorem (Immorlica et al. 2017)
There are matching markets in which cardinal mechanisms
can improve the utility of all agents by a 𝜃(log(𝑛))-factor over
ordinal mechanisms.
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Why Fractional

Question
Why do we allow fractional matchings?

1. Without, we cannot be fair.
2. Birkhoff-von-Neumann theorem gives polynomial time
lottery.
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Envy-Freeness

Definition (Envy-Freeness)
Agent 𝑖 envies agent 𝑖′ in allocation 𝑥 if 𝑢𝑖 ⋅ 𝑥𝑖 < 𝑢𝑖 ⋅ 𝑥𝑖′ . 𝑥 is
envy-free (EF) if no agent envies another.

Definition (Utility)
For an agent 𝑖, we use

𝑢𝑖 ⋅ 𝑥𝑖 ≔ ∑
𝑗∈𝐺

𝑢𝑖𝑗𝑥𝑖𝑗

to denote the (expected) utility of 𝑖.
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Envy-Freeness II

Envy-freeness alone is trivial: assign goods uniformly!
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Pareto-Optimality

Definition (Pareto-Optimality)
Allocation 𝑦 is Pareto-better than 𝑥, if 𝑢𝑖 ⋅ 𝑦𝑖 ≥ 𝑢𝑖 ⋅ 𝑥𝑖 for all 𝑖
and 𝑢𝑖 ⋅ 𝑦𝑖 > 𝑢𝑖 ⋅ 𝑥𝑖 for at least one 𝑖. 𝑥 is Pareto-optimal (PO) if
there is no Pareto-better allocation.

Question
Can we achieve EF and PO at the same time?

6



Pareto-Optimality

Definition (Pareto-Optimality)
Allocation 𝑦 is Pareto-better than 𝑥, if 𝑢𝑖 ⋅ 𝑦𝑖 ≥ 𝑢𝑖 ⋅ 𝑥𝑖 for all 𝑖
and 𝑢𝑖 ⋅ 𝑦𝑖 > 𝑢𝑖 ⋅ 𝑥𝑖 for at least one 𝑖. 𝑥 is Pareto-optimal (PO) if
there is no Pareto-better allocation.

Question
Can we achieve EF and PO at the same time?

6



Hylland-Zeckhauser Mechanism

Hylland, Zeckhauser 1979 use the power of pricing:

𝐴 𝐺
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Hylland-Zeckhauser Mechanism II

Definition
A Hylland-Zeckhauser (HZ) equilibrium consists of allocation 𝑥
and prices 𝑝 such that

1. 𝑥 is a fractional perfect matching.
2. No agent overspends, i.e. 𝑝 ⋅ 𝑥𝑖 ≤ 1.
3. Every agent maximizes utility, i.e.

𝑢𝑖 ⋅ 𝑥𝑖 = max{𝑢𝑖 ⋅ 𝑦 ∣ ∑𝑗∈𝐺 𝑦𝑗 = 1, 𝑝 ⋅ 𝑦 ≤ 1}.
4. Every agent minimizes expense, i.e.

𝑝 ⋅ 𝑥𝑖 = min{𝑝 ⋅ 𝑦 ∣ ∑𝑗∈𝐺 𝑦𝑗 = 1, 𝑢𝑖 ⋅ 𝑦 = 𝑢𝑖 ⋅ 𝑥𝑖}.
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Hylland-Zeckhauser Mechanism III

Theorem (Hylland, Zeckhauser 1979)
An HZ equilibrium always exists. Moreover, if (𝑥, 𝑝) is an HZ
equilibrium, 𝑥 is Pareto-optimal and envy-free.

Theorem (He et al. 2018)
The HZ mechanism is incentive-compatible (≈ cannot be
gamed by individuals) in the large.

9



But Wait…

Question
But… how do we actually find an HZ equilibrium?

1. Hylland-Zeckhauser 1979: Kakutani fixed-point theorem,
Scarf’s method

2. Alaei et al. 2017: algebraic cell decomposition
3. Vazirani, Yannakakis 2020: DPSV-like algorithm for

{0, 1}-utilities
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Intractibility

Theorem (Chen, Chen, Peng, Yannakakis 2022)
The problem of computing an 𝜖-approximate HZ-equilibrium is
PPAD-hard when 𝜖 = 1/𝑛𝑐 for any constant 𝑐 > 0.

• PPAD is a class of total search problems with rational
solutions.

• Other famous PPAD-complete problems:
• Nash-equilibrium,
• Market equilibria with non-linear utilities,
• Brouwer’s fixed-point theorem.
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Central Question

Question
Can we find an envy-free and Pareto-optimal allocation
polynomial time?

Answer
No, this is already PPAD-hard!

Question
Can we at least get an approximate solution?

Answer
Yes, we can get (2 + 𝜖)-EF and PO via Nash bargaining!
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PPAD-Hardness



Proof Strategy

Theorem (Tröbst, Vazirani 2024)

There is a polynomial reduction from 3
𝑛-approximate HZ to

finding EF+PO allocations.

Strategy:

1. Use the second welfare theorem, to conjure up prices and
budgets from Pareto-optimality.

2. Use envy-freeness to show that budgets must be
(approximately) equal.
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Background

Theorem (Ashlagi, Shi 2016)
In continuum markets, HZ and EF+PO are the same.

Theorem (Miralles, Pycia 2016)
In large finite markets, HZ and EF+PO need not be
approximately the same, even if the markets converge to a
continuum market.
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Second Welfare Theorem

Theorem (Second Welfare Theorem)
Under certain conditions, any Pareto-optimal allocation can be
supported as a competitive equilibrium for some budgets.

Careful: technically HZ does not satisfy the conditions!
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Characterization of Pareto-Optimality

Lemma
Let 𝑥 be Pareto-optimal, then there are positive (𝛼𝑖)𝑖∈𝐴 such
that 𝑥 maximizes ∑𝑖∈𝐴 𝛼𝑖𝑢𝑖 ⋅ 𝑥𝑖. 𝛼 can be found in polynomial
time.

Proof Sketch. Look at the LP below and apply duality:

max ∑
𝑖∈𝐴

𝑢𝑖 ⋅ ̂𝑥𝑖

s.t. 𝑢𝑖 ⋅ ̂𝑥𝑖 ≥ 𝑢𝑖 ⋅ 𝑥𝑖 ∀𝑖 ∈ 𝐴,
∑
𝑗∈𝐺

̂𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝐴,

∑
𝑖∈𝐴

̂𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐺,

̂𝑥𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐺.
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Let There Be Prices

Primal:

max ∑
𝑖∈𝐴

𝛼𝑖𝑢𝑖 ⋅ 𝑥𝑖

s.t. ∑
𝑖∈𝐺

𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝐴,

∑
𝑗∈𝐴

𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐺,

𝑥𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐺.

Dual:

min ∑
𝑖∈𝐴

𝑞𝑖 + ∑
𝑗∈𝐺

𝑝𝑗

s.t. 𝑞𝑖 + 𝑝𝑗 ≥ 𝛼𝑖𝑢𝑖𝑗 ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐺
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Let There Be Prices II

Lemma (Optimal Bundles)
For every agent 𝑖, 𝑥𝑖 is an optimum solution to

max 𝑢𝑖 ⋅ 𝑥𝑖

s.t. ∑
𝑗∈𝐺

𝑥𝑖𝑗 ≤ 1,

𝑝 ⋅ 𝑥𝑖 ≤ 𝑏𝑖,
𝑥𝑖 ≥ 0.

where 𝑏𝑖 ≔ 𝛼𝑖𝑢𝑖 ⋅ 𝑥𝑖 − 𝑞𝑖.

18



Equal Budgets From Envy-Freeness

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴 such that 𝑢𝑖 = 𝑢𝑖′ . Assume that neither 𝑖 nor 𝑖′ is
satiated. Then 𝑏𝑖 = 𝑏𝑖′ .

Proof. Assume otherwise, wlog. 𝑏𝑖 > 𝑏𝑖′ .

Both agents agree, 𝑥𝑖 is an optimal bundle at budget 𝑏𝑖.

𝑖′ is not satiated so increasing their budget increases utility.

Thus 𝑢𝑖𝑥𝑖 > 𝑢𝑖𝑥𝑖′ , i.e. envy! �
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Key Idea 1: Almost Equal Budgets From Almost Envy-Freeness

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴 be such that utilities agree up to one good where
they differ by at most 𝜖. Then |𝑏𝑖 − 𝑏𝑖′ | ≤ 𝜖max{𝛼𝑖, 𝛼𝑖′}.

Proof Sketch. Substantially higher budget still implies envy
since utilities are close.

Non-satiation is replaced by dependence on max{𝛼𝑖, 𝛼𝑖′}. �

20



Key Idea 1: Almost Equal Budgets From Almost Envy-Freeness

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴 be such that utilities agree up to one good where
they differ by at most 𝜖. Then |𝑏𝑖 − 𝑏𝑖′ | ≤ 𝜖max{𝛼𝑖, 𝛼𝑖′}.

Proof Sketch. Substantially higher budget still implies envy
since utilities are close.

Non-satiation is replaced by dependence on max{𝛼𝑖, 𝛼𝑖′}. �

20



Key Idea 1: Almost Equal Budgets From Almost Envy-Freeness

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴 be such that utilities agree up to one good where
they differ by at most 𝜖. Then |𝑏𝑖 − 𝑏𝑖′ | ≤ 𝜖max{𝛼𝑖, 𝛼𝑖′}.

Proof Sketch. Substantially higher budget still implies envy
since utilities are close.

Non-satiation is replaced by dependence on max{𝛼𝑖, 𝛼𝑖′}. �

20



Key Idea 2: Interpolation

𝑖

𝑖′

𝑗

𝑗′
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Key Idea 3: Expand the Instance (𝑘 = 4)

𝐴 𝐺
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Expanding Works Out

Lemma
If 𝑗 and 𝑗′ are goods of the same type, then 𝑝𝑗 = 𝑝𝑗′ .

Lemma
If 𝑖 and 𝑖′ are agents of the same type, then 𝑏𝑖 = 𝑏𝑖′ .

Note: technically need non-satiation - next slide!
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Goal: Approximate HZ

Definition (𝜖-Approximate HZ)
(𝑥, 𝑝) is an 𝜖-approximate HZ equilibrium if and only if

• each agent 𝑖 satisfies ∑𝑗∈𝐺 𝑥𝑖𝑗 ∈ [1 − 𝜖, 1],
• each good 𝑗 satisfies ∑𝑖∈𝐴 𝑥𝑖𝑗 ∈ [1 − 𝜖, 1],
• no agent overspends, i.e. 𝑝 ⋅ 𝑥𝑖 ≤ 1,
• each agent 𝑖 gets an almost optimal bundle, i.e.

𝑢𝑖 ⋅ 𝑥𝑖 ≥ max
⎧{
⎨{⎩

𝑢𝑖 ⋅ 𝑦
∣
∣∣
∣

∑
𝑗∈𝐺

𝑦𝑗 = 1, 𝑝 ⋅ 𝑦 ≤ 1
⎫}
⎬}⎭

− 𝜖.
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Key Idea 4: Non-Satiation

Add 𝑘/𝑛 awesome goods with utility 2 for all agents.

Lemma
No agent gets 0.6 of any awesome good.

Proof. Lets say 𝑖 gets 0.6 of an awesome good. Let 𝑖′ ∈ 𝐴. Then
𝑢𝑖′ ⋅ 𝑥𝑖 ≥ 1.2. So to avoid envy, 𝑖′ must get 0.2 of an awesome
good. Not enough awesome goods for that! �
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Consequences of Non-Satiation

Corollary
For all 𝑖 ∈ 𝐴, 𝑢𝑖 ⋅ 𝑥𝑖 ≤ 1.6.

Lemma
Rescale so that the largest budget is 1. Then, for any 𝑖, we have
𝛼𝑖 ≤ 5𝑛2.

Corollary
Let 𝑖, 𝑖′ ∈ 𝐴 be such that utilities agree up to one good where
they differ by at most 𝜖. Then |𝑏𝑖 − 𝑏𝑖′ | ≤ 5𝑛2𝜖.
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But Does This Help?

Question
How many interpolating agents are there between any two
normal agents?

Answer: Up to 𝑛
𝜖 .

So |𝑏𝑖 − 𝑏𝑖′ | ≤ 5𝑛3. Completely useless! /
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Structure of Optimal Bundles

Optimal bundles at budgets 𝑡 for 𝑖 are:

max 𝑢𝑖 ⋅ 𝑥𝑖

s.t. ∑
𝑗∈𝐺

𝑥𝑖𝑗 ≤ 1,

𝑝 ⋅ 𝑥𝑖 ≤ 𝑡,
𝑥𝑖 ≥ 0.

28



Structure of Optimal Bundles II

The dual is the key:

min 𝜇 + 𝜌𝑡

s.t. 𝜇 + 𝑝𝑗𝜌 ≥ 𝑢𝑖𝑗,

𝜇, 𝜌 ≥ 0.
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Geometry of Optimal Bundles

𝑝

𝑢
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Geometry of Optimal Bundles

𝑝

𝑢
ℋ
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Optimal Bundle Function

Definition (Optimal Bundle Function)
For 𝑖 ∈ 𝐴 and 𝑡 ≥ 0 define:

𝜃𝑖(𝑡) ≔ {𝑗 ∈ 𝐺 ∣ 𝑗 can be in optimum bundle at budget 𝑡}

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴 be such that 𝜃𝑖 = 𝜃𝑖′ , then 𝑏𝑖 = 𝑏𝑖′ .

Proof Sketch. Assume otherwise and wlog. 𝑏𝑖 > 𝑏𝑖′ . Can use
𝜃𝑖 = 𝜃𝑖′ to show that 𝑥𝑖 is optimum bundle for 𝑖′ at budget 𝑏𝑖′ .
Causes envy due to non-satiation! �
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Key Idea 5: 𝜃𝑖 Rarely Changes

𝑝

𝑢
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Key Idea 5: 𝜃𝑖 Rarely Changes
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Bringing It Together

Lemma
Let 𝑖1, … , 𝑖𝑚 be a set of agents such that all agents agree on
all utilities except for possibly one type of good. Then
|{𝜃𝑖1, … , 𝜃𝑖𝑚}| ≤ 2𝑛 + 1.

Lemma
Let 𝑖, 𝑖′ ∈ 𝐴, then |𝑏𝑖 − 𝑏𝑖′ | ≤ 5𝜖𝑛4.

Proof. Between two agents, at most 2𝑛2 changes can happen.
Each contributes at most 5𝜖𝑛2. �
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Bringing It Together II

Theorem

If 𝜖 ≤ 1
5𝑛5 and 𝑘 = 𝑛3

𝜖 , then (𝑥, 𝑝) is a 3
𝑛-approximate HZ

equilibrium in the original instance.

Theorem
The problem of finding an EF+PO allocation in one-sided
cardinal-utility matching market is PPAD-complete.
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Nash Bargaining



Nash Bargaining Point
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Existence and Characterization

Theorem (Nash 1950)
Let 𝑈, set of utility vectors, be convex. Then

1. There is a unique point satisfying certain axioms:
• Pareto-optimality,
• symmetry,
• invariance under affine transformations,
• independence of irrelevant alternatives.

2. It is the maximizer of ∏𝑖∈𝐴(𝑢𝑖 − 𝑑𝑖) for 𝑢 ∈ 𝑈.
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Nash Bargaining Convex Program

Hosseini, Vazirani 2021: Let’s use this for matching markets!

max𝑥 ∑
𝑖∈𝐴

log(𝑢𝑖(𝑥))

s.t. ∑
𝑖∈𝐴

𝑥𝑖𝑗 ≤ 1 ∀𝑗 ∈ 𝐺,

∑
𝑗∈𝐴

𝑥𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝐴,

𝑥 ≥ 0.
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Envy-Freeness of Nash Bargaining

Theorem (Tröbst, Vazirani 2024)
If 𝑥 is a Nash bargaining solution, then 𝑥 is 2-envy-free.

Definition (Approximate Envy-Freeness)

An allocation 𝑥 is 𝛼-envy-free if 𝑢𝑖 ⋅ 𝑥𝑖 ≥ 1
𝛼𝑢𝑖 ⋅ 𝑥𝑖′ for all 𝑖, 𝑖′ ∈ 𝐴.
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Envy-Freeness of Nash Bargaining II

Proof. Assume otherwise, i.e. there are 𝑖, 𝑖′ ∈ 𝐴 with
𝑢𝑖 ⋅ 𝑥𝑖′ ≥ (2 + 𝜖)𝑢𝑖 ⋅ 𝑥𝑖.

Now exchange a 𝛿 fraction of 𝑥𝑖 and 𝑥𝑖′ .

Agent 𝑖: 𝑢𝑖 ⋅ 𝑥𝑖 → (1 − 𝛿)𝑢𝑖 ⋅ 𝑥𝑖 + 𝛿(2 + 𝜖)𝑢𝑖 ⋅ 𝑥𝑖 .

Agent 𝑖′: 𝑢𝑖′ ⋅ 𝑥𝑖′ → (1 − 𝛿)𝑢𝑖′ ⋅ 𝑥𝑖′ .

Product of utilities changes by factor

(1 − 𝛿 + 𝛿(2 + 𝜖))(1 − 𝛿).

Positive derivative at 𝛿 = 0, so 𝑥 was not optimal! �
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Envy-Freeness of Nash Bargaining II

Proof. Assume otherwise, i.e. there are 𝑖, 𝑖′ ∈ 𝐴 with
𝑢𝑖 ⋅ 𝑥𝑖′ ≥ (2 + 𝜖)𝑢𝑖 ⋅ 𝑥𝑖. Now exchange a 𝛿 fraction of 𝑥𝑖 and 𝑥𝑖′ .

Agent 𝑖: 𝑢𝑖 ⋅ 𝑥𝑖 → (1 − 𝛿)𝑢𝑖 ⋅ 𝑥𝑖 + 𝛿(2 + 𝜖)𝑢𝑖 ⋅ 𝑥𝑖 .

Agent 𝑖′: 𝑢𝑖′ ⋅ 𝑥𝑖′ → (1 − 𝛿)𝑢𝑖′ ⋅ 𝑥𝑖′ .

Product of utilities changes by factor

(1 − 𝛿 + 𝛿(2 + 𝜖))(1 − 𝛿).

Positive derivative at 𝛿 = 0, so 𝑥 was not optimal! �
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Envy-Freeness of Nash Bargaining III

Theorem (Tröbst, Vazirani 2024)
If 𝑥 is within (1 + 𝜖) of an optimum Nash bargaining point,
then 𝑥 is (2 + 3√𝜖)-envy-free.

Theorem (Panageas, Tröbst, Vazirani 2021)
A (1 + 𝜖)-approximate Nash bargaining point can be found in
polynomial time (and efficient in practice).
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Conclusion

This mostly resolves the question of EF+PO allocations in
one-sided cardinal-utility matching markets.

• Can we beat 2-EF + PO?
• Can we get 1-EF + 𝛼-PO?
• What about two-sided markets?
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Thank your for listening!
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