# Cardinal-Utility Matching Markets: The Quest for Envy-Freeness, Pareto-Optimality, and Efficient Computability

Thorben Tröbst Theory Seminar February 16, 2024

# **CARDINAL-UTILITY MATCHING MARKETS**

## **PROBLEM SETTING**



Goods

## PROBLEM SETTING



1

## **PROBLEM SETTING**



1

## **Question** Why cardinal utilities instead of ordinal?

## **Question** Why cardinal utilities instead of ordinal?

## Theorem (Immorlica et al. 2017)

There are matching markets in which cardinal mechanisms can improve the utility of all agents by a  $\theta(\log(n))$ -factor over ordinal mechanisms.

# **Question** Why do we allow fractional matchings?

## **Question** Why do we allow fractional matchings?

1. Without, we cannot be fair.

## **Question** Why do we allow fractional matchings?

- 1. Without, we cannot be fair.
- 2. Birkhoff-von-Neumann theorem gives polynomial time lottery.

#### Definition (Envy-Freeness)

Agent *i* envies agent *i'* in allocation *x* if  $u_i \cdot x_i < u_i \cdot x_{i'}$ . *x* is envy-free (EF) if no agent envies another.

Definition (Utility)

For an agent *i*, we use

$$u_i \cdot x_i \coloneqq \sum_{j \in G} u_{ij} x_{ij}$$

to denote the (expected) utility of *i*.

## Envy-freeness alone is trivial: assign goods uniformly!



## Envy-freeness alone is trivial: assign goods uniformly!



## Definition (Pareto-Optimality)

Allocation y is Pareto-better than x, if  $u_i \cdot y_i \ge u_i \cdot x_i$  for all i and  $u_i \cdot y_i > u_i \cdot x_i$  for at least one i. x is Pareto-optimal (PO) if there is no Pareto-better allocation.

## Definition (Pareto-Optimality)

Allocation y is Pareto-better than x, if  $u_i \cdot y_i \ge u_i \cdot x_i$  for all i and  $u_i \cdot y_i > u_i \cdot x_i$  for at least one i. x is Pareto-optimal (PO) if there is no Pareto-better allocation.

**Question** Can we achieve EF and PO at the same time?

#### Hylland-Zeckhauser Mechanism

Hylland, Zeckhauser 1979 use the power of pricing:



#### Hylland-Zeckhauser Mechanism

Hylland, Zeckhauser 1979 use the power of pricing:



### Hylland-Zeckhauser Mechanism

#### Hylland, Zeckhauser 1979 use the power of pricing:



A Hylland-Zeckhauser (HZ) equilibrium consists of allocation xand prices p such that

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation xand prices p such that

1. x is a fractional perfect matching.

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation xand prices p such that

- 1. x is a fractional perfect matching.
- 2. No agent overspends, i.e.  $p \cdot x_i \leq 1$ .

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation xand prices p such that

- 1. x is a fractional perfect matching.
- 2. No agent overspends, i.e.  $p \cdot x_i \leq 1$ .
- 3. Every agent maximizes utility, i.e.  $u_i \cdot x_i = \max\{u_i \cdot y \mid \sum_{i \in G} y_i = 1, p \cdot y \le 1\}.$

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation xand prices p such that

- 1. x is a fractional perfect matching.
- 2. No agent overspends, i.e.  $p \cdot x_i \leq 1$ .
- 3. Every agent maximizes utility, i.e.  $u_i \cdot x_i = \max\{u_i \cdot y \mid \sum_{i \in G} y_i = 1, p \cdot y \le 1\}.$

4. Every agent minimizes expense, i.e.

$$p \cdot x_i = \min\{p \cdot y \mid \sum_{j \in G} y_j = 1, u_i \cdot y = u_i \cdot x_i\}.$$

#### Theorem (Hylland, Zeckhauser 1979)

An HZ equilibrium always exists. Moreover, if (*x*, *p*) is an HZ equilibrium, *x* is Pareto-optimal and envy-free.

#### Theorem (He et al. 2018)

The HZ mechanism is incentive-compatible ( $\approx$  cannot be gamed by individuals) in the large.

But... how do we actually find an HZ equilibrium?

But... how do we actually find an HZ equilibrium?

1. Hylland-Zeckhauser 1979: Kakutani fixed-point theorem, Scarf's method

But... how do we actually find an HZ equilibrium?

- 1. Hylland-Zeckhauser 1979: Kakutani fixed-point theorem, Scarf's method
- 2. Alaei et al. 2017: algebraic cell decomposition

But... how do we actually find an HZ equilibrium?

- 1. Hylland-Zeckhauser 1979: Kakutani fixed-point theorem, Scarf's method
- 2. Alaei et al. 2017: algebraic cell decomposition
- 3. Vazirani, Yannakakis 2020: DPSV-like algorithm for {0,1}-utilities

# **Theorem (Chen, Chen, Peng, Yannakakis 2022)** The problem of computing an $\epsilon$ -approximate HZ-equilibrium is PPAD-hard when $\epsilon = 1/n^c$ for any constant c > 0.

**Theorem (Chen, Chen, Peng, Yannakakis 2022)** The problem of computing an  $\epsilon$ -approximate HZ-equilibrium is PPAD-hard when  $\epsilon = 1/n^c$  for any constant c > 0.

• PPAD is a class of total search problems with rational solutions.

## **Theorem (Chen, Chen, Peng, Yannakakis 2022)** The problem of computing an $\epsilon$ -approximate HZ-equilibrium is PPAD-hard when $\epsilon = 1/n^c$ for any constant c > 0.

- PPAD is a class of total search problems with rational solutions.
- Other famous PPAD-complete problems:
  - Nash-equilibrium,
  - Market equilibria with non-linear utilities,
  - Brouwer's fixed-point theorem.

Can we find an envy-free and Pareto-optimal allocation polynomial time?

Can we find an envy-free and Pareto-optimal allocation polynomial time?

#### Answer

No, this is already PPAD-hard!

Can we find an envy-free and Pareto-optimal allocation polynomial time?

#### Answer

No, this is already PPAD-hard!

**Question** *Can we at least get an approximate solution?* 

Can we find an envy-free and Pareto-optimal allocation polynomial time?

#### Answer

No, this is already PPAD-hard!

#### Question

Can we at least get an approximate solution?

#### Answer

Yes, we can get  $(2 + \epsilon)$ -EF and PO via Nash bargaining!

**PPAD-HARDNESS**
Theorem (Tröbst, Vazirani 2024)

There is a polynomial reduction from  $\frac{3}{n}$ -approximate HZ to finding EF+PO allocations.

### Theorem (Tröbst, Vazirani 2024)

There is a polynomial reduction from  $\frac{3}{n}$ -approximate HZ to finding EF+PO allocations.

### Strategy:

1. Use the second welfare theorem, to conjure up prices and budgets from Pareto-optimality.

### Theorem (Tröbst, Vazirani 2024)

There is a polynomial reduction from  $\frac{3}{n}$ -approximate HZ to finding EF+PO allocations.

### Strategy:

- 1. Use the second welfare theorem, to conjure up prices and budgets from Pareto-optimality.
- 2. Use envy-freeness to show that budgets must be (approximately) equal.

# Theorem (Ashlagi, Shi 2016) In continuum markets, HZ and EF+PO are the same.

# Theorem (Ashlagi, Shi 2016) In continuum markets, HZ and EF+PO are the same.

### Theorem (Miralles, Pycia 2016)

In large finite markets, HZ and EF+PO need not be approximately the same, even if the markets converge to a continuum market.

### Theorem (Second Welfare Theorem)

Under certain conditions, any Pareto-optimal allocation can be supported as a competitive equilibrium for some budgets.

### Theorem (Second Welfare Theorem)

Under certain conditions, any Pareto-optimal allocation can be supported as a competitive equilibrium for some budgets.

Careful: technically HZ does not satisfy the conditions!

Let x be Pareto-optimal, then there are positive  $(\alpha_i)_{i \in A}$  such that x maximizes  $\sum_{i \in A} \alpha_i u_i \cdot x_i$ .  $\alpha$  can be found in polynomial time.

Let x be Pareto-optimal, then there are positive  $(\alpha_i)_{i \in A}$  such that x maximizes  $\sum_{i \in A} \alpha_i u_i \cdot x_i$ .  $\alpha$  can be found in polynomial time.

Proof Sketch. Look at the LP below and apply duality:

$$\begin{array}{ll} \max & \sum_{i \in A} u_i \cdot \hat{x}_i \\ \text{s.t.} & u_i \cdot \hat{x}_i \geq u_i \cdot x_i \quad \forall i \in A, \\ & \sum_{j \in G} \hat{x}_{ij} = 1 \qquad \forall i \in A, \\ & \sum_{i \in A} \hat{x}_{ij} = 1 \qquad \forall j \in G, \\ & \hat{x}_{ij} \geq 0 \qquad \forall i \in A, j \in G \end{array}$$

# LET THERE BE PRICES

Primal:

$$\begin{array}{ll} \max & \sum_{i \in A} \alpha_i u_i \cdot x_i \\ \text{s.t.} & \sum_{i \in G} x_{ij} = 1 \quad \forall i \in A, \\ & \sum_{j \in A} x_{ij} = 1 \quad \forall j \in G, \\ & x_{ij} \geq 0 \quad \forall i \in A, j \in G. \end{array}$$

# LET THERE BE PRICES

Primal:

$$\begin{array}{ll} \max & \sum_{i \in A} \alpha_i u_i \cdot x_i \\ \text{s.t.} & \sum_{i \in G} x_{ij} = 1 \quad \forall i \in A, \\ & \sum_{j \in A} x_{ij} = 1 \quad \forall j \in G, \\ & x_{ij} \geq 0 \quad \forall i \in A, j \in G. \end{array}$$

Dual:

$$\begin{array}{ll} \min & \sum\limits_{i \in A} q_i + \sum\limits_{j \in G} p_j \\ \text{s.t.} & q_i + p_j \geq \alpha_i u_{ij} \quad \forall i \in A, j \in G \end{array}$$

### Lemma (Optimal Bundles)

For every agent *i*,  $x_i$  is an optimum solution to

 $\max \quad u_i \cdot x_i$ s.t.  $\sum_{j \in G} x_{ij} \le 1,$  $p \cdot x_i \le b_i,$  $x_i \ge 0.$ 

where  $b_i := \alpha_i u_i \cdot x_i - q_i$ .

Let  $i, i' \in A$  such that  $u_i = u_{i'}$ . Assume that neither i nor i' is satiated. Then  $b_i = b_{i'}$ .

Let  $i, i' \in A$  such that  $u_i = u_{i'}$ . Assume that neither i nor i' is satiated. Then  $b_i = b_{i'}$ .

**Proof.** Assume otherwise, wlog.  $b_i > b_{i'}$ .

Let  $i, i' \in A$  such that  $u_i = u_{i'}$ . Assume that neither i nor i' is satiated. Then  $b_i = b_{i'}$ .

**Proof.** Assume otherwise, wlog.  $b_i > b_{i'}$ .

Both agents agree,  $x_i$  is an optimal bundle at budget  $b_i$ .

Let  $i, i' \in A$  such that  $u_i = u_{i'}$ . Assume that neither *i* nor *i'* is satiated. Then  $b_i = b_{i'}$ .

**Proof.** Assume otherwise, wlog.  $b_i > b_{i'}$ .

Both agents agree,  $x_i$  is an optimal bundle at budget  $b_i$ .

i' is not satiated so increasing their budget increases utility.

Let  $i, i' \in A$  such that  $u_i = u_{i'}$ . Assume that neither i nor i' is satiated. Then  $b_i = b_{i'}$ .

**Proof.** Assume otherwise, wlog.  $b_i > b_{i'}$ . Both agents agree,  $x_i$  is an optimal bundle at budget  $b_i$ . i' is not satiated so increasing their budget increases utility. Thus  $u_i x_i > u_i x_{i'}$ , i.e. envy!

Let  $i, i' \in A$  be such that utilities agree up to one good where they differ by at most  $\epsilon$ . Then  $|b_i - b_{i'}| \le \epsilon \max\{\alpha_i, \alpha_{i'}\}$ .

Let  $i, i' \in A$  be such that utilities agree up to one good where they differ by at most  $\epsilon$ . Then  $|b_i - b_{i'}| \le \epsilon \max\{\alpha_i, \alpha_{i'}\}$ .

**Proof Sketch.** Substantially higher budget still implies envy since utilities are close.

Let  $i, i' \in A$  be such that utilities agree up to one good where they differ by at most  $\epsilon$ . Then  $|b_i - b_{i'}| \le \epsilon \max\{\alpha_i, \alpha_{i'}\}$ .

**Proof Sketch.** Substantially higher budget still implies envy since utilities are close.

Non-satiation is replaced by dependence on  $\max\{\alpha_i, \alpha_{i'}\}$ .

### **KEY IDEA 2: INTERPOLATION**



# **KEY IDEA 2: INTERPOLATION**



# Key Idea 3: Expand the Instance (k = 4)



# Key Idea 3: Expand the Instance (k = 4)



# **Lemma** If j and j' are goods of the same type, then $p_j = p_{j'}$ .

#### Lemma

If *i* and *i'* are agents of the same type, then  $b_i = b_{i'}$ .

Note: technically need non-satiation - next slide!

(x,p) is an  $\epsilon$ -approximate HZ equilibrium if and only if

• each agent *i* satisfies  $\sum_{j \in G} x_{ij} \in [1 - \epsilon, 1]$ ,

- each agent *i* satisfies  $\sum_{i \in G} x_{ij} \in [1 \epsilon, 1]$ ,
- each good *j* satisfies  $\sum_{i \in A} x_{ij} \in [1 \epsilon, 1]$ ,

- each agent *i* satisfies  $\sum_{i \in G} x_{ij} \in [1 \epsilon, 1]$ ,
- each good *j* satisfies  $\sum_{i \in A} x_{ij} \in [1 \epsilon, 1]$ ,
- no agent overspends, i.e.  $p \cdot x_i \leq 1$ ,

- each agent *i* satisfies  $\sum_{i \in G} x_{ij} \in [1 \epsilon, 1]$ ,
- each good *j* satisfies  $\sum_{i \in A} x_{ij} \in [1 \epsilon, 1]$ ,
- no agent overspends, i.e.  $p \cdot x_i \leq 1$ ,
- each agent *i* gets an almost optimal bundle, i.e.

$$u_i \cdot x_i \ge \max \left\{ u_i \cdot y \mid \sum_{j \in G} y_j = 1, p \cdot y \le 1 \right\} - \epsilon.$$

Lemma

No agent gets 0.6 of any awesome good.

Lemma

No agent gets 0.6 of any awesome good.

**Proof.** Lets say *i* gets 0.6 of an awesome good.

#### Lemma

No agent gets 0.6 of any awesome good.

**Proof.** Lets say *i* gets 0.6 of an awesome good. Let  $i' \in A$ . Then  $u_{i'} \cdot x_i \ge 1.2$ .

#### Lemma

No agent gets 0.6 of any awesome good.

**Proof.** Lets say *i* gets 0.6 of an awesome good. Let  $i' \in A$ . Then  $u_{i'} \cdot x_i \ge 1.2$ . So to avoid envy, *i'* must get 0.2 of an awesome good.

#### Lemma

No agent gets 0.6 of any awesome good.

**Proof.** Lets say *i* gets 0.6 of an awesome good. Let  $i' \in A$ . Then  $u_{i'} \cdot x_i \ge 1.2$ . So to avoid envy, *i'* must get 0.2 of an awesome good. Not enough awesome goods for that!

**Corollary** For all  $i \in A$ ,  $u_i \cdot x_i \le 1.6$ .
**Corollary** For all  $i \in A$ ,  $u_i \cdot x_i \le 1.6$ .

#### Lemma

Rescale so that the largest budget is 1. Then, for any *i*, we have  $\alpha_i \leq 5n^2$ .

**Corollary** For all  $i \in A$ ,  $u_i \cdot x_i \le 1.6$ .

#### Lemma

Rescale so that the largest budget is 1. Then, for any *i*, we have  $\alpha_i \leq 5n^2$ .

### Corollary

Let  $i, i' \in A$  be such that utilities agree up to one good where they differ by at most  $\epsilon$ . Then  $|b_i - b_{i'}| \le 5n^2\epsilon$ .

### Question

How many interpolating agents are there between any two normal agents?

### Question

How many interpolating agents are there between any two normal agents?

**Answer:** Up to  $\frac{n}{\epsilon}$ .

### Question

How many interpolating agents are there between any two normal agents?

Answer: Up to  $\frac{n}{\epsilon}$ .

So  $|b_i - b_{i'}| \le 5n^3$ . Completely useless!  $\odot$ 

### Optimal bundles at budgets *t* for *i* are:

$$\max \quad u_i \cdot x_i$$
  
s.t. 
$$\sum_{j \in G} x_{ij} \le 1,$$
$$p \cdot x_i \le t,$$
$$x_i \ge 0.$$

The dual is the key:

 $\begin{array}{ll} \min & \mu + \rho t \\ \text{s.t.} & \mu + p_j \rho \ge u_{ij}, \\ & \mu, \rho \ge 0. \end{array}$ 











Definition (Optimal Bundle Function) For  $i \in A$  and  $t \ge 0$  define:

 $\theta_i(t) \coloneqq \{j \in G \mid j \text{ can be in optimum bundle at budget } t\}$ 

#### Lemma

Let  $i, i' \in A$  be such that  $\theta_i = \theta_{i'}$ , then  $b_i = b_{i'}$ .

Definition (Optimal Bundle Function) For  $i \in A$  and  $t \ge 0$  define:

 $\theta_i(t) \coloneqq \{j \in G \mid j \text{ can be in optimum bundle at budget } t\}$ 

#### Lemma

Let  $i, i' \in A$  be such that  $\theta_i = \theta_{i'}$ , then  $b_i = b_{i'}$ .

**Proof Sketch.** Assume otherwise and wlog.  $b_i > b_{i'}$ . Can use  $\theta_i = \theta_{i'}$  to show that  $x_i$  is optimum bundle for i' at budget  $b_{i'}$ . Causes envy due to non-satiation!













### Lemma

Let  $i_1, \ldots, i_m$  be a set of agents such that all agents agree on all utilities except for possibly one type of good. Then  $|\{\theta_{i_1}, \ldots, \theta_{i_m}\}| \leq 2n + 1.$ 

### Lemma

Let  $i_1, \ldots, i_m$  be a set of agents such that all agents agree on all utilities except for possibly one type of good. Then  $|\{\theta_{i_1}, \ldots, \theta_{i_m}\}| \le 2n + 1.$ 

### Lemma

Let  $i, i' \in A$ , then  $|b_i - b_{i'}| \le 5\epsilon n^4$ .

#### Lemma

Let  $i_1, \ldots, i_m$  be a set of agents such that all agents agree on all utilities except for possibly one type of good. Then  $|\{\theta_{i_1}, \ldots, \theta_{i_m}\}| \le 2n + 1.$ 

#### Lemma

Let  $i, i' \in A$ , then  $|b_i - b_{i'}| \le 5\epsilon n^4$ .

**Proof.** Between two agents, at most  $2n^2$  changes can happen. Each contributes at most  $5\epsilon n^2$ .

### Theorem

If 
$$\epsilon \leq \frac{1}{5n^5}$$
 and  $k = \frac{n^3}{\epsilon}$ , then  $(x,p)$  is a  $\frac{3}{n}$ -approximate HZ equilibrium in the original instance.

### Theorem

If  $\epsilon \leq \frac{1}{5n^5}$  and  $k = \frac{n^3}{\epsilon}$ , then (x, p) is a  $\frac{3}{n}$ -approximate HZ equilibrium in the original instance.

### Theorem

The problem of finding an EF+PO allocation in one-sided cardinal-utility matching market is PPAD-complete.

NASH BARGAINING

## NASH BARGAINING POINT



## NASH BARGAINING POINT



## NASH BARGAINING POINT



Theorem (Nash 1950)

Let *U*, set of utility vectors, be convex. Then

### Theorem (Nash 1950)

Let U, set of utility vectors, be convex. Then

- 1. There is a unique point satisfying certain axioms:
  - Pareto-optimality,
  - symmetry,
  - invariance under affine transformations,
  - independence of irrelevant alternatives.

### Theorem (Nash 1950)

Let U, set of utility vectors, be convex. Then

- 1. There is a unique point satisfying certain axioms:
  - Pareto-optimality,
  - symmetry,
  - invariance under affine transformations,
  - independence of irrelevant alternatives.
- 2. It is the maximizer of  $\prod_{i \in A} (u_i d_i)$  for  $u \in U$ .

## Hosseini, Vazirani 2021: Let's use this for matching markets!

$$\begin{array}{ll} \max_{\chi} & \sum_{i \in A} \log(u_i(x)) \\ \text{s.t.} & \sum_{i \in A} x_{ij} \leq 1 \quad \forall j \in G, \\ & \sum_{j \in A} x_{ij} \leq 1 \quad \forall i \in A, \\ & x > 0. \end{array}$$

## Theorem (Tröbst, Vazirani 2024) If x is a Nash bargaining solution, then x is 2-envy-free.

# **Definition (Approximate Envy-Freeness)** An allocation x is $\alpha$ -envy-free if $u_i \cdot x_i \ge \frac{1}{\alpha}u_i \cdot x_{i'}$ for all $i, i' \in A$ .

**Proof.** Assume otherwise, i.e. there are  $i, i' \in A$  with  $u_i \cdot x_{i'} \ge (2 + \epsilon)u_i \cdot x_i$ .

**Proof.** Assume otherwise, i.e. there are  $i, i' \in A$  with  $u_i \cdot x_{i'} \ge (2 + \epsilon)u_i \cdot x_i$ . Now exchange a  $\delta$  fraction of  $x_i$  and  $x_{i'}$ .
**Proof.** Assume otherwise, i.e. there are  $i, i' \in A$  with  $u_i \cdot x_{i'} \ge (2 + \epsilon)u_i \cdot x_i$ . Now exchange a  $\delta$  fraction of  $x_i$  and  $x_{i'}$ . Agent  $i: u_i \cdot x_i \to (1 - \delta)u_i \cdot x_i + \delta(2 + \epsilon)u_i \cdot x_i$ . **Proof.** Assume otherwise, i.e. there are  $i, i' \in A$  with  $u_i \cdot x_{i'} \ge (2 + \epsilon)u_i \cdot x_i$ . Now exchange a  $\delta$  fraction of  $x_i$  and  $x_{i'}$ . Agent  $i: u_i \cdot x_i \to (1 - \delta)u_i \cdot x_i + \delta(2 + \epsilon)u_i \cdot x_i$ . Agent  $i': u_{i'} \cdot x_{i'} \to (1 - \delta)u_{i'} \cdot x_{i'}$ . **Proof.** Assume otherwise, i.e. there are  $i, i' \in A$  with  $u_i \cdot x_{i'} \ge (2 + \epsilon)u_i \cdot x_i$ . Now exchange a  $\delta$  fraction of  $x_i$  and  $x_{i'}$ . Agent  $i: u_i \cdot x_i \to (1 - \delta)u_i \cdot x_i + \delta(2 + \epsilon)u_i \cdot x_i$ . Agent  $i': u_{i'} \cdot x_{i'} \to (1 - \delta)u_{i'} \cdot x_{i'}$ . Product of utilities changes by factor

 $(1 - \delta + \delta(2 + \epsilon))(1 - \delta).$ 

**Proof.** Assume otherwise, i.e. there are  $i, i' \in A$  with  $u_i \cdot x_{i'} \ge (2 + \epsilon)u_i \cdot x_i$ . Now exchange a  $\delta$  fraction of  $x_i$  and  $x_{i'}$ . Agent  $i: u_i \cdot x_i \to (1 - \delta)u_i \cdot x_i + \delta(2 + \epsilon)u_i \cdot x_i$ . Agent  $i': u_{i'} \cdot x_{i'} \to (1 - \delta)u_{i'} \cdot x_{i'}$ . Product of utilities changes by factor

 $(1 - \delta + \delta(2 + \epsilon))(1 - \delta).$ 

Positive derivative at  $\delta = 0$ , so x was not optimal!

## **Theorem (Tröbst, Vazirani 2024)** If x is within $(1 + \epsilon)$ of an optimum Nash bargaining point, then x is $(2 + 3\sqrt{\epsilon})$ -envy-free.

## **Theorem (Tröbst, Vazirani 2024)** If x is within $(1 + \epsilon)$ of an optimum Nash bargaining point, then x is $(2 + 3\sqrt{\epsilon})$ -envy-free.

Theorem (Panageas, Tröbst, Vazirani 2021)

A  $(1 + \epsilon)$ -approximate Nash bargaining point can be found in polynomial time (and efficient in practice).

• Can we beat 2-EF + PO?

- Can we beat 2-EF + PO?
- Can we get 1-EF +  $\alpha$ -PO?

- Can we beat 2-EF + PO?
- Can we get 1-EF +  $\alpha$ -PO?
- What about two-sided markets?

## THANK YOUR FOR LISTENING!