Multiplicative Auction Algorithm for Approximate Maximum Weight Bipartite Matching¹

Thorben Tröbst

Theory Seminar, February 10, 2023

Department of Computer Science, University of California, Irvine

¹by Da Wei Zheng and Monika Henzinger, to appear in IPCO 2023

• Classics:

- Classics:
 - Hungarian method $O(n^4)$ or $O(n^3)$ time for WEIGHTED BIPARTITE MAXIMUM MATCHING

- Classics:
 - Hungarian method $O(n^4)$ or $O(n^3)$ time for WEIGHTED BIPARTITE MAXIMUM MATCHING
 - Gabow, Tarjan $O(m\sqrt{n}\log(n/\epsilon))$ for Weighted Bipartite Maximum Matching

- Classics:
 - Hungarian method $O(n^4)$ or $O(n^3)$ time for WEIGHTED BIPARTITE MAXIMUM MATCHING
 - Gabow, Tarjan $O(m\sqrt{n}\log(n/\epsilon))$ for Weighted Bipartite Maximum Matching
- More recent, near-linear time:

- Classics:
 - Hungarian method $O(n^4)$ or $O(n^3)$ time for WEIGHTED BIPARTITE MAXIMUM MATCHING
 - Gabow, Tarjan $O(m\sqrt{n}\log(n/\epsilon))$ for Weighted Bipartite Maximum Matching
- More recent, near-linear time:
 - Duan, Pettie 2014 $O(m\epsilon^{-1}\log(\epsilon^{-1}))$ for WEIGHTED MAXIMUM MATCHING

- Classics:
 - Hungarian method $O(n^4)$ or $O(n^3)$ time for WEIGHTED BIPARTITE MAXIMUM MATCHING
 - Gabow, Tarjan $O(m\sqrt{n}\log(n/\epsilon))$ for Weighted Bipartite Maximum Matching
- More recent, near-linear time:
 - Duan, Pettie 2014 $O(m\epsilon^{-1}\log(\epsilon^{-1}))$ for WEIGHTED MAXIMUM MATCHING
 - Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022 $O(m^{1+o(1)})$ for Max FLow

• $(1 - \epsilon)$ -apx in $O(m\epsilon^{-1}\log(\epsilon^{-1}))$ for Weighted Bipartite Maximum Matching with a much simpler algorithm

- (1ϵ) -apx in $O(m\epsilon^{-1}\log(\epsilon^{-1}))$ for Weighted Bipartite Maximum Matching with a much simpler algorithm
- Algorithm is based on multiplicative weights but beats traditional ϵ^{-2} barrier

- (1ϵ) -apx in $O(m\epsilon^{-1}\log(\epsilon^{-1}))$ for WEIGHTED BIPARTITE MAXIMUM MATCHING with a much simpler algorithm
- Algorithm is based on multiplicative weights but beats traditional ϵ^{-2} barrier
- Dynamic edge deletions and one-sided vertex insertions in $O(\epsilon^{-1}\log(\epsilon^{-1}))$ time per edge (amortized)

Recall the primal and dual LPs for BIPARTITE MAXIMUM WEIGHT MATCHING on $(G \cup B, E)$.

Recall the primal and dual LPs for BIPARTITE MAXIMUM WEIGHT MATCHING on $(G \cup B, E)$.

 $\begin{array}{ll} \max & \sum_{e \in E} w_e x_e & \min & \sum_{j \in G} p_j + \sum_{i \in B} u_i \\ \text{s.t.} & x(\delta(j)) \leq 1 \; \forall j \in G, & \text{s.t.} & p_j + u_i \geq w_{ij} \forall \{j, i\} \in E, \\ & x(\delta(i)) \leq 1 \; \forall i \in B, & p \geq 0, \\ & x \geq 0. & q \geq 0. \end{array}$

Lemma (Complementary Slackness)

Let x be a matching and p, u dual variables such that:

- If $p_j > 0$, then j is matched.
- If $u_i > 0$, then *i* is matched.
- If *i* is matched to *j* then $w_{ij} = p_j + u_i$.
- For all $\{i, j\} \in E$, $p_j + u_i \ge w_{ij}$.

Then x is a maximum weight matching.

Lemma (Complementary Slackness)

Let x be a matching and p, u dual variables such that:

- If $p_j > 0$, then j is matched.
- If $u_i > 0$, then *i* is matched.
- If *i* is matched to *j* then $w_{ij} = p_j + u_i$.
- For all $\{i, j\} \in E, p_j + u_i \ge w_{ij}$.

Then x is a maximum weight matching.

Proof. Complementary slackness.

Lemma (Approximate Complementary Slackness) Let *x* be a matching and *p*,*q* dual variables such that:

- If $p_j > 0$, then j is matched.
- If $u_i > 0$, then *i* is matched.
- If *i* is matched to *j* then $w_{ij} = p_j + u_i$.
- For all $\{i, j\} \in E$, $p_j + u_i \ge (1 \epsilon)w_{ij}$.

Then x is a $(1 - \epsilon)$ -approximate maximum weight matching.

7

• If $p_j > 0$, then *j* is matched.

- If $p_j > 0$, then *j* is matched.
- If $u_i > 0$, then *i* is matched.

- If $p_j > 0$, then *j* is matched.
- If $u_i > 0$, then *i* is matched.
- If $\{i, j\} \in M$, then $p_j + u_i = w_{ij}$.

- If $p_j > 0$, then *j* is matched.
- If $u_i > 0$, then *i* is matched.
- If $\{i, j\} \in M$, then $p_j + u_i = w_{ij}$.
- If for some *i*, we have $p_j + u_i \ge (1 \epsilon)w_{ij}$ for all *j* at the time that *i* was matched, then this continues to hold until the match is destroyed.

• Ensure that $p_j + u_i \ge (1 - \epsilon)w_{ij}$ holds at the time of match.

- Ensure that $p_j + u_i \ge (1 \epsilon)w_{ij}$ holds at the time of match.
- Ensure that $p_j \ge (1 \epsilon)w_{ij}$ holds for all i which are unmatched.

- Ensure that $p_j + u_i \ge (1 \epsilon)w_{ij}$ holds at the time of match.
- Ensure that $p_j \ge (1 \epsilon)w_{ij}$ holds for all i which are unmatched.
- Ensure that prices rise fast enough to get a good runtime.

We can make some simplifying assumptions:

We can make some simplifying assumptions:

•
$$\frac{w_{\max}}{w_{\min}} \leq \frac{n}{\epsilon}$$

We can make some simplifying assumptions:

- $\frac{w_{\max}}{w_{\min}} \leq \frac{n}{\epsilon}$
- Each w_{ij} is of the form $(1 + \epsilon)^{l_{ij}}$ for some $0 \le l \le \log_{1+\epsilon}(n/\epsilon)$.

Algorithm 1: MULTIPLICATIVE AUCTION

- 1 Create a list of pairs Q.
- 2 For each $\{i, j\} \in E$, add triples (t, i, j), (t + 1, i, j), ..., (l_{ij}, i, j) to Q where t is maximal such that $(1 + \epsilon)^{l_{ij}-t} > \frac{1}{\epsilon}$.
- $_3$ Sort Q in non-increasing order using bucket sort.
- 4 For each *i*, let $Q_i = \{(k, j) | (k, i, j) \in Q\}$.
- 5 Call Матсн(*i*) on unmatched *i* until the matching stabilizes.

Algorithm 2: MATCH(i)

1 while Q_i is not empty do

2 Pop top element
$$(k, j)$$
 from Q .
3 $u_{ij} := w_{ij} - p_j$
4 if $u_{ij} \ge (1 + \epsilon)^k$ then
5 Match *i* to *j* (unmatching previous partner).
6 $p_j \leftarrow p_j + \epsilon u_{ij}$

 $u_{32} \ge (1+\epsilon)^3$

 $u_{33} \ge (1+\epsilon)^3$

When (k, j) gets removed from Q_i , we know that $u_{ij} < (1 + \epsilon)^k$ from now on.

When (k, j) gets removed from Q_i , we know that $u_{ij} < (1 + \epsilon)^k$ from now on. Because if *i* is matched to $j, u_{ij} \le (1 - \epsilon)(1 + \epsilon)^{k+1}$.

When (k, j) gets removed from Q_i , we know that $u_{ij} < (1 + \epsilon)^k$ from now on. Because if *i* is matched to *j*, $u_{ij} \le (1 - \epsilon)(1 + \epsilon)^{k+1}$. Before *i* gets matched to *j*, we know $u_{ij} \ge (1 + \epsilon)^k$ for some *k* and $u_{ij'} < (1 + \epsilon)^{k+1}$ for all *j'* because all pairs (k + 1, j') have been removed. When (k, j) gets removed from Q_i , we know that $u_{ij} < (1 + \epsilon)^k$ from now on. Because if *i* is matched to *j*, $u_{ij} \le (1 - \epsilon)(1 + \epsilon)^{k+1}$.

Before *i* gets matched to *j*, we know $u_{ij} \ge (1 + \epsilon)^k$ for some *k* and $u_{ij'} < (1 + \epsilon)^{k+1}$ for all *j*' because all pairs (k + 1, j') have been removed.

So, after matching *i* to *j*:

$$\begin{split} u_i + p_{j'} &= u_{ij} + w_{ij'} - u_{ij'} \ge \frac{1 - \epsilon}{1 + \epsilon} u_{ij'} + w_{ij'} - u_{ij'} \\ &\ge (1 - 2\epsilon) u_{ij'} + w_{ij'} - u_{ij'} = w_{ij'} - 2\epsilon u_{ij'} \\ &\ge (1 - 2\epsilon) w_{ij'}. \end{split}$$

Assume *i* is unmatched at the end, this means its Q_i is empty.

Assume *i* is unmatched at the end, this means its Q_i is empty. So for every *j*, we know $u_{ij} < \epsilon w_{ij}$ because we removed (t, j) and $(1 + \epsilon)^t < \epsilon (1 + \epsilon)^{l_{ij}} = \epsilon w_{ij}$. Assume *i* is unmatched at the end, this means its Q_i is empty. So for every *j*, we know $u_{ij} < \epsilon w_{ij}$ because we removed (t, j) and $(1 + \epsilon)^t < \epsilon (1 + \epsilon)^{l_{ij}} = \epsilon w_{ij}$.

Thus:

$$u_i + p_j = w_{ij} - u_{ij} \ge (1 - \epsilon) w_{ij}. \quad \Box$$

• How many elements in Q?

- How many elements in Q?
 - For each edge, we add k elements where k is minimal such that $(1 + \epsilon)^{-k} < \epsilon$.

- How many elements in Q?
 - For each edge, we add k elements where k is minimal such that $(1 + \epsilon)^{-k} < \epsilon$.
 - So there are $O(m \log_{1+\epsilon}(\epsilon^{-1})) = O(m\epsilon^{-1}\log(\epsilon^{-1}))$ elements.

- How many elements in Q?
 - For each edge, we add k elements where k is minimal such that $(1 + \epsilon)^{-k} < \epsilon$.
 - So there are $O(m \log_{1+\epsilon}(\epsilon^{-1})) = O(m\epsilon^{-1}\log(\epsilon^{-1}))$ elements.
- How many buckets?

- How many elements in Q?
 - For each edge, we add k elements where k is minimal such that $(1 + \epsilon)^{-k} < \epsilon$.
 - So there are $O(m \log_{1+\epsilon}(\epsilon^{-1})) = O(m\epsilon^{-1}\log(\epsilon^{-1}))$ elements.
- How many buckets?
 - We assume $\frac{w_{\max}}{w_{\min}} \le \frac{n}{\epsilon}$ and the smallest weight in Q will be ϵw_{\min} .

- How many elements in Q?
 - For each edge, we add k elements where k is minimal such that $(1 + \epsilon)^{-k} < \epsilon$.
 - So there are $O(m \log_{1+\epsilon}(\epsilon^{-1})) = O(m\epsilon^{-1}\log(\epsilon^{-1}))$ elements.
- How many buckets?
 - We assume $\frac{w_{\max}}{w_{\min}} \le \frac{n}{\epsilon}$ and the smallest weight in Q will be ϵw_{\min} .
 - So there are $O(\log_{1+\epsilon}(\frac{n}{\epsilon^2}))$ buckets.

• Edge deletions

- Edge deletions
 - If a non-matching edge was deleted, nothing changes.

- Edge deletions
 - If a non-matching edge was deleted, nothing changes.
 - Otherwise continue running MATCH(*i*) on the *i* that was unmatched.

- Edge deletions
 - If a non-matching edge was deleted, nothing changes.
 - Otherwise continue running MATCH(*i*) on the *i* that was unmatched.
- Vertex insertions on the buyer side

- Edge deletions
 - If a non-matching edge was deleted, nothing changes.
 - Otherwise continue running MATCH(*i*) on the *i* that was unmatched.
- Vertex insertions on the buyer side
 - Create new Q_i for the *i* that was inserted. Takes $O(\epsilon^{-1}\log(\epsilon^{-1}))$ time per edge if edges are presorted.

- Edge deletions
 - If a non-matching edge was deleted, nothing changes.
 - Otherwise continue running MATCH(*i*) on the *i* that was unmatched.
- Vertex insertions on the buyer side
 - Create new Q_i for the *i* that was inserted. Takes $O(\epsilon^{-1}\log(\epsilon^{-1}))$ time per edge if edges are presorted.
 - Continue running Матсн(*i*).

THANK YOUR FOR LISTENING!