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Hylland-Zeckhauser Scheme

The Hylland-Zeckhauser scheme (Hylland, Zeckhauser 1979)
works in four steps:

1. Make the goods divisible by splitting them into probability
shares.

2. Give every agent 1 unit of fake currency.
3. Find a market equilibrium in the resulting market.
4. Run a lottery based on the equilibrium allocation using the
Birkhoff-von-Neumann theorem.
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Formal Setup

Given

• agents 𝐴 = {1, … , 𝑛},
• goods 𝐺 = {1, … , 𝑛}, and
• cardinal utilities 𝑢𝑖𝑗 ∈ ℝ≥0 for all 𝑖 ∈ 𝐴, 𝑗 ∈ 𝐺

an HZ equilibrium consists of an allocation (𝑥𝑖𝑗)𝑖∈𝐴,𝑗∈𝐺 and
non-negative prices (𝑝𝑗)𝑗∈𝐺 such that

• 𝑥 is a fractional perfect matching,
• each agent 𝑖 spends at most their budget, i.e.

∑𝑗∈𝐺 𝑝𝑗𝑥𝑖𝑗 ≤ 1, and
• each agent gets a cheapest optimal bundle.
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Cheapest Optimal Bundles

In HZ, agents get utility-maximizing bundles of goods at market
prices. If there are multiple optimal bundles, pick a cheapest
one.

𝑢 𝑖1
= 6

𝑢𝑖2 = 4.5

𝑢𝑖3 = 2

𝑝1 = 2

𝑝2 = 1.5

𝑝3 = 0.5
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Properties of the Hylland-Zeckhauser Scheme

Allocations generated by the HZ scheme have several desirable
properties. They are

• fair in the sense of envy-freeness,
• efficient in the sense of Pareto-optimality, and
• strategy-proof in the sense of incentive compatibility in the
large.
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Envy-Freeness

Let 𝑥 be some allocation (i.e. fractional perfect matching).

Definition
Envy-Free For agents 𝑖, 𝑖′ - we say 𝑖 envies 𝑖′ if

∑
𝑗∈𝐺

𝑢𝑖𝑗𝑥𝑖𝑗 < ∑
𝑗∈𝐺

𝑢𝑖𝑗𝑥𝑖′𝑗.

𝑥 is envy-free if no agent envies any other agent.

In other words: no agent thinks that another agent got a better
bundle than they did.
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Pareto-Optimal

Let 𝑥 be some allocation (i.e. fractional perfect matching).

Definition
Pareto-Optimal For another allocation 𝑥′, we say that 𝑥′ is
Pareto-better than 𝑥 if

∑
𝑗∈𝐺

𝑢𝑖𝑗𝑥′
𝑖𝑗 ≥ ∑

𝑗∈𝐺
𝑢𝑖𝑗𝑥𝑖𝑗

for all agents 𝑖 and the inequality is strict for at least one agent.
𝑥 is Pareto-optimal if there is no Pareto-better allocation.

In other words: there is no way to improve one agent without
making another agent worse off.
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A Solved Problem?

In some sense, this has been considered a solved problem:

• Hylland and Zeckhauser proved that equilibria always exist,
• we cannot really do better on strategy-proofness (Zhou
1990), and

• there is a general belief that agents can find market
equilibria via trading.

The fair division community has largely moved on to other
settings. But this problem is far from solved!
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Intractibility and Impossibility
Results



Computing HZ Equilibria

The HZ scheme depends on the ability to compute an HZ
equilibrium. So what is the state of the art?

• Original proof (1979) relies on Kakutani fixed-point theorem
(not constructive).

• Polynomial time algorithm for constant number of agents
or goods (Alaei, Khalilabadi, Tardos 2017).

• Polynomial time algorithm for bi-valued utilities (Vazirani,
Yannakakis 2020).
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Computation of Market Equilibria

There has been a lot of progress on the computation of market
equilibria in other settings (e.g. Fisher, Arrow-Debreu, etc.).

So why is there no progress for HZ? This question was posed by
Vazirani and Yannakakis (2020) who showed:

• There exists an example (𝑛 = 4) with rational utilities,
where there is a unique HZ equilibrium which is irrational.

• Finding an HZ equilibrium is in the complexity class FIXP.
• Finding an approximate HZ equilibrium is in the complexity
class PPAD.
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The Class PPAD

Problems in the class PPAD (Polynomial Parity Argument on
Digraphs) can be reduced to a kind of path-following problem in
an exponentially large directed graph:

𝑠

𝑡
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PPAD-Hardness

Theorem (Chen, Chen, Peng, Yannakakis 2022)
The problem of computing an 𝜖-approximate HZ-equilibrium is
PPAD-hard when 𝜖 = 1/𝑛𝑐 for any constant 𝑐 > 0.

This means that computing HZ-equilibria is as hard as

• computing general Nash-equilibria,
• computing Fisher or Arrow-Debreu market equilibria with
non-linear utilities,

• computational versions of Kakutani’s / Brouwer’s
fixed-point theorems,

• etc.
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Consequences

The consequences of this are:

• executing the HZ scheme as a centralized mechanism is
intractible and

• if we let agents trade amongst themselves there is no
reason to believe they will reach an equilibrium.

From a computational perspective, the problem that Hylland
and Zeckhauser solved in 1979 is once again open!
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Conclusion

“In my opinion, if the theorem that Nash equilibria exist is
considered relevant to debates about (say) free markets versus
government intervention, then the theorem that finding those
equilibria is PPAD-complete should be considered relevant also.”

– Scott Aaronson (Why Philosophers Should Care About
Computational Complexity)
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A Path Forward



Returning to Axioms

Let us return to the three basic properties that we want:

• Fairness (ideally envy-free)
• Efficiency (ideally Pareto-optimal)
• Strategy-proofness (ideally DSIC)
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Polynomial Time Mechanisms

So what can be achieved in polynomial time?

• Fairness + strategy-proofness: assign goods uniformly to
everyone (envy-free, DSIC, 1/𝑛-Pareto-optimal).

• Efficiency + strategy-proofness: money-burning algorithm
by Abebe, Cole, Gkatzelis, Hartline 2020 (DSIC,
𝜔(2−2√log𝑛)-Pareto-optimal).

• Fairness + efficiency: ???
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Fairness and Efficiency

Theorem
There always exists a rational allocation which is envy-free
and Pareto-optimal. Moreover, such an allocation can be
found in 𝑂(4𝑛2 ⋅ poly(size(𝑢))) time using standard
polyhedral algorithms.

Compared to HZ:

• HZ-equilibria can be irrational and
• the best-known algorithm to find them uses algebraic cell
decomposition which takes at least 𝜔(𝑛5𝑛2) time.
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Pareto-Optimal and Envy-Free Solutions

𝑢1

𝑢2

0
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Nash Bargaining



Nash Bargaining Point

For a solution concept which is polynomial time computable, we
can turn to Nash bargaining.

Definition
Let 𝑈 be the set of utility vectors achievable by fractional
matchings. The Nash bargaining point is

argmax
𝑢∈𝑈

∏
𝑖∈𝐴

𝑢𝑖.
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Fairness of Nash Bargaining

Nash bargaining points have nice properties in general such as
Pareto-optimality. But what about fairness?

1

2

0

1

Not envy free! This also shows that Nash bargaining is not
incentive compatible!
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Fairness of Nash Bargaining II

Still, Nash bargaining could be considered fair. It is

• symmetric, i.e. treats equal agents equally,
• proportionally fair, i.e. increasing one agent’s utility by 2𝑥
must reduce other agents utilities by 0.5𝑥, and

• 1
2-equal-share fair, i.e. every agent gets at least half of their
average utility (Panageas, Tröbst, Vazirani 2022).
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Nash Bargaining Convex Program

Big advantage: Nash bargaining is a convex program!

max𝑥 ∑
𝑖∈𝐴

log(𝑢𝑖(𝑥))

s.t. ∑
𝑖∈𝐴

𝑥𝑖𝑗 ≤ 1 ∀𝑗 ∈ 𝐺,

∑
𝑗∈𝐴

𝑥𝑖𝑗 ≤ 1 ∀𝑖 ∈ 𝐴,

𝑥 ≥ 0.

So we can compute this solution in polynomial time!
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Efficient Computation

Theorem (Panageas, Tröbst, Vazirani 2022)
We can compute an 𝜖-approximate Nash bargaining solution
after 𝑂 (𝑛 log𝑛

𝜖2 ) iterations of a multiplicative-weights type
algorithm. Each iteration can be carried out in 𝑂(𝑛2) time.

Theorem (Panageas, Tröbst, Vazirani 2022)
We can compute an 𝜖-approximate Nash bargaining solution
after 𝑂 (𝑛3𝜅2

𝜖 ) iterations of a conditional gradient type
algorithm. Each iteration consists of computing a max-weight
bipartite matching (𝑂(𝑛3) time).

23



Extensibility of Nash Bargaining

Nash bargaining can also be extended to other settings:

• Two-sided matching markets
• There are extensions of HZ (see Echenique, Miralles, Zhang
2020) but they do not have desirable properties.

• Envy-free and Pareto-optimal are incompatible (Tröbst,
Vazirani 2023).

• Exchange markets
• HZ does not exist (Hylland, Zeckhauser 1979), even under
strong assumptions (Garg, Tröbst, Vazirani 2022).

• More general utilities
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Conclusion



Future Work

Where does this leave us? We have

• HZ with excellent fairness and efficiency properties, which
is hard to compute in theory and practice,

• rational envy-free and Pareto-optimal solutions which are
easier to compute but still exponential time, and

• Nash bargaining, which is easy to compute and efficient but
has much weaker fairness properties.
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Open Problems

This motivates some exciting open problems:

• Is finding an envy-free and Pareto-optimal solution
PPAD-hard? Or is there a sub-exponential algorithm?

• Find a polynomial time algorithm which is 𝛼-envy-free and
𝛽-Pareto-optimal such that 1

𝛼𝛽 ∈ 𝑜(𝑛).

• Are there natural dynamics (ala tatonnement) which
converge to the Nash bargaining point?

• What can be said about extensions where HZ does not
exist?
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Thank your for listening!
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