
Multiplicative Auction Algorithm for
Approximate Maximum Weight Bipartite
Matching1

Thorben Tröbst
Theory Seminar, February 10, 2023

Department of Computer Science, University of California, Irvine

1by Da Wei Zheng and Monika Henzinger, to appear in IPCO 2023

Maximum Weight Bipartite Matching

1

Maximum Weight Bipartite Matching

3

1

Maximum Weight Bipartite Matching

5

1

Maximum Weight Bipartite Matching

1

Algorithms for Matchings and Flows

• Classics:

• Hungarian method 𝑂(𝑛4) or 𝑂(𝑛3) time for Weighted
Bipartite Maximum Matching

• Gabow, Tarjan 𝑂(𝑚√𝑛 log(𝑛/𝜖)) for Weighted Bipartite
Maximum Matching

• More recent, near-linear time:
• Duan, Pettie 2014 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Maximum
Matching

• Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022 𝑂(𝑚1+𝑜(1))
for Max Flow

2

Algorithms for Matchings and Flows

• Classics:
• Hungarian method 𝑂(𝑛4) or 𝑂(𝑛3) time for Weighted
Bipartite Maximum Matching

• Gabow, Tarjan 𝑂(𝑚√𝑛 log(𝑛/𝜖)) for Weighted Bipartite
Maximum Matching

• More recent, near-linear time:
• Duan, Pettie 2014 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Maximum
Matching

• Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022 𝑂(𝑚1+𝑜(1))
for Max Flow

2

Algorithms for Matchings and Flows

• Classics:
• Hungarian method 𝑂(𝑛4) or 𝑂(𝑛3) time for Weighted
Bipartite Maximum Matching

• Gabow, Tarjan 𝑂(𝑚√𝑛 log(𝑛/𝜖)) for Weighted Bipartite
Maximum Matching

• More recent, near-linear time:
• Duan, Pettie 2014 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Maximum
Matching

• Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022 𝑂(𝑚1+𝑜(1))
for Max Flow

2

Algorithms for Matchings and Flows

• Classics:
• Hungarian method 𝑂(𝑛4) or 𝑂(𝑛3) time for Weighted
Bipartite Maximum Matching

• Gabow, Tarjan 𝑂(𝑚√𝑛 log(𝑛/𝜖)) for Weighted Bipartite
Maximum Matching

• More recent, near-linear time:

• Duan, Pettie 2014 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Maximum
Matching

• Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022 𝑂(𝑚1+𝑜(1))
for Max Flow

2

Algorithms for Matchings and Flows

• Classics:
• Hungarian method 𝑂(𝑛4) or 𝑂(𝑛3) time for Weighted
Bipartite Maximum Matching

• Gabow, Tarjan 𝑂(𝑚√𝑛 log(𝑛/𝜖)) for Weighted Bipartite
Maximum Matching

• More recent, near-linear time:
• Duan, Pettie 2014 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Maximum
Matching

• Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022 𝑂(𝑚1+𝑜(1))
for Max Flow

2

Algorithms for Matchings and Flows

• Classics:
• Hungarian method 𝑂(𝑛4) or 𝑂(𝑛3) time for Weighted
Bipartite Maximum Matching

• Gabow, Tarjan 𝑂(𝑚√𝑛 log(𝑛/𝜖)) for Weighted Bipartite
Maximum Matching

• More recent, near-linear time:
• Duan, Pettie 2014 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Maximum
Matching

• Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022 𝑂(𝑚1+𝑜(1))
for Max Flow

2

Results

Zheng and Henzinger achieve:

• (1 − 𝜖)-apx in 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Bipartite
Maximum Matching with a much simpler algorithm

• Algorithm is based on multiplicative weights but beats
traditional 𝜖−2 barrier

• Dynamic edge deletions and one-sided vertex insertions in
𝑂(𝜖−1 log(𝜖−1)) time per edge (amortized)

3

Results

Zheng and Henzinger achieve:

• (1 − 𝜖)-apx in 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Bipartite
Maximum Matching with a much simpler algorithm

• Algorithm is based on multiplicative weights but beats
traditional 𝜖−2 barrier

• Dynamic edge deletions and one-sided vertex insertions in
𝑂(𝜖−1 log(𝜖−1)) time per edge (amortized)

3

Results

Zheng and Henzinger achieve:

• (1 − 𝜖)-apx in 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Bipartite
Maximum Matching with a much simpler algorithm

• Algorithm is based on multiplicative weights but beats
traditional 𝜖−2 barrier

• Dynamic edge deletions and one-sided vertex insertions in
𝑂(𝜖−1 log(𝜖−1)) time per edge (amortized)

3

Results

Zheng and Henzinger achieve:

• (1 − 𝜖)-apx in 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Bipartite
Maximum Matching with a much simpler algorithm

• Algorithm is based on multiplicative weights but beats
traditional 𝜖−2 barrier

• Dynamic edge deletions and one-sided vertex insertions in
𝑂(𝜖−1 log(𝜖−1)) time per edge (amortized)

3

Primal and Dual LP

Recall the primal and dual LPs for Bipartite Maximum Weight
Matching on (𝐺 ∪ 𝐵, 𝐸).

max ∑
𝑒∈𝐸

𝑤𝑒𝑥𝑒

s.t. 𝑥(𝛿(𝑗)) ≤ 1 ∀𝑗 ∈ 𝐺,
𝑥(𝛿(𝑖)) ≤ 1 ∀𝑖 ∈ 𝐵,

𝑥 ≥ 0.

min ∑
𝑗∈𝐺

𝑝𝑗 + ∑
𝑖∈𝐵

𝑢𝑖

s.t. 𝑝𝑗 + 𝑢𝑖 ≥ 𝑤𝑖𝑗∀{𝑗, 𝑖} ∈ 𝐸,

𝑝 ≥ 0,
𝑞 ≥ 0.

4

Primal and Dual LP

Recall the primal and dual LPs for Bipartite Maximum Weight
Matching on (𝐺 ∪ 𝐵, 𝐸).

max ∑
𝑒∈𝐸

𝑤𝑒𝑥𝑒

s.t. 𝑥(𝛿(𝑗)) ≤ 1 ∀𝑗 ∈ 𝐺,
𝑥(𝛿(𝑖)) ≤ 1 ∀𝑖 ∈ 𝐵,

𝑥 ≥ 0.

min ∑
𝑗∈𝐺

𝑝𝑗 + ∑
𝑖∈𝐵

𝑢𝑖

s.t. 𝑝𝑗 + 𝑢𝑖 ≥ 𝑤𝑖𝑗∀{𝑗, 𝑖} ∈ 𝐸,

𝑝 ≥ 0,
𝑞 ≥ 0.

4

Complementary Slackness

Lemma (Complementary Slackness)
Let 𝑥 be a matching and 𝑝, 𝑢 dual variables such that:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If 𝑖 is matched to 𝑗 then 𝑤𝑖𝑗 = 𝑝𝑗 + 𝑢𝑖.
• For all {𝑖, 𝑗} ∈ 𝐸, 𝑝𝑗 + 𝑢𝑖 ≥ 𝑤𝑖𝑗.

Then 𝑥 is a maximum weight matching.

Proof. Complementary slackness.

5

Complementary Slackness

Lemma (Complementary Slackness)
Let 𝑥 be a matching and 𝑝, 𝑢 dual variables such that:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If 𝑖 is matched to 𝑗 then 𝑤𝑖𝑗 = 𝑝𝑗 + 𝑢𝑖.
• For all {𝑖, 𝑗} ∈ 𝐸, 𝑝𝑗 + 𝑢𝑖 ≥ 𝑤𝑖𝑗.

Then 𝑥 is a maximum weight matching.

Proof. Complementary slackness.

5

Approximate Complementary Slackness

Lemma (Approximate Complementary Slackness)
Let 𝑥 be a matching and 𝑝, 𝑞 dual variables such that:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If 𝑖 is matched to 𝑗 then 𝑤𝑖𝑗 = 𝑝𝑗 + 𝑢𝑖.
• For all {𝑖, 𝑗} ∈ 𝐸, 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗.

Then 𝑥 is a (1 − 𝜖)-approximate maximum weight matching.

6

Additive Auction Example

1

6

3

3

4

2

3

2

1

7

Additive Auction Example

𝑝3 = 0

𝑝2 = 0

𝑝1 = 0

𝑢3 = 0

𝑢2 = 0

𝑢1 = 0

1

6

3

3

4

2

3

2

1

7

Additive Auction Example

𝑝3 = 0

𝑝2 = 0

𝑝1 = 1

𝑢3 = 0

𝑢2 = 0

𝑢1 = 2

1

6

3

3

4

2

3

2

1

7

Additive Auction Example

𝑝3 = 0

𝑝2 = 0

𝑝1 = 2

𝑢3 = 0

𝑢2 = 4

𝑢1 = 0

1

6

3

3

4

2

3

2

1

7

Additive Auction Example

𝑝3 = 0

𝑝2 = 1

𝑝1 = 2

𝑢3 = 0

𝑢2 = 4

𝑢1 = 1

1

6

3

3

4

2

3

2

1

7

Additive Auction Example

𝑝3 = 1

𝑝2 = 1

𝑝1 = 2

𝑢3 = 3

𝑢2 = 4

𝑢1 = 1

1

6

3

3

4

2

3

2

1

7

Invariants

The auction algorithm automatically has the following
invariants:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If {𝑖, 𝑗} ∈ 𝑀, then 𝑝𝑗 + 𝑢𝑖 = 𝑤𝑖𝑗.
• If for some 𝑖, we have 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 for all 𝑗 at the
time that 𝑖 was matched, then this continues to hold until
the match is destroyed.

8

Invariants

The auction algorithm automatically has the following
invariants:

• If 𝑝𝑗 > 0, then 𝑗 is matched.

• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If {𝑖, 𝑗} ∈ 𝑀, then 𝑝𝑗 + 𝑢𝑖 = 𝑤𝑖𝑗.
• If for some 𝑖, we have 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 for all 𝑗 at the
time that 𝑖 was matched, then this continues to hold until
the match is destroyed.

8

Invariants

The auction algorithm automatically has the following
invariants:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.

• If {𝑖, 𝑗} ∈ 𝑀, then 𝑝𝑗 + 𝑢𝑖 = 𝑤𝑖𝑗.
• If for some 𝑖, we have 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 for all 𝑗 at the
time that 𝑖 was matched, then this continues to hold until
the match is destroyed.

8

Invariants

The auction algorithm automatically has the following
invariants:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If {𝑖, 𝑗} ∈ 𝑀, then 𝑝𝑗 + 𝑢𝑖 = 𝑤𝑖𝑗.

• If for some 𝑖, we have 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 for all 𝑗 at the
time that 𝑖 was matched, then this continues to hold until
the match is destroyed.

8

Invariants

The auction algorithm automatically has the following
invariants:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If {𝑖, 𝑗} ∈ 𝑀, then 𝑝𝑗 + 𝑢𝑖 = 𝑤𝑖𝑗.
• If for some 𝑖, we have 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 for all 𝑗 at the
time that 𝑖 was matched, then this continues to hold until
the match is destroyed.

8

Goals

We thus have the following goals:

• Ensure that 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds at the time of match.
• Ensure that 𝑝𝑗 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds for all 𝑖 which are
unmatched.

• Ensure that prices rise fast enough to get a good runtime.

9

Goals

We thus have the following goals:

• Ensure that 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds at the time of match.

• Ensure that 𝑝𝑗 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds for all 𝑖 which are
unmatched.

• Ensure that prices rise fast enough to get a good runtime.

9

Goals

We thus have the following goals:

• Ensure that 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds at the time of match.
• Ensure that 𝑝𝑗 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds for all 𝑖 which are
unmatched.

• Ensure that prices rise fast enough to get a good runtime.

9

Goals

We thus have the following goals:

• Ensure that 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds at the time of match.
• Ensure that 𝑝𝑗 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds for all 𝑖 which are
unmatched.

• Ensure that prices rise fast enough to get a good runtime.

9

Simplifying Assumptions

We can make some simplifying assumptions:

• 𝑤max
𝑤min

≤ 𝑛
𝜖

• Each 𝑤𝑖𝑗 is of the form (1 + 𝜖)𝑙𝑖𝑗 for some
0 ≤ 𝑙 ≤ 𝑙𝑜𝑔1+𝜖(𝑛/𝜖).

10

Simplifying Assumptions

We can make some simplifying assumptions:

• 𝑤max
𝑤min

≤ 𝑛
𝜖

• Each 𝑤𝑖𝑗 is of the form (1 + 𝜖)𝑙𝑖𝑗 for some
0 ≤ 𝑙 ≤ 𝑙𝑜𝑔1+𝜖(𝑛/𝜖).

10

Simplifying Assumptions

We can make some simplifying assumptions:

• 𝑤max
𝑤min

≤ 𝑛
𝜖

• Each 𝑤𝑖𝑗 is of the form (1 + 𝜖)𝑙𝑖𝑗 for some
0 ≤ 𝑙 ≤ 𝑙𝑜𝑔1+𝜖(𝑛/𝜖).

10

Multiplicative Auction

Algorithm 1: Multiplicative Auction
1 Create a list of pairs 𝑄.
2 For each {𝑖, 𝑗} ∈ 𝐸, add triples (𝑡, 𝑖, 𝑗), (𝑡 + 1, 𝑖, 𝑗), …, (𝑙𝑖𝑗, 𝑖, 𝑗) to

𝑄 where 𝑡 is maximal such that (1 + 𝜖)𝑙𝑖𝑗−𝑡 > 1
𝜖 .

3 Sort 𝑄 in non-increasing order using bucket sort.
4 For each 𝑖, let 𝑄𝑖 = {(𝑘, 𝑗) ∣ (𝑘, 𝑖, 𝑗) ∈ 𝑄}.
5 Call Match(𝑖) on unmatched 𝑖 until the matching stabilizes.

11

Match(𝑖)

Algorithm 2: Match(𝑖)
1 while 𝑄𝑖 is not empty do
2 Pop top element (𝑘, 𝑗) from 𝑄.
3 𝑢𝑖𝑗 ≔ 𝑤𝑖𝑗 − 𝑝𝑗

4 if 𝑢𝑖𝑗 ≥ (1 + 𝜖)𝑘 then
5 Match 𝑖 to 𝑗 (unmatching previous partner).
6 𝑝𝑗 ← 𝑝𝑗 + 𝜖𝑢𝑖𝑗

12

Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

1

6

3

3

4

2

3

2

1

13

Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

𝑝3 = 0

𝑝2 = 0

𝑝1 = 0 {(3, 1), (2, 1), (2, 2), …}

𝑢11 ≥ (1 + 𝜖)3

{(6, 1), (5, 1), (4, 1), …}

{(3, 2), (3, 3), (2, 2), …}

1

6

3

3

4

2

3

2

1

13

Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

𝑝3 = 0

𝑝2 = 0

𝑝1 ≈ 0.79 {(2, 1), (2, 2), (1, 1), …}

{(6, 1), (5, 1), (4, 1), …}

𝑢21 ≥ (1 + 𝜖)6

{(3, 2), (3, 3), (2, 2), …}

1

6

3

3

4

2

3

2

1

13

Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

𝑝3 = 0

𝑝2 = 0

𝑝1 ≈ 0.79 {(2, 1), (2, 2), (1, 1), …}

{(5, 1), (4, 1), (4, 2), …}

𝑢21 ≥ (1 + 𝜖)5

{(3, 2), (3, 3), (2, 2), …}

1

6

3

3

4

2

3

2

1

13

Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

𝑝3 = 0

𝑝2 = 0

𝑝1 ≈ 2.40 {(2, 1), (2, 2), (1, 1), …}

𝑢11 ≥ (1 + 𝜖)2

{(4, 1), (4, 2), (3, 1), …}

{(3, 2), (3, 3), (2, 2), …}

1

6

3

3

4

2

3

2

1

13

Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

𝑝3 = 0

𝑝2 = 0

𝑝1 ≈ 2.40 {(2, 2), (1, 1), (1, 2), …}

𝑢12 ≥ (1 + 𝜖)2

{(4, 1), (4, 2), (3, 1), …}

{(3, 2), (3, 3), (2, 2), …}

1

6

3

3

4

2

3

2

1

13

Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 2), (3, 3), (2, 2), …}

𝑢32 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

13

Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

13

Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(3, 3), (2, 2), (2, 3), …}

𝑢33 ≥ (1 + 𝜖)3

1

6

3

3

4

2

3

2

1

𝑝3 ≈ 0.79

𝑝2 ≈ 0.59

𝑝1 ≈ 2.40 {(1, 1), (1, 2), (1, 3), …}

{(4, 1), (4, 2), (3, 1), …}

{(2, 2), (2, 3), (1, 1), …}

1

6

3

3

4

2

3

2

1

13

Correctness

When (𝑘, 𝑗) gets removed from 𝑄𝑖, we know that 𝑢𝑖𝑗 < (1 + 𝜖)𝑘

from now on.

Because if 𝑖 is matched to 𝑗, 𝑢𝑖𝑗 ≤ (1 − 𝜖)(1 + 𝜖)𝑘+1.

Before 𝑖 gets matched to 𝑗, we know 𝑢𝑖𝑗 ≥ (1 + 𝜖)𝑘 for some 𝑘
and 𝑢𝑖𝑗′ < (1 + 𝜖)𝑘+1 for all 𝑗′ because all pairs (𝑘 + 1, 𝑗′) have
been removed.

So, after matching 𝑖 to 𝑗:

𝑢𝑖 + 𝑝𝑗′ = 𝑢𝑖𝑗 + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ ≥
1 − 𝜖
1 + 𝜖𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ = 𝑤𝑖𝑗′ − 2𝜖𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑤𝑖𝑗′.

14

Correctness

When (𝑘, 𝑗) gets removed from 𝑄𝑖, we know that 𝑢𝑖𝑗 < (1 + 𝜖)𝑘

from now on. Because if 𝑖 is matched to 𝑗, 𝑢𝑖𝑗 ≤ (1 − 𝜖)(1 + 𝜖)𝑘+1.

Before 𝑖 gets matched to 𝑗, we know 𝑢𝑖𝑗 ≥ (1 + 𝜖)𝑘 for some 𝑘
and 𝑢𝑖𝑗′ < (1 + 𝜖)𝑘+1 for all 𝑗′ because all pairs (𝑘 + 1, 𝑗′) have
been removed.

So, after matching 𝑖 to 𝑗:

𝑢𝑖 + 𝑝𝑗′ = 𝑢𝑖𝑗 + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ ≥
1 − 𝜖
1 + 𝜖𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ = 𝑤𝑖𝑗′ − 2𝜖𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑤𝑖𝑗′.

14

Correctness

When (𝑘, 𝑗) gets removed from 𝑄𝑖, we know that 𝑢𝑖𝑗 < (1 + 𝜖)𝑘

from now on. Because if 𝑖 is matched to 𝑗, 𝑢𝑖𝑗 ≤ (1 − 𝜖)(1 + 𝜖)𝑘+1.

Before 𝑖 gets matched to 𝑗, we know 𝑢𝑖𝑗 ≥ (1 + 𝜖)𝑘 for some 𝑘
and 𝑢𝑖𝑗′ < (1 + 𝜖)𝑘+1 for all 𝑗′ because all pairs (𝑘 + 1, 𝑗′) have
been removed.

So, after matching 𝑖 to 𝑗:

𝑢𝑖 + 𝑝𝑗′ = 𝑢𝑖𝑗 + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ ≥
1 − 𝜖
1 + 𝜖𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ = 𝑤𝑖𝑗′ − 2𝜖𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑤𝑖𝑗′.

14

Correctness

When (𝑘, 𝑗) gets removed from 𝑄𝑖, we know that 𝑢𝑖𝑗 < (1 + 𝜖)𝑘

from now on. Because if 𝑖 is matched to 𝑗, 𝑢𝑖𝑗 ≤ (1 − 𝜖)(1 + 𝜖)𝑘+1.

Before 𝑖 gets matched to 𝑗, we know 𝑢𝑖𝑗 ≥ (1 + 𝜖)𝑘 for some 𝑘
and 𝑢𝑖𝑗′ < (1 + 𝜖)𝑘+1 for all 𝑗′ because all pairs (𝑘 + 1, 𝑗′) have
been removed.

So, after matching 𝑖 to 𝑗:

𝑢𝑖 + 𝑝𝑗′ = 𝑢𝑖𝑗 + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ ≥
1 − 𝜖
1 + 𝜖𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ = 𝑤𝑖𝑗′ − 2𝜖𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑤𝑖𝑗′.

14

Correctness II

Assume 𝑖 is unmatched at the end, this means its 𝑄𝑖 is empty.

So for every 𝑗, we know 𝑢𝑖𝑗 < 𝜖𝑤𝑖𝑗 because we removed (𝑡, 𝑗) and
(1 + 𝜖)𝑡 < 𝜖(1 + 𝜖)𝑙𝑖𝑗 = 𝜖𝑤𝑖𝑗.

Thus:
𝑢𝑖 + 𝑝𝑗 = 𝑤𝑖𝑗 − 𝑢𝑖𝑗 ≥ (1 − 𝜖)𝑤𝑖𝑗. �

15

Correctness II

Assume 𝑖 is unmatched at the end, this means its 𝑄𝑖 is empty.

So for every 𝑗, we know 𝑢𝑖𝑗 < 𝜖𝑤𝑖𝑗 because we removed (𝑡, 𝑗) and
(1 + 𝜖)𝑡 < 𝜖(1 + 𝜖)𝑙𝑖𝑗 = 𝜖𝑤𝑖𝑗.

Thus:
𝑢𝑖 + 𝑝𝑗 = 𝑤𝑖𝑗 − 𝑢𝑖𝑗 ≥ (1 − 𝜖)𝑤𝑖𝑗. �

15

Correctness II

Assume 𝑖 is unmatched at the end, this means its 𝑄𝑖 is empty.

So for every 𝑗, we know 𝑢𝑖𝑗 < 𝜖𝑤𝑖𝑗 because we removed (𝑡, 𝑗) and
(1 + 𝜖)𝑡 < 𝜖(1 + 𝜖)𝑙𝑖𝑗 = 𝜖𝑤𝑖𝑗.

Thus:
𝑢𝑖 + 𝑝𝑗 = 𝑤𝑖𝑗 − 𝑢𝑖𝑗 ≥ (1 − 𝜖)𝑤𝑖𝑗. �

15

Runtime

Runtime is dominated by bucket sort on 𝑄, so we have two
questions:

• How many elements in 𝑄?
• For each edge, we add 𝑘 elements where 𝑘 is minimal such
that (1 + 𝜖)−𝑘 < 𝜖.

• So there are 𝑂(𝑚 log1+𝜖(𝜖−1)) = 𝑂(𝑚𝜖−1 log(𝜖−1))
elements.

• How many buckets?
• We assume 𝑤max

𝑤min
≤ 𝑛

𝜖 and the smallest weight in 𝑄 will be
𝜖𝑤min.

• So there are 𝑂(log1+𝜖(𝑛
𝜖2)) buckets.

16

Runtime

Runtime is dominated by bucket sort on 𝑄, so we have two
questions:

• How many elements in 𝑄?

• For each edge, we add 𝑘 elements where 𝑘 is minimal such
that (1 + 𝜖)−𝑘 < 𝜖.

• So there are 𝑂(𝑚 log1+𝜖(𝜖−1)) = 𝑂(𝑚𝜖−1 log(𝜖−1))
elements.

• How many buckets?
• We assume 𝑤max

𝑤min
≤ 𝑛

𝜖 and the smallest weight in 𝑄 will be
𝜖𝑤min.

• So there are 𝑂(log1+𝜖(𝑛
𝜖2)) buckets.

16

Runtime

Runtime is dominated by bucket sort on 𝑄, so we have two
questions:

• How many elements in 𝑄?
• For each edge, we add 𝑘 elements where 𝑘 is minimal such
that (1 + 𝜖)−𝑘 < 𝜖.

• So there are 𝑂(𝑚 log1+𝜖(𝜖−1)) = 𝑂(𝑚𝜖−1 log(𝜖−1))
elements.

• How many buckets?
• We assume 𝑤max

𝑤min
≤ 𝑛

𝜖 and the smallest weight in 𝑄 will be
𝜖𝑤min.

• So there are 𝑂(log1+𝜖(𝑛
𝜖2)) buckets.

16

Runtime

Runtime is dominated by bucket sort on 𝑄, so we have two
questions:

• How many elements in 𝑄?
• For each edge, we add 𝑘 elements where 𝑘 is minimal such
that (1 + 𝜖)−𝑘 < 𝜖.

• So there are 𝑂(𝑚 log1+𝜖(𝜖−1)) = 𝑂(𝑚𝜖−1 log(𝜖−1))
elements.

• How many buckets?
• We assume 𝑤max

𝑤min
≤ 𝑛

𝜖 and the smallest weight in 𝑄 will be
𝜖𝑤min.

• So there are 𝑂(log1+𝜖(𝑛
𝜖2)) buckets.

16

Runtime

Runtime is dominated by bucket sort on 𝑄, so we have two
questions:

• How many elements in 𝑄?
• For each edge, we add 𝑘 elements where 𝑘 is minimal such
that (1 + 𝜖)−𝑘 < 𝜖.

• So there are 𝑂(𝑚 log1+𝜖(𝜖−1)) = 𝑂(𝑚𝜖−1 log(𝜖−1))
elements.

• How many buckets?

• We assume 𝑤max
𝑤min

≤ 𝑛
𝜖 and the smallest weight in 𝑄 will be

𝜖𝑤min.
• So there are 𝑂(log1+𝜖(𝑛

𝜖2)) buckets.

16

Runtime

Runtime is dominated by bucket sort on 𝑄, so we have two
questions:

• How many elements in 𝑄?
• For each edge, we add 𝑘 elements where 𝑘 is minimal such
that (1 + 𝜖)−𝑘 < 𝜖.

• So there are 𝑂(𝑚 log1+𝜖(𝜖−1)) = 𝑂(𝑚𝜖−1 log(𝜖−1))
elements.

• How many buckets?
• We assume 𝑤max

𝑤min
≤ 𝑛

𝜖 and the smallest weight in 𝑄 will be
𝜖𝑤min.

• So there are 𝑂(log1+𝜖(𝑛
𝜖2)) buckets.

16

Runtime

Runtime is dominated by bucket sort on 𝑄, so we have two
questions:

• How many elements in 𝑄?
• For each edge, we add 𝑘 elements where 𝑘 is minimal such
that (1 + 𝜖)−𝑘 < 𝜖.

• So there are 𝑂(𝑚 log1+𝜖(𝜖−1)) = 𝑂(𝑚𝜖−1 log(𝜖−1))
elements.

• How many buckets?
• We assume 𝑤max

𝑤min
≤ 𝑛

𝜖 and the smallest weight in 𝑄 will be
𝜖𝑤min.

• So there are 𝑂(log1+𝜖(𝑛
𝜖2)) buckets.

16

Dynamic Algorithms

The algorithm can easily be made dynamic by maintaining all 𝑄𝑖:

• Edge deletions
• If a non-matching edge was deleted, nothing changes.
• Otherwise continue running Match(𝑖) on the 𝑖 that was
unmatched.

• Vertex insertions on the buyer side
• Create new 𝑄𝑖 for the 𝑖 that was inserted. Takes

𝑂(𝜖−1 log(𝜖−1)) time per edge if edges are presorted.
• Continue running Match(𝑖).

17

Dynamic Algorithms

The algorithm can easily be made dynamic by maintaining all 𝑄𝑖:

• Edge deletions

• If a non-matching edge was deleted, nothing changes.
• Otherwise continue running Match(𝑖) on the 𝑖 that was
unmatched.

• Vertex insertions on the buyer side
• Create new 𝑄𝑖 for the 𝑖 that was inserted. Takes

𝑂(𝜖−1 log(𝜖−1)) time per edge if edges are presorted.
• Continue running Match(𝑖).

17

Dynamic Algorithms

The algorithm can easily be made dynamic by maintaining all 𝑄𝑖:

• Edge deletions
• If a non-matching edge was deleted, nothing changes.

• Otherwise continue running Match(𝑖) on the 𝑖 that was
unmatched.

• Vertex insertions on the buyer side
• Create new 𝑄𝑖 for the 𝑖 that was inserted. Takes

𝑂(𝜖−1 log(𝜖−1)) time per edge if edges are presorted.
• Continue running Match(𝑖).

17

Dynamic Algorithms

The algorithm can easily be made dynamic by maintaining all 𝑄𝑖:

• Edge deletions
• If a non-matching edge was deleted, nothing changes.
• Otherwise continue running Match(𝑖) on the 𝑖 that was
unmatched.

• Vertex insertions on the buyer side
• Create new 𝑄𝑖 for the 𝑖 that was inserted. Takes

𝑂(𝜖−1 log(𝜖−1)) time per edge if edges are presorted.
• Continue running Match(𝑖).

17

Dynamic Algorithms

The algorithm can easily be made dynamic by maintaining all 𝑄𝑖:

• Edge deletions
• If a non-matching edge was deleted, nothing changes.
• Otherwise continue running Match(𝑖) on the 𝑖 that was
unmatched.

• Vertex insertions on the buyer side

• Create new 𝑄𝑖 for the 𝑖 that was inserted. Takes
𝑂(𝜖−1 log(𝜖−1)) time per edge if edges are presorted.

• Continue running Match(𝑖).

17

Dynamic Algorithms

The algorithm can easily be made dynamic by maintaining all 𝑄𝑖:

• Edge deletions
• If a non-matching edge was deleted, nothing changes.
• Otherwise continue running Match(𝑖) on the 𝑖 that was
unmatched.

• Vertex insertions on the buyer side
• Create new 𝑄𝑖 for the 𝑖 that was inserted. Takes

𝑂(𝜖−1 log(𝜖−1)) time per edge if edges are presorted.

• Continue running Match(𝑖).

17

Dynamic Algorithms

The algorithm can easily be made dynamic by maintaining all 𝑄𝑖:

• Edge deletions
• If a non-matching edge was deleted, nothing changes.
• Otherwise continue running Match(𝑖) on the 𝑖 that was
unmatched.

• Vertex insertions on the buyer side
• Create new 𝑄𝑖 for the 𝑖 that was inserted. Takes

𝑂(𝜖−1 log(𝜖−1)) time per edge if edges are presorted.
• Continue running Match(𝑖).

17

Thank your for listening!

17

