CARDINAL-UTILITY MATCHING MARKETS:
 THE QUEST FOR ENVY-FREENESS,
 PARETO-OPTIMALITY, AND EFFICIENT COMPUTABILITY

Thorben Tröbst
Theory Seminar
February 16, 2024

CARDINAL-UTILITY MATCHING MARKETS

Problem Setting

Agents
Goods

Problem Setting

Problem Setting

Why CARDINAL

Question

Why cardinal utilities instead of ordinal?

Why CARDINAL

Question

Why cardinal utilities instead of ordinal?

Theorem (Immorlica et al. 2017)

There are matching markets in which cardinal mechanisms can improve the utility of all agents by a $\theta(\log (n))$-factor over ordinal mechanisms.

Why Fractional

Question

Why do we allow fractional matchings?

Why Fractional

Question

Why do we allow fractional matchings?

1. Without, we cannot be fair.

Why Fractional

Question

Why do we allow fractional matchings?

1. Without, we cannot be fair.
2. Birkhoff-von-Neumann theorem gives polynomial time lottery.

Envy-Freeness

Definition (Envy-Freeness)

Agent i envies agent i^{\prime} in allocation x if $u_{i} \cdot x_{i}<u_{i} \cdot x_{i^{\prime}}, x$ is envy-free (EF) if no agent envies another.

Definition (Utility)

For an agent i, we use

$$
u_{i} \cdot x_{i}:=\sum_{j \in G} u_{i j} x_{i j}
$$

to denote the (expected) utility of i.

Envy-Freeness II

Envy-freeness alone is trivial: assign goods uniformly!

Envy-Freeness II

Envy-freeness alone is trivial: assign goods uniformly!

PARETO-OPTIMALITY

Definition (Pareto-Optimality)

Allocation y is Pareto-better than x, if $u_{i} \cdot y_{i} \geq u_{i} \cdot x_{i}$ for all i and $u_{i} \cdot y_{i}>u_{i} \cdot x_{i}$ for at least one i. x is Pareto-optimal (PO) if there is no Pareto-better allocation.

PARETO-OPTIMALITY

Definition (Pareto-Optimality)

Allocation y is Pareto-better than x, if $u_{i} \cdot y_{i} \geq u_{i} \cdot x_{i}$ for all i and $u_{i} \cdot y_{i}>u_{i} \cdot x_{i}$ for at least one i. x is Pareto-optimal (PO) if there is no Pareto-better allocation.

Question

Can we achieve EF and PO at the same time?

HylLand-Zeckhauser Mechanism

Hylland, Zeckhauser 1979 use the power of pricing:

HylLand-Zeckhauser Mechanism

Hylland, Zeckhauser 1979 use the power of pricing:

HylLand-Zeckhauser Mechanism

Hylland, Zeckhauser 1979 use the power of pricing:

HYLLAND-Zeckhauser Mechanism II

Definition

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation x and prices p such that

HYLLAND-ZECKHAUSER MECHANISM II

Definition

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation x and prices p such that

1. x is a fractional perfect matching.

HYLLAND-ZECKHAUSER MECHANISM II

Definition

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation x and prices p such that

1. x is a fractional perfect matching.
2. No agent overspends, i.e. $p \cdot x_{i} \leq 1$.

HylLand-Zeckhauser Mechanism II

Definition

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation x and prices p such that

1. x is a fractional perfect matching.
2. No agent overspends, ie. $p \cdot x_{i} \leq 1$.
3. Every agent maximizes utility, ie.

$$
u_{i} \cdot x_{i}=\max \left\{u_{i} \cdot y \mid \sum_{j \in G} y_{j}=1, p \cdot y \leq 1\right\} .
$$

HylLand-Zeckhauser Mechanism II

Definition

A Hylland-Zeckhauser (HZ) equilibrium consists of allocation x and prices p such that

1. x is a fractional perfect matching.
2. No agent overspends, ie. $p \cdot x_{i} \leq 1$.
3. Every agent maximizes utility, ie.

$$
u_{i} \cdot x_{i}=\max \left\{u_{i} \cdot y \mid \sum_{j \in G} y_{j}=1, p \cdot y \leq 1\right\} .
$$

4. Every agent minimizes expense, ie.

$$
p \cdot x_{i}=\min \left\{p \cdot y \mid \sum_{j \in G} y_{j}=1, u_{i} \cdot y=u_{i} \cdot x_{i}\right\} .
$$

HYLLAND-ZECKHAUSER MECHANISM III

Theorem (Hylland, Zeckhauser 1979)
An HZ equilibrium always exists. Moreover, if (x, p) is an HZ equilibrium, x is Pareto-optimal and envy-free.

Theorem (He et al. 2018)

The HZ mechanism is incentive-compatible (\approx cannot be gamed by individuals) in the large.

But Walt...

Question

But... how do we actually find an HZ equilibrium?

BUT WAIT...

Question

But... how do we actually find an HZ equilibrium?

1. Hylland-Zeckhauser 1979: Kakutani fixed-point theorem, Scarf's method

BUT WAIT...

Question

But... how do we actually find an HZ equilibrium?

1. Hylland-Zeckhauser 1979: Kakutani fixed-point theorem, Scarf's method
2. Alaei et al. 2017: algebraic cell decomposition

BUT WAIT...

Question

But... how do we actually find an HZ equilibrium?

1. Hylland-Zeckhauser 1979: Kakutani fixed-point theorem, Scarf's method
2. Alaei et al. 2017: algebraic cell decomposition
3. Vazirani, Yannakakis 2020: DPSV-like algorithm for $\{0,1\}$-utilities

INTRACTIBILITY

Theorem (Chen, Chen, Peng, Yannakakis 2022)

The problem of computing an ϵ-approximate $H Z$-equilibrium is PPAD-hard when $\epsilon=1 / n^{c}$ for any constant $c>0$.

INTRACTIBILITY

Theorem (Chen, Chen, Peng, Yannakakis 2022)

The problem of computing an ϵ-approximate $H Z$-equilibrium is PPAD-hard when $\epsilon=1 / n^{c}$ for any constant $c>0$.

- PPAD is a class of total search problems with rational solutions.

INTRACTIBILITY

Theorem (Chen, Chen, Peng, Yannakakis 2022)

The problem of computing an ϵ-approximate $H Z$-equilibrium is PPAD-hard when $\epsilon=1 / n^{c}$ for any constant $c>0$.

- PPAD is a class of total search problems with rational solutions.
- Other famous PPAD-complete problems:
- Nash-equilibrium,
- Market equilibria with non-linear utilities,
- Brouwer's fixed-point theorem.

Central Question

Question

Can we find an envy-free and Pareto-optimal allocation polynomial time?

Central Question

Question

Can we find an envy-free and Pareto-optimal allocation polynomial time?

Answer

No, this is already PPAD-hard!

Central Question

Question

Can we find an envy-free and Pareto-optimal allocation polynomial time?

Answer

No, this is already PPAD-hard!

Question

Can we at least get an approximate solution?

Central Question

Question

Can we find an envy-free and Pareto-optimal allocation polynomial time?

Answer

No, this is already PPAD-hard!

Question

Can we at least get an approximate solution?

Answer

Yes, we can get $(2+\epsilon)-E F$ and PO via Nash bargaining!

PPAD-HARDNESS

Proof Strategy

Theorem (Tröbst, Vazirani 2024)

There is a polynomial reduction from $\frac{3}{n}$-approximate HZ to finding EF+PO allocations.

Proof Strategy

Theorem (Tröbst, Vazirani 2024)

There is a polynomial reduction from $\frac{3}{n}$-approximate HZ to finding EF+PO allocations.

Strategy:

1. Use the second welfare theorem, to conjure up prices and budgets from Pareto-optimality.

Proof Strategy

Theorem (Tröbst, Vazirani 2024)

There is a polynomial reduction from $\frac{3}{n}$-approximate HZ to finding EF+PO allocations.

Strategy:

1. Use the second welfare theorem, to conjure up prices and budgets from Pareto-optimality.
2. Use envy-freeness to show that budgets must be (approximately) equal.

BACKGROUND

Theorem (Ashlagi, Shi 2016)
In continuum markets, HZ and $E F+P O$ are the same.

BACKGROUND

Theorem (Ashlagi, Shi 2016)

In continuum markets, HZ and EF+PO are the same.

Theorem (Miralles, Pycia 2016)

In large finite markets, HZ and EF+PO need not be approximately the same, even if the markets converge to a continuum market.

Second Welfare Theorem

Theorem (Second Welfare Theorem)

Under certain conditions, any Pareto-optimal allocation can be supported as a competitive equilibrium for some budgets.

Second Welfare Theorem

Theorem (Second Welfare Theorem)
Under certain conditions, any Pareto-optimal allocation can be supported as a competitive equilibrium for some budgets.

Careful: technically HZ does not satisfy the conditions!

Characterization of Pareto-Optimality

Lemma

Let x be Pareto-optimal, then there are positive $\left(\alpha_{i}\right)_{i \in A}$ such that x maximizes $\sum_{i \in A} \alpha_{i} u_{i} \cdot x_{i}$. α can be found in polynomial time.

Characterization of Pareto-Optimality

Lemma

Let x be Pareto-optimal, then there are positive $\left(\alpha_{i}\right)_{i \in A}$ such that x maximizes $\sum_{i \in A} \alpha_{i} u_{i} \cdot x_{i}$. α can be found in polynomial time.

Proof Sketch. Look at the LP below and apply duality:

$$
\begin{array}{lll}
\max & \sum_{i \in A} u_{i} \cdot \hat{x}_{i} & \\
\text { s.t. } & u_{i} \cdot \hat{x}_{i} \geq u_{i} \cdot x_{i} & \forall i \in A, \\
& \sum_{j \in G} \hat{x}_{i j}=1 & \forall i \in A, \\
& \sum_{i \in A} \hat{x}_{i j}=1 & \forall j \in G, \\
& \hat{x}_{i j} \geq 0 & \forall i \in A, j \in G .
\end{array}
$$

Let There Be Prices

Primal:

$$
\begin{array}{ll}
\max & \sum_{i \in A} \alpha_{i} u_{i} \cdot x_{i} \\
\text { s.t. } & \sum_{i \in G} x_{i j}=1 \quad \forall i \in A \\
& \sum_{j \in A} x_{i j}=1 \quad \forall j \in G \\
& x_{i j} \geq 0 \quad \forall i \in A, j \in G .
\end{array}
$$

Let There Be Prices

Primal:

$$
\begin{array}{ll}
\max & \sum_{i \in A} \alpha_{i} u_{i} \cdot x_{i} \\
\text { s.t. } & \sum_{i \in G} x_{i j}=1 \quad \forall i \in A, \\
& \sum_{j \in A} x_{i j}=1 \quad \forall j \in G \\
& x_{i j} \geq 0 \quad \forall i \in A, j \in G .
\end{array}
$$

Dual:
$\min \sum_{i \in A} q_{i}+\sum_{j \in G} p_{j}$
s.t. $\quad q_{i}+p_{j} \geq \alpha_{i} u_{i j} \quad \forall i \in A, j \in G$

Let There Be Prices II

Lemma (Optimal Bundles)

For every agent i, x_{i} is an optimum solution to

$$
\begin{array}{ll}
\max & u_{i} \cdot x_{i} \\
\text { s.t. } & \sum_{j \in G} x_{i j} \leq 1 \\
& p \cdot x_{i} \leq b_{i} \\
& x_{i} \geq 0
\end{array}
$$

where $b_{i}:=\alpha_{i} u_{i} \cdot x_{i}-q_{i}$.

Equal Budgets From Envy-Freeness

Lemma

Let $i, i^{\prime} \in A$ such that $u_{i}=u_{i^{\prime}}$. Assume that neither i nor i^{\prime} is
satiated. Then $b_{i}=b_{i^{\prime}}$.

Equal Budgets From Envy-Freeness

Lemma

Let $i, i^{\prime} \in A$ such that $u_{i}=u_{i^{\prime}}$. Assume that neither i nor i^{\prime} is
satiated. Then $b_{i}=b_{i^{\prime}}$.
Proof. Assume otherwise, wlog. $b_{i}>b_{i^{\prime}}$.

Equal Budgets From Envy-Freeness

Lemma

Let $i, i^{\prime} \in A$ such that $u_{i}=u_{i^{\prime}}$. Assume that neither i nor i^{\prime} is
satiated. Then $b_{i}=b_{i^{\prime}}$.
Proof. Assume otherwise, wlog. $b_{i}>b_{i^{\prime}}$.
Both agents agree, x_{i} is an optimal bundle at budget b_{i}.

Equal Budgets From Envy-Freeness

Lemma

Let $i, i^{\prime} \in A$ such that $u_{i}=u_{i^{\prime}}$. Assume that neither i nor i^{\prime} is satiated. Then $b_{i}=b_{i^{\prime}}$.

Proof. Assume otherwise, wlog. $b_{i}>b_{i^{\prime}}$.
Both agents agree, x_{i} is an optimal bundle at budget b_{i}.
i^{\prime} is not satiated so increasing their budget increases utility.

Equal Budgets From Envy-Freeness

Lemma

Let $i, i^{\prime} \in A$ such that $u_{i}=u_{i^{\prime}}$. Assume that neither i nor i^{\prime} is satiated. Then $b_{i}=b_{i^{\prime}}$.

Proof. Assume otherwise, wlog. $b_{i}>b_{i^{\prime}}$.
Both agents agree, x_{i} is an optimal bundle at budget b_{i}.
i^{\prime} is not satiated so increasing their budget increases utility.
Thus $u_{i} x_{i}>u_{i} x_{i^{\prime}}$, i.e. envy!

Lemma

Let $i, i^{\prime} \in A$ be such that utilities agree up to one good where they differ by at most ϵ. Then $\left|b_{i}-b_{i^{\prime}}\right| \leq \epsilon \max \left\{\alpha_{i}, \alpha_{i^{\prime}}\right\}$.

Key Idea 1: Almost Equal Budgets From Almost Envy-Freeness

Lemma

Let $i, i^{\prime} \in A$ be such that utilities agree up to one good where they differ by at most ϵ. Then $\left|b_{i}-b_{i^{\prime}}\right| \leq \epsilon \max \left\{\alpha_{i}, \alpha_{i^{\prime}}\right\}$.

Proof Sketch. Substantially higher budget still implies envy since utilities are close.

Lemma

Let $i, i^{\prime} \in A$ be such that utilities agree up to one good where they differ by at most ϵ. Then $\left|b_{i}-b_{i^{\prime}}\right| \leq \epsilon \max \left\{\alpha_{i}, \alpha_{i^{\prime}}\right\}$.

Proof Sketch. Substantially higher budget still implies envy since utilities are close.

Non-satiation is replaced by dependence on $\max \left\{\alpha_{i}, \alpha_{i^{\prime}}\right\}$.

Key Idea 2: Interpolation

Key Idea 2: Interpolation

Key Idea 3: Expand the Instance $(k=4)$

Key Idea 3: Expand the Instance $(k=4)$

EXPANDING WORKS OUT

Lemma

If j and j^{\prime} are goods of the same type, then $p_{j}=p_{j^{\prime}}$.

Lemma

If i and i^{\prime} are agents of the same type, then $b_{i}=b_{i^{\prime}}$.

Note: technically need non-satiation - next slide!

GOAL: APPROXIMATE HZ

Definition (ϵ-Approximate HZ)

(x, p) is an ϵ-approximate $H Z$ equilibrium if and only if

GOAL: APPROXIMATE HZ

Definition (ϵ-Approximate HZ)

(x, p) is an ϵ-approximate $H Z$ equilibrium if and only if

- each agent i satisfies $\sum_{j \in G} x_{i j} \in[1-\epsilon, 1]$,

GOAL: APPROXIMATE HZ

Definition (ϵ-Approximate HZ)

(x, p) is an ϵ-approximate $H Z$ equilibrium if and only if

- each agent i satisfies $\sum_{j \in G} x_{i j} \in[1-\epsilon, 1]$,
- each good j satisfies $\sum_{i \in A} x_{i j} \in[1-\epsilon, 1]$,

GOAL: APPROXIMATE HZ

Definition (ϵ-Approximate HZ)

(x, p) is an ϵ-approximate $H Z$ equilibrium if and only if

- each agent i satisfies $\sum_{j \in G} x_{i j} \in[1-\epsilon, 1]$,
- each good j satisfies $\sum_{i \in A} x_{i j} \in[1-\epsilon, 1]$,
- no agent overspends, i.e. $p \cdot x_{i} \leq 1$,

GOAL: APPROXIMATE HZ

Definition (ϵ-Approximate HZ)

(x, p) is an ϵ-approximate $H Z$ equilibrium if and only if

- each agent i satisfies $\sum_{j \in G} x_{i j} \in[1-\epsilon, 1]$,
- each good j satisfies $\sum_{i \in A} x_{i j} \in[1-\epsilon, 1]$,
- no agent overspends, i.e. $p \cdot x_{i} \leq 1$,
- each agent i gets an almost optimal bundle, i.e.

$$
u_{i} \cdot x_{i} \geq \max \left\{u_{i} \cdot y \mid \sum_{j \in G} y_{j}=1, p \cdot y \leq 1\right\}-\epsilon
$$

Key Idea 4: Non-SAtiation

Add k / n awesome goods with utility 2 for all agents.

Lemma

No agent gets 0.6 of any awesome good.

Key Idea 4: Non-SAtiation

Add k / n awesome goods with utility 2 for all agents.

Lemma

No agent gets 0.6 of any awesome good.
Proof. Lets say i gets 0.6 of an awesome good.

Key Idea 4: Non-SAtiation

Add k / n awesome goods with utility 2 for all agents.

Lemma

No agent gets 0.6 of any awesome good.
Proof. Lets say i gets 0.6 of an awesome good. Let $i^{\prime} \in A$. Then $u_{i^{\prime}} \cdot x_{i} \geq 1.2$.

Key Idea 4: Non-Satiation

Add k / n awesome goods with utility 2 for all agents.

Lemma

No agent gets 0.6 of any awesome good.
Proof. Lets say i gets 0.6 of an awesome good. Let $i^{\prime} \in A$. Then $u_{i^{\prime}} \cdot x_{i} \geq 1.2$. So to avoid envy, i^{\prime} must get 0.2 of an awesome good.

Key Idea 4: Non-Satiation

Add k / n awesome goods with utility 2 for all agents.

Lemma

No agent gets 0.6 of any awesome good.
Proof. Lets say i gets 0.6 of an awesome good. Let $i^{\prime} \in A$. Then $u_{i^{\prime}} \cdot x_{i} \geq 1$.2. So to avoid envy, i^{\prime} must get 0.2 of an awesome good. Not enough awesome goods for that!

CONSEQUENCES OF NON-SATIATION

Corollary
 For all $i \in A, u_{i} \cdot x_{i} \leq 1.6$.

CONSEQUENCES OF NON-SATIATION

Corollary

For all $i \in A, u_{i} \cdot x_{i} \leq 1.6$.

Lemma

Rescale so that the largest budget is 1. Then, for any i, we have $\alpha_{i} \leq 5 n^{2}$.

Consequences of Non-Satiation

Corollary

For all $i \in A, u_{i} \cdot x_{i} \leq 1.6$.

Lemma

Rescale so that the largest budget is 1. Then, for any i, we have $\alpha_{i} \leq 5 n^{2}$.

Corollary

Let $i, i^{\prime} \in A$ be such that utilities agree up to one good where they differ by at most ϵ. Then $\left|b_{i}-b_{i^{\prime}}\right| \leq 5 n^{2} \epsilon$.

But Does This Help?

Question

How many interpolating agents are there between any two normal agents?

But Does This Help?

Question

How many interpolating agents are there between any two normal agents?

Answer: Up to $\frac{n}{\epsilon}$.

But Does This Help?

Question

How many interpolating agents are there between any two normal agents?

Answer: Up to $\frac{n}{\epsilon}$.
So $\left|b_{i}-b_{i^{\prime}}\right| \leq 5 n^{3}$. Completely useless! ©

Structure of Optimal Bundles

Optimal bundles at budgets t for i are:

$$
\begin{aligned}
& \max u_{i} \cdot x_{i} \\
& \text { s.t. } \quad \sum_{j \in G} x_{i j} \leq 1, \\
& p \cdot x_{i} \leq t \\
& x_{i} \geq 0 .
\end{aligned}
$$

Structure of Optimal Bundles II

The dual is the key:

$$
\begin{array}{ll}
\min & \mu+\rho t \\
\text { s.t. } & \mu+p_{j} \rho \geq u_{i j}, \\
& \mu, \rho \geq 0 .
\end{array}
$$

Geometry of Optimal Bundles

Optimal Bundle Function

Definition (Optimal Bundle Function)
For $i \in A$ and $t \geq 0$ define:
$\theta_{i}(t):=\{j \in G \mid j$ can be in optimum bundle at budget $t\}$

Lemma

Let $i, i^{\prime} \in A$ be such that $\theta_{i}=\theta_{i^{\prime}}$, then $b_{i}=b_{i^{\prime}}$.

Optimal Bundle Function

Definition (Optimal Bundle Function)

For $i \in A$ and $t \geq 0$ define:
$\theta_{i}(t):=\{j \in G \mid j$ can be in optimum bundle at budget $t\}$

Lemma

Let $i, i^{\prime} \in A$ be such that $\theta_{i}=\theta_{i^{\prime}}$, then $b_{i}=b_{i^{\prime}}$.

Proof Sketch. Assume otherwise and wlog. $b_{i}>b_{i^{\prime}}$. Can use $\theta_{i}=\theta_{i^{\prime}}$ to show that x_{i} is optimum bundle for i^{\prime} at budget $b_{i^{\prime}}$. Causes envy due to non-satiation!

Key Idea 5: θ_{i} Rarely Changes

Bringing It Together

Lemma

Let i_{1}, \ldots, i_{m} be a set of agents such that all agents agree on all utilities except for possibly one type of good. Then $\left|\left\{\theta_{i_{1}}, \ldots, \theta_{i_{m}}\right\}\right| \leq 2 n+1$.

Bringing It Together

Lemma

Let i_{1}, \ldots, i_{m} be a set of agents such that all agents agree on all utilities except for possibly one type of good. Then $\left|\left\{\theta_{i_{1}}, \ldots, \theta_{i_{m}}\right\}\right| \leq 2 n+1$.

Lemma

Let $i, i^{\prime} \in A$, then $\left|b_{i}-b_{i^{\prime}}\right| \leq 5 e n^{4}$.

Bringing It Together

Lemma

Let i_{1}, \ldots, i_{m} be a set of agents such that all agents agree on all utilities except for possibly one type of good. Then $\left|\left\{\theta_{i_{1}}, \ldots, \theta_{i_{m}}\right\}\right| \leq 2 n+1$.

Lemma

Let $i, i^{\prime} \in A$, then $\left|b_{i}-b_{i^{\prime}}\right| \leq 5 e n^{4}$.
Proof. Between two agents, at most $2 n^{2}$ changes can happen.
Each contributes at most $5 \epsilon n^{2}$.

Bringing It Together II

Theorem

If $\epsilon \leq \frac{1}{5 n^{5}}$ and $k=\frac{n^{3}}{\epsilon}$, then (x, p) is a $\frac{3}{n}$-approximate HZ equilibrium in the original instance.

Bringing It Together II

Theorem
 If $\epsilon \leq \frac{1}{5 n^{5}}$ and $k=\frac{n^{3}}{\epsilon}$, then (x, p) is a $\frac{3}{n}$-approximate HZ equilibrium in the original instance.

Theorem

The problem of finding an EF+PO allocation in one-sided cardinal-utility matching market is PPAD-complete.

NASH BARGAINING

Nash Bargaining Point

Nash Bargaining Point

Nash Bargaining Point

Existence and Characterization

Theorem (Nash 1950)
Let U, set of utility vectors, be convex. Then

EXISTENCE AND CHARACTERIZATION

Theorem (Nash 1950)
Let U, set of utility vectors, be convex. Then

1. There is a unique point satisfying certain axioms:

- Pareto-optimality,
- symmetry,
- invariance under affine transformations,
- independence of irrelevant alternatives.

Existence and Characterization

Theorem (Nash 1950)

Let U, set of utility vectors, be convex. Then

1. There is a unique point satisfying certain axioms:

- Pareto-optimality,
- symmetry,
- invariance under affine transformations,
- independence of irrelevant alternatives.

2. It is the maximizer of $\prod_{i \in A}\left(u_{i}-d_{i}\right)$ for $u \in U$.

Nash Bargaining Convex Program

Hosseini, Vazirani 2021: Let's use this for matching markets!

$$
\begin{array}{ll}
\max _{x} & \sum_{i \in A} \log \left(u_{i}(x)\right) \\
\text { s.t. } & \sum_{i \in A} x_{i j} \leq 1 \quad \forall j \in G, \\
& \sum_{j \in A} x_{i j} \leq 1 \quad \forall i \in A, \\
& x \geq 0 .
\end{array}
$$

Envy-Freeness of Nash Bargaining

Theorem (Tröbst, Vazirani 2024)
If x is a Nash bargaining solution, then x is 2-envy-free.

Definition (Approximate Envy-Freeness)
An allocation x is α-envy-free if $u_{i} \cdot x_{i} \geq \frac{1}{\alpha} u_{i} \cdot x_{i^{\prime}}$ for all $i, i^{\prime} \in A$.

Envy-Freeness of Nash Bargaining II

Proof. Assume otherwise, i.e. there are $i, i^{\prime} \in A$ with
$u_{i} \cdot x_{i^{\prime}} \geq(2+\epsilon) u_{i} \cdot x_{i}$.

Envy-Freeness of Nash Bargaining II

Proof. Assume otherwise, i.e. there are $i, i^{\prime} \in A$ with
$u_{i} \cdot x_{i^{\prime}} \geq(2+\epsilon) u_{i} \cdot x_{i}$. Now exchange a δ fraction of x_{i} and $x_{i^{\prime}}$.

Envy-Freeness of Nash Bargaining II

Proof. Assume otherwise, i.e. there are $i, i^{\prime} \in A$ with
$u_{i} \cdot x_{i^{\prime}} \geq(2+\epsilon) u_{i} \cdot x_{i}$. Now exchange a δ fraction of x_{i} and $x_{i^{\prime}}$.
Agent $i: u_{i} \cdot x_{i} \rightarrow(1-\delta) u_{i} \cdot x_{i}+\delta(2+\epsilon) u_{i} \cdot x_{i}$.

Envy-Freeness of Nash Bargaining II

Proof. Assume otherwise, i.e. there are $i, i^{\prime} \in A$ with
$u_{i} \cdot x_{i^{\prime}} \geq(2+\epsilon) u_{i} \cdot x_{i}$. Now exchange a δ fraction of x_{i} and $x_{i^{\prime}}$.
Agent $i: u_{i} \cdot x_{i} \rightarrow(1-\delta) u_{i} \cdot x_{i}+\delta(2+\epsilon) u_{i} \cdot x_{i}$.
Agent $i^{\prime}: u_{i^{\prime}} \cdot x_{i^{\prime}} \rightarrow(1-\delta) u_{i^{\prime}} \cdot x_{i^{\prime}}$.

Envy-Freeness of Nash Bargaining II

Proof. Assume otherwise, i.e. there are $i, i^{\prime} \in A$ with
$u_{i} \cdot x_{i^{\prime}} \geq(2+\epsilon) u_{i} \cdot x_{i}$. Now exchange a δ fraction of x_{i} and $x_{i^{\prime}}$.
Agent i : $u_{i} \cdot x_{i} \rightarrow(1-\delta) u_{i} \cdot x_{i}+\delta(2+\epsilon) u_{i} \cdot x_{i}$.
Agent $i^{\prime}: u_{i^{\prime}} \cdot x_{i^{\prime}} \rightarrow(1-\delta) u_{i^{\prime}} \cdot x_{i^{\prime}}$.
Product of utilities changes by factor

$$
(1-\delta+\delta(2+\epsilon))(1-\delta)
$$

Envy-Freeness of Nash Bargaining II

Proof. Assume otherwise, i.e. there are $i, i^{\prime} \in A$ with
$u_{i} \cdot x_{i^{\prime}} \geq(2+\epsilon) u_{i} \cdot x_{i}$. Now exchange a δ fraction of x_{i} and $x_{i^{\prime}}$.
Agent $i: u_{i} \cdot x_{i} \rightarrow(1-\delta) u_{i} \cdot x_{i}+\delta(2+\epsilon) u_{i} \cdot x_{i}$.
Agent $i^{\prime}: u_{i^{\prime}} \cdot x_{i^{\prime}} \rightarrow(1-\delta) u_{i^{\prime}} \cdot x_{i^{\prime}}$.
Product of utilities changes by factor

$$
(1-\delta+\delta(2+\epsilon))(1-\delta)
$$

Positive derivative at $\delta=0$, so x was not optimal!

Envy-Freeness of Nash Bargaining III

Theorem (Tröbst, Vazirani 2024)
If x is within $(1+\epsilon)$ of an optimum Nash bargaining point, then x is $(2+3 \sqrt{\epsilon})$-envy-free.

Envy-Freeness of Nash Bargaining III

Theorem (Tröbst, Vazirani 2024)
If x is within $(1+\epsilon)$ of an optimum Nash bargaining point, then x is $(2+3 \sqrt{\epsilon})$-envy-free.

Theorem (Panageas, Tröbst, Vazirani 2021)
A $(1+\epsilon)$-approximate Nash bargaining point can be found in polynomial time (and efficient in practice).

Conclusion

This mostly resolves the question of EF+PO allocations in one-sided cardinal-utility matching markets.

Conclusion

This mostly resolves the question of EF+PO allocations in one-sided cardinal-utility matching markets.

- Can we beat 2-EF + PO?

Conclusion

This mostly resolves the question of EF+PO allocations in one-sided cardinal-utility matching markets.

- Can we beat 2-EF + PO?
- Can we get $1-\mathrm{EF}+\alpha-\mathrm{PO}$?

Conclusion

This mostly resolves the question of EF+PO allocations in one-sided cardinal-utility matching markets.

- Can we beat 2-EF + PO?
- Can we get 1-EF $+\alpha-\mathrm{PO}$?
- What about two-sided markets?

THANK YOUR FOR LISTENING!

