The InTRACTIBILITY OF HYLLAND-ZECKHAUSER AND ITS AFTERMATH

Thorben Tröbst
Theory Seminar, October 13, 2023
Department of Computer Science, University of California, Irvine

The HyLLANd-Zeckhauser Scheme

Problem Setting

Problem Setting

HyLLAND-Zeckhauser Scheme

The Hylland-Zeckhauser scheme (Hylland, Zeckhauser 1979) works in four steps:

HyLLAND-ZECKHAUSER SCHEME

The Hylland-Zeckhauser scheme (Hylland, Zeckhauser 1979) works in four steps:

1. Make the goods divisible by splitting them into probability shares.

HyLLANd-Zeckhauser Scheme

The Hylland-Zeckhauser scheme (Hylland, Zeckhauser 1979) works in four steps:

1. Make the goods divisible by splitting them into probability shares.
2. Give every agent 1 unit of fake currency.

HyLLANd-Zeckhauser Scheme

The Hylland-Zeckhauser scheme (Hylland, Zeckhauser 1979) works in four steps:

1. Make the goods divisible by splitting them into probability shares.
2. Give every agent 1 unit of fake currency.
3. Find a market equilibrium in the resulting market.

HyLLANd-Zeckhauser Scheme

The Hylland-Zeckhauser scheme (Hylland, Zeckhauser 1979) works in four steps:

1. Make the goods divisible by splitting them into probability shares.
2. Give every agent 1 unit of fake currency.
3. Find a market equilibrium in the resulting market.
4. Run a lottery based on the equilibrium allocation using the Birkhoff-von-Neumann theorem.

Formal Setup

Given

FORMAL SETUP

Given

- agents $A=\{1, \ldots, n\}$,

Formal Setup

Given

- agents $A=\{1, \ldots, n\}$,
- goods $G=\{1, \ldots, n\}$, and

Formal Setup

Given

- agents $A=\{1, \ldots, n\}$,
- goods $G=\{1, \ldots, n\}$, and
- cardinal utilities $u_{i j} \in \mathbb{R}_{\geq 0}$ for all $i \in A, j \in G$

Formal Setup

Given

- agents $A=\{1, \ldots, n\}$,
- goods $G=\{1, \ldots, n\}$, and
- cardinal utilities $u_{i j} \in \mathbb{R}_{\geq 0}$ for all $i \in A, j \in G$ an HZ equilibrium consists of an allocation $\left(x_{i j}\right)_{i \in A, j \in G}$ and non-negative prices $\left(p_{j}\right)_{j \in G}$ such that

Formal Setup

Given

- agents $A=\{1, \ldots, n\}$,
- goods $G=\{1, \ldots, n\}$, and
- cardinal utilities $u_{i j} \in \mathbb{R}_{\geq 0}$ for all $i \in A, j \in G$
an HZ equilibrium consists of an allocation $\left(x_{i j}\right)_{i \in A, j \in G}$ and non-negative prices $\left(p_{j}\right)_{j \in G}$ such that
- x is a fractional perfect matching,

Formal Setup

Given

- agents $A=\{1, \ldots, n\}$,
- goods $G=\{1, \ldots, n\}$, and
- cardinal utilities $u_{i j} \in \mathbb{R}_{\geq 0}$ for all $i \in A, j \in G$
an HZ equilibrium consists of an allocation $\left(x_{i j}\right)_{i \in A, j \in G}$ and non-negative prices $\left(p_{j}\right)_{j \in G}$ such that
- x is a fractional perfect matching,
- each agent i spends at most their budget, i.e. $\sum_{j \in G} p_{j} x_{i j} \leq 1$, and

Formal Setup

Given

- agents $A=\{1, \ldots, n\}$,
- goods $G=\{1, \ldots, n\}$, and
- cardinal utilities $u_{i j} \in \mathbb{R}_{\geq 0}$ for all $i \in A, j \in G$
an HZ equilibrium consists of an allocation $\left(x_{i j}\right)_{i \in A, j \in G}$ and non-negative prices $\left(p_{j}\right)_{j \in G}$ such that
- x is a fractional perfect matching,
- each agent i spends at most their budget, i.e. $\sum_{j \in G} p_{j} x_{i j} \leq 1$, and
- each agent gets a cheapest optimal bundle.

Cheapest Optimal Bundles

In HZ , agents get utility-maximizing bundles of goods at market prices. If there are multiple optimal bundles, pick a cheapest one.

Cheapest Optimal Bundles

In HZ , agents get utility-maximizing bundles of goods at market prices. If there are multiple optimal bundles, pick a cheapest one.

$$
x_{i 1}=0.5, x_{i 2}=0, x_{i 3}=0 \Rightarrow \mathbf{u}_{\mathrm{i}}=3
$$

Cheapest Optimal Bundles

In HZ , agents get utility-maximizing bundles of goods at market prices. If there are multiple optimal bundles, pick a cheapest one.

$$
x_{i 1}=0, x_{i 2}=0 . \overline{6}, x_{i 3}=0 \Rightarrow \mathbf{u}_{\mathbf{i}}=3
$$

Cheapest Optimal Bundles

In HZ , agents get utility-maximizing bundles of goods at market prices. If there are multiple optimal bundles, pick a cheapest one.

$$
x_{i 1}=0, x_{i 2}=0, x_{i 3}=1 \Rightarrow \mathbf{u}_{\mathbf{i}}=2
$$

Cheapest Optimal Bundles

In HZ , agents get utility-maximizing bundles of goods at market prices. If there are multiple optimal bundles, pick a cheapest one.

$$
x_{i 1}=0, x_{i 2}=0.5, x_{i 3}=0.5 \Rightarrow \mathbf{u}_{\mathrm{i}}=3.25
$$

Cheapest Optimal Bundles

In HZ , agents get utility-maximizing bundles of goods at market prices. If there are multiple optimal bundles, pick a cheapest one.

Properties of the Hylland-Zeckhauser Scheme

Allocations generated by the HZ scheme have several desirable properties. They are

Properties of the Hylland-Zeckhauser Scheme

Allocations generated by the HZ scheme have several desirable properties. They are

- fair in the sense of envy-freeness,

Properties of the Hylland-Zeckhauser Scheme

Allocations generated by the HZ scheme have several desirable properties. They are

- fair in the sense of envy-freeness,
- efficient in the sense of Pareto-optimality, and

Properties of the Hylland-Zeckhauser Scheme

Allocations generated by the HZ scheme have several desirable properties. They are

- fair in the sense of envy-freeness,
- efficient in the sense of Pareto-optimality, and
- strategy-proof in the sense of incentive compatibility in the large.

Envy-Freeness

Let x be some allocation (i.e. fractional perfect matching).

Definition

Envy-Free For agents i, i^{\prime} - we say i envies i^{\prime} if

$$
\sum_{j \in G} u_{i j} x_{i j}<\sum_{j \in G} u_{i j} x_{i^{\prime} j} .
$$

x is envy-free if no agent envies any other agent.

Envy-Freeness

Let x be some allocation (i.e. fractional perfect matching).

Definition

Envy-Free For agents i, i^{\prime} - we say i envies i^{\prime} if

$$
\sum_{j \in G} u_{i j} x_{i j}<\sum_{j \in G} u_{i j} x_{i^{\prime} j} .
$$

x is envy-free if no agent envies any other agent.
In other words: no agent thinks that another agent got a better bundle than they did.

Pareto-Optimal

Let x be some allocation (ie. fractional perfect matching).

Definition

Pareto-Optimal For another allocation x^{\prime}, we say that x^{\prime} is Pareto-better than x if

$$
\sum_{j \in G} u_{i j} x_{i j}^{\prime} \geq \sum_{j \in G} u_{i j} x_{i j}
$$

for all agents i and the inequality is strict for at least one agent. x is Pareto-optimal if there is no Pareto-better allocation.

Pareto-Optimal

Let x be some allocation (i.e. fractional perfect matching).

Definition

Pareto-Optimal For another allocation x^{\prime}, we say that x^{\prime} is Pareto-better than x if

$$
\sum_{j \in G} u_{i j} x_{i j}^{\prime} \geq \sum_{j \in G} u_{i j} x_{i j}
$$

for all agents i and the inequality is strict for at least one agent. x is Pareto-optimal if there is no Pareto-better allocation.

In other words: there is no way to improve one agent without making another agent worse off.

A Solved Problem?

In some sense, this has been considered a solved problem:

A Solved Problem?

In some sense, this has been considered a solved problem:

- Hylland and Zeckhauser proved that equilibria always exist,

A Solved Problem?

In some sense, this has been considered a solved problem:

- Hylland and Zeckhauser proved that equilibria always exist,
- we cannot really do better on strategy-proofness (Zhou 1990), and

A Solved Problem?

In some sense, this has been considered a solved problem:

- Hylland and Zeckhauser proved that equilibria always exist,
- we cannot really do better on strategy-proofness (Zhou 1990), and
- there is a general belief that agents can find market equilibria via trading.

A Solved Problem?

In some sense, this has been considered a solved problem:

- Hylland and Zeckhauser proved that equilibria always exist,
- we cannot really do better on strategy-proofness (Zhou 1990), and
- there is a general belief that agents can find market equilibria via trading.

The fair division community has largely moved on to other settings. But this problem is far from solved!

INTRACTIBILITY AND IMPOSSIBILITY RESULTS

Computing HZ EQuILIBRIA

The HZ scheme depends on the ability to compute an HZ equilibrium. So what is the state of the art?

Computing HZ Equilibria

The HZ scheme depends on the ability to compute an HZ equilibrium. So what is the state of the art?

- Original proof (1979) relies on Kakutani fixed-point theorem (not constructive).

Computing HZ EquILIBRIA

The HZ scheme depends on the ability to compute an HZ equilibrium. So what is the state of the art?

- Original proof (1979) relies on Kakutani fixed-point theorem (not constructive).
- Polynomial time algorithm for constant number of agents or goods (Alaei, Khalilabadi, Tardos 2017).

Computing HZ EqUILIBRIA

The HZ scheme depends on the ability to compute an HZ equilibrium. So what is the state of the art?

- Original proof (1979) relies on Kakutani fixed-point theorem (not constructive).
- Polynomial time algorithm for constant number of agents or goods (Alaei, Khalilabadi, Tardos 2017).
- Polynomial time algorithm for bi-valued utilities (Vazirani, Yannakakis 2020).

Computation of Market Equilibria

There has been a lot of progress on the computation of market equilibria in other settings (e.g. Fisher, Arrow-Debreu, etc.).

Computation of Market Equilibria

There has been a lot of progress on the computation of market equilibria in other settings (e.g. Fisher, Arrow-Debreu, etc.).

So why is there no progress for HZ? This question was posed by Vazirani and Yannakakis (2020) who showed:

Computation of Market Equilibria

There has been a lot of progress on the computation of market equilibria in other settings (e.g. Fisher, Arrow-Debreu, etc.).

So why is there no progress for HZ? This question was posed by Vazirani and Yannakakis (2020) who showed:

- There exists an example ($n=4$) with rational utilities, where there is a unique HZ equilibrium which is irrational.

Computation of Market Equilibria

There has been a lot of progress on the computation of market equilibria in other settings (e.g. Fisher, Arrow-Debreu, etc.).

So why is there no progress for HZ? This question was posed by Vazirani and Yannakakis (2020) who showed:

- There exists an example ($n=4$) with rational utilities, where there is a unique HZ equilibrium which is irrational.
- Finding an HZ equilibrium is in the complexity class FIXP.

Computation of Market Equilibria

There has been a lot of progress on the computation of market equilibria in other settings (e.g. Fisher, Arrow-Debreu, etc.).

So why is there no progress for HZ? This question was posed by Vazirani and Yannakakis (2020) who showed:

- There exists an example ($n=4$) with rational utilities, where there is a unique HZ equilibrium which is irrational.
- Finding an HZ equilibrium is in the complexity class FIXP.
- Finding an approximate HZ equilibrium is in the complexity class PPAD.

The Class PPAD

Problems in the class PPAD (Polynomial Parity Argument on Digraphs) can be reduced to a kind of path-following problem in an exponentially large directed graph:

PPAD-HARDNESS

Theorem (Chen, Chen, Peng, Yannakakis 2022)
The problem of computing an ϵ-approximate $H Z$-equilibrium is PPAD-hard when $\epsilon=1 / n^{c}$ for any constant $c>0$.

PPAD-HARDNESS

Theorem (Chen, Chen, Peng, Yannakakis 2022)

The problem of computing an ϵ-approximate $H Z$-equilibrium is PPAD-hard when $\epsilon=1 / n^{c}$ for any constant $c>0$.

This means that computing HZ-equilibria is as hard as

- computing general Nash-equilibria,

PPAD-HARDNESS

Theorem (Chen, Chen, Peng, Yannakakis 2022)

The problem of computing an ϵ-approximate $H Z$-equilibrium is PPAD-hard when $\epsilon=1 / n^{c}$ for any constant $c>0$.

This means that computing HZ-equilibria is as hard as

- computing general Nash-equilibria,
- computing Fisher or Arrow-Debreu market equilibria with non-linear utilities,

PPAD-HARDNESS

Theorem (Chen, Chen, Peng, Yannakakis 2022)

The problem of computing an ϵ-approximate $H Z$-equilibrium is PPAD-hard when $\epsilon=1 / n^{c}$ for any constant $c>0$.

This means that computing HZ-equilibria is as hard as

- computing general Nash-equilibria,
- computing Fisher or Arrow-Debreu market equilibria with non-linear utilities,
- computational versions of Kakutani's / Brouwer's fixed-point theorems,

PPAD-HARDNESS

Theorem (Chen, Chen, Peng, Yannakakis 2022)

The problem of computing an ϵ-approximate $H Z$-equilibrium is PPAD-hard when $\epsilon=1 / n^{c}$ for any constant $c>0$.

This means that computing HZ-equilibria is as hard as

- computing general Nash-equilibria,
- computing Fisher or Arrow-Debreu market equilibria with non-linear utilities,
- computational versions of Kakutani's / Brouwer's fixed-point theorems,
- etc.

CONSEQUENCES

The consequences of this are:

Consequences

The consequences of this are:

- executing the HZ scheme as a centralized mechanism is intractible and

Consequences

The consequences of this are:

- executing the HZ scheme as a centralized mechanism is intractible and
- if we let agents trade amongst themselves there is no reason to believe they will reach an equilibrium.

Consequences

The consequences of this are:

- executing the HZ scheme as a centralized mechanism is intractible and
- if we let agents trade amongst themselves there is no reason to believe they will reach an equilibrium.

From a computational perspective, the problem that Hylland and Zeckhauser solved in 1979 is once again open!

Conclusion

"In my opinion, if the theorem that Nash equilibria exist is considered relevant to debates about (say) free markets versus government intervention, then the theorem that finding those equilibria is PPAD-complete should be considered relevant also."

- Scott Aaronson (Why Philosophers Should Care About Computational Complexity)

A PATH FORWARD

Returning to Axioms

Let us return to the three basic properties that we want:

Returning to Axioms

Let us return to the three basic properties that we want:

- Fairness (ideally envy-free)

Returning to Axioms

Let us return to the three basic properties that we want:

- Fairness (ideally envy-free)
- Efficiency (ideally Pareto-optimal)

Returning to Axioms

Let us return to the three basic properties that we want:

- Fairness (ideally envy-free)
- Efficiency (ideally Pareto-optimal)
- Strategy-proofness (ideally DSIC)

Polynomial Time Mechanisms

So what can be achieved in polynomial time?

Polynomial Time Mechanisms

So what can be achieved in polynomial time?

- Fairness + strategy-proofness: assign goods uniformly to everyone (envy-free, DSIC, 1/n-Pareto-optimal).

Polynomial Time Mechanisms

So what can be achieved in polynomial time?

- Fairness + strategy-proofness: assign goods uniformly to everyone (envy-free, DSIC, 1/n-Pareto-optimal).
- Efficiency + strategy-proofness: money-burning algorithm by Abebe, Cole, Gkatzelis, Hartline 2020 (DSIC, $\omega\left(2^{-2 \sqrt{\log n}}\right)$-Pareto-optimal).

Polynomial Time Mechanisms

So what can be achieved in polynomial time?

- Fairness + strategy-proofness: assign goods uniformly to everyone (envy-free, DSIC, 1/n-Pareto-optimal).
- Efficiency + strategy-proofness: money-burning algorithm by Abebe, Cole, Gkatzelis, Hartline 2020 (DSIC, $\omega\left(2^{-2 \sqrt{\log n}}\right)$-Pareto-optimal).
- Fairness + efficiency: ???

FAIRNESS AND EFFICIENCY

Theorem

There always exists a rational allocation which is envy-free and Pareto-optimal. Moreover, such an allocation can be found in $O\left(4^{n^{2}} \cdot \operatorname{poly}(\operatorname{size}(u))\right)$ time using standard polyhedral algorithms.

FAIRNESS AND EfFICIENCY

Theorem

There always exists a rational allocation which is envy-free and Pareto-optimal. Moreover, such an allocation can be found in $O\left(4^{n^{2}} \cdot \operatorname{poly}(\operatorname{size}(u))\right)$ time using standard polyhedral algorithms.

Compared to HZ:

- HZ-equilibria can be irrational and

Fairness and Efficiency

Theorem

There always exists a rational allocation which is envy-free and Pareto-optimal. Moreover, such an allocation can be found in $O\left(4^{n^{2}} \cdot \operatorname{poly}(\operatorname{size}(u))\right)$ time using standard polyhedral algorithms.

Compared to HZ:

- HZ-equilibria can be irrational and
- the best-known algorithm to find them uses algebraic cell decomposition which takes at least $\omega\left(n^{5 n^{2}}\right)$ time.

Pareto-Optimal and Envy-Free Solutions

Pareto-Optimal and Envy-Free Solutions

Pareto-Optimal and Envy-Free Solutions

NASH BARGAINING

Nash Bargaining Point

For a solution concept which is polynomial time computable, we can turn to Nash bargaining.

Nash Bargaining Point

For a solution concept which is polynomial time computable, we can turn to Nash bargaining.

Definition

Let U be the set of utility vectors achievable by fractional matchings. The Nash bargaining point is

Falrness of Nash Bargaining

Nash bargaining points have nice properties in general such as Pareto-optimality. But what about fairness?

Fairness of Nash Bargaining

Nash bargaining points have nice properties in general such as Pareto-optimality. But what about fairness?

Not envy free! This also shows that Nash bargaining is not incentive compatible!

FAIRNESS OF NASH BARGAINING II

Still, Nash bargaining could be considered fair. It is

Falrness of Nash Bargaining II

Still, Nash bargaining could be considered fair. It is

- symmetric, i.e. treats equal agents equally,

Falrness of Nash Bargaining II

Still, Nash bargaining could be considered fair. It is

- symmetric, i.e. treats equal agents equally,
- proportionally fair, i.e. increasing one agent's utility by $2 x$ must reduce other agents utilities by $0.5 x$, and

Falrness of Nash Bargaining II

Still, Nash bargaining could be considered fair. It is

- symmetric, i.e. treats equal agents equally,
- proportionally fair, i.e. increasing one agent's utility by $2 x$ must reduce other agents utilities by $0.5 x$, and
- $\frac{1}{2}$-equal-share fair, i.e. every agent gets at least half of their average utility (Panageas, Tröbst, Vazirani 2022).

Nash Bargaining Convex Program

Big advantage: Nash bargaining is a convex program!

$$
\begin{array}{ll}
\max _{x} & \sum_{i \in A} \log \left(u_{i}(x)\right) \\
\text { s.t. } & \sum_{i \in A} x_{i j} \leq 1 \quad \forall j \in G, \\
& \sum_{j \in A} x_{i j} \leq 1 \quad \forall i \in A, \\
& x \geq 0
\end{array}
$$

Nash Bargaining Convex Program

Big advantage: Nash bargaining is a convex program!

$$
\begin{array}{ll}
\max _{x} & \sum_{i \in A} \log \left(u_{i}(x)\right) \\
\text { s.t. } & \sum_{i \in A} x_{i j} \leq 1 \quad \forall j \in G, \\
& \sum_{j \in A} x_{i j} \leq 1 \quad \forall i \in A, \\
& x \geq 0 .
\end{array}
$$

So we can compute this solution in polynomial time!

Efficient Computation

Theorem (Panageas, Tröbst, Vazirani 2022)

We can compute an e-approximate Nash bargaining solution after $O\left(\frac{n \log n}{\epsilon^{2}}\right)$ iterations of a multiplicative-weights type algorithm. Each iteration can be carried out in $O\left(n^{2}\right)$ time.

Theorem (Panageas, Tröbst, Vazirani 2022)

We can compute an ϵ-approximate Nash bargaining solution after $O\left(\frac{n^{3} \kappa^{2}}{\epsilon}\right)$ iterations of a conditional gradient type algorithm. Each iteration consists of computing a max-weight bipartite matching $\left(O\left(n^{3}\right)\right.$ time $)$.

Extensibility of Nash Bargaining

Nash bargaining can also be extended to other settings:

Extensibility of Nash Bargaining

Nash bargaining can also be extended to other settings:

- Two-sided matching markets
- There are extensions of HZ (see Echenique, Miralles, Zhang 2020) but they do not have desirable properties.
- Envy-free and Pareto-optimal are incompatible (Tröbst, Vazirani 2023).

Extensibility of Nash Bargaining

Nash bargaining can also be extended to other settings:

- Two-sided matching markets
- There are extensions of HZ (see Echenique, Miralles, Zhang 2020) but they do not have desirable properties.
- Envy-free and Pareto-optimal are incompatible (Tröbst, Vazirani 2023).
- Exchange markets
- HZ does not exist (Hylland, Zeckhauser 1979), even under strong assumptions (Garg, Tröbst, Vazirani 2022).

Extensibility of Nash Bargaining

Nash bargaining can also be extended to other settings:

- Two-sided matching markets
- There are extensions of HZ (see Echenique, Miralles, Zhang 2020) but they do not have desirable properties.
- Envy-free and Pareto-optimal are incompatible (Tröbst, Vazirani 2023).
- Exchange markets
- HZ does not exist (Hylland, Zeckhauser 1979), even under strong assumptions (Garg, Tröbst, Vazirani 2022).
- More general utilities

CONCLUSION

FUture Work

Where does this leave us? We have

Future Work

Where does this leave us? We have

- HZ with excellent fairness and efficiency properties, which is hard to compute in theory and practice,

Future Work

Where does this leave us? We have

- HZ with excellent fairness and efficiency properties, which is hard to compute in theory and practice,
- rational envy-free and Pareto-optimal solutions which are easier to compute but still exponential time, and

Future Work

Where does this leave us? We have

- HZ with excellent fairness and efficiency properties, which is hard to compute in theory and practice,
- rational envy-free and Pareto-optimal solutions which are easier to compute but still exponential time, and
- Nash bargaining, which is easy to compute and efficient but has much weaker fairness properties.

Open Problems

This motivates some exciting open problems:

Open Problems

This motivates some exciting open problems:

- Is finding an envy-free and Pareto-optimal solution PPAD-hard? Or is there a sub-exponential algorithm?

Open Problems

This motivates some exciting open problems:

- Is finding an envy-free and Pareto-optimal solution PPAD-hard? Or is there a sub-exponential algorithm?
- Find a polynomial time algorithm which is α-envy-free and β-Pareto-optimal such that $\frac{1}{\alpha \beta} \in o(n)$.

Open Problems

This motivates some exciting open problems:

- Is finding an envy-free and Pareto-optimal solution PPAD-hard? Or is there a sub-exponential algorithm?
- Find a polynomial time algorithm which is α-envy-free and β-Pareto-optimal such that $\frac{1}{\alpha \beta} \in o(n)$.
- Are there natural dynamics (ala tatonnement) which converge to the Nash bargaining point?

Open Problems

This motivates some exciting open problems:

- Is finding an envy-free and Pareto-optimal solution PPAD-hard? Or is there a sub-exponential algorithm?
- Find a polynomial time algorithm which is α-envy-free and β-Pareto-optimal such that $\frac{1}{\alpha \beta} \in o(n)$.
- Are there natural dynamics (ala tatonnement) which converge to the Nash bargaining point?
- What can be said about extensions where HZ does not exist?

THANK YOUR FOR LISTENING!

