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Algorithms for Matchings and Flows

• Classics:

• Hungarian method 𝑂(𝑛4) or 𝑂(𝑛3) time for Weighted
Bipartite Maximum Matching

• Gabow, Tarjan 𝑂(𝑚√𝑛 log(𝑛/𝜖)) for Weighted Bipartite
Maximum Matching

• More recent, near-linear time:
• Duan, Pettie 2014 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Maximum
Matching

• Chen, Kyng, Liu, Peng, Gutenberg, Sachdeva 2022 𝑂(𝑚1+𝑜(1))
for Max Flow
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Results

Zheng and Henzinger achieve:

• (1 − 𝜖)-apx in 𝑂(𝑚𝜖−1 log(𝜖−1)) for Weighted Bipartite
Maximum Matching with a much simpler algorithm

• Algorithm is based on multiplicative weights but beats
traditional 𝜖−2 barrier

• Dynamic edge deletions and one-sided vertex insertions in
𝑂(𝜖−1 log(𝜖−1)) time per edge (amortized)
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Primal and Dual LP

Recall the primal and dual LPs for Bipartite Maximum Weight
Matching on (𝐺 ∪ 𝐵, 𝐸).

max ∑
𝑒∈𝐸

𝑤𝑒𝑥𝑒

s.t. 𝑥(𝛿(𝑗)) ≤ 1 ∀𝑗 ∈ 𝐺,
𝑥(𝛿(𝑖)) ≤ 1 ∀𝑖 ∈ 𝐵,

𝑥 ≥ 0.

min ∑
𝑗∈𝐺

𝑝𝑗 + ∑
𝑖∈𝐵

𝑢𝑖

s.t. 𝑝𝑗 + 𝑢𝑖 ≥ 𝑤𝑖𝑗∀{𝑗, 𝑖} ∈ 𝐸,

𝑝 ≥ 0,
𝑞 ≥ 0.
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Complementary Slackness

Lemma (Complementary Slackness)
Let 𝑥 be a matching and 𝑝, 𝑢 dual variables such that:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If 𝑖 is matched to 𝑗 then 𝑤𝑖𝑗 = 𝑝𝑗 + 𝑢𝑖.
• For all {𝑖, 𝑗} ∈ 𝐸, 𝑝𝑗 + 𝑢𝑖 ≥ 𝑤𝑖𝑗.

Then 𝑥 is a maximum weight matching.

Proof. Complementary slackness.
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Approximate Complementary Slackness

Lemma (Approximate Complementary Slackness)
Let 𝑥 be a matching and 𝑝, 𝑞 dual variables such that:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If 𝑖 is matched to 𝑗 then 𝑤𝑖𝑗 = 𝑝𝑗 + 𝑢𝑖.
• For all {𝑖, 𝑗} ∈ 𝐸, 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗.

Then 𝑥 is a (1 − 𝜖)-approximate maximum weight matching.
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Invariants

The auction algorithm automatically has the following
invariants:

• If 𝑝𝑗 > 0, then 𝑗 is matched.
• If 𝑢𝑖 > 0, then 𝑖 is matched.
• If {𝑖, 𝑗} ∈ 𝑀, then 𝑝𝑗 + 𝑢𝑖 = 𝑤𝑖𝑗.
• If for some 𝑖, we have 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 for all 𝑗 at the
time that 𝑖 was matched, then this continues to hold until
the match is destroyed.
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Goals

We thus have the following goals:

• Ensure that 𝑝𝑗 + 𝑢𝑖 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds at the time of match.
• Ensure that 𝑝𝑗 ≥ (1 − 𝜖)𝑤𝑖𝑗 holds for all 𝑖 which are
unmatched.

• Ensure that prices rise fast enough to get a good runtime.
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Simplifying Assumptions

We can make some simplifying assumptions:

• 𝑤max
𝑤min

≤ 𝑛
𝜖

• Each 𝑤𝑖𝑗 is of the form (1 + 𝜖)𝑙𝑖𝑗 for some
0 ≤ 𝑙 ≤ 𝑙𝑜𝑔1+𝜖(𝑛/𝜖).
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Multiplicative Auction

Algorithm 1: Multiplicative Auction
1 Create a list of pairs 𝑄.
2 For each {𝑖, 𝑗} ∈ 𝐸, add triples (𝑡, 𝑖, 𝑗), (𝑡 + 1, 𝑖, 𝑗), …, (𝑙𝑖𝑗, 𝑖, 𝑗) to

𝑄 where 𝑡 is maximal such that (1 + 𝜖)𝑙𝑖𝑗−𝑡 > 1
𝜖 .

3 Sort 𝑄 in non-increasing order using bucket sort.
4 For each 𝑖, let 𝑄𝑖 = {(𝑘, 𝑗) ∣ (𝑘, 𝑖, 𝑗) ∈ 𝑄}.
5 Call Match(𝑖) on unmatched 𝑖 until the matching stabilizes.
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Match(𝑖)

Algorithm 2: Match(𝑖)
1 while 𝑄𝑖 is not empty do
2 Pop top element (𝑘, 𝑗) from 𝑄.
3 𝑢𝑖𝑗 ≔ 𝑤𝑖𝑗 − 𝑝𝑗

4 if 𝑢𝑖𝑗 ≥ (1 + 𝜖)𝑘 then
5 Match 𝑖 to 𝑗 (unmatching previous partner).
6 𝑝𝑗 ← 𝑝𝑗 + 𝜖𝑢𝑖𝑗

12



Multiplicative Auction Example 𝜖 = 1/3

𝑝3 = 0

𝑝2 ≈ 0.59
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Correctness

When (𝑘, 𝑗) gets removed from 𝑄𝑖, we know that 𝑢𝑖𝑗 < (1 + 𝜖)𝑘

from now on.

Because if 𝑖 is matched to 𝑗, 𝑢𝑖𝑗 ≤ (1 − 𝜖)(1 + 𝜖)𝑘+1.

Before 𝑖 gets matched to 𝑗, we know 𝑢𝑖𝑗 ≥ (1 + 𝜖)𝑘 for some 𝑘
and 𝑢𝑖𝑗′ < (1 + 𝜖)𝑘+1 for all 𝑗′ because all pairs (𝑘 + 1, 𝑗′) have
been removed.

So, after matching 𝑖 to 𝑗:

𝑢𝑖 + 𝑝𝑗′ = 𝑢𝑖𝑗 + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ ≥
1 − 𝜖
1 + 𝜖𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑢𝑖𝑗′ + 𝑤𝑖𝑗′ − 𝑢𝑖𝑗′ = 𝑤𝑖𝑗′ − 2𝜖𝑢𝑖𝑗′

≥ (1 − 2𝜖)𝑤𝑖𝑗′.
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Correctness II

Assume 𝑖 is unmatched at the end, this means its 𝑄𝑖 is empty.

So for every 𝑗, we know 𝑢𝑖𝑗 < 𝜖𝑤𝑖𝑗 because we removed (𝑡, 𝑗) and
(1 + 𝜖)𝑡 < 𝜖(1 + 𝜖)𝑙𝑖𝑗 = 𝜖𝑤𝑖𝑗.

Thus:
𝑢𝑖 + 𝑝𝑗 = 𝑤𝑖𝑗 − 𝑢𝑖𝑗 ≥ (1 − 𝜖)𝑤𝑖𝑗. �
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Runtime

Runtime is dominated by bucket sort on 𝑄, so we have two
questions:

• How many elements in 𝑄?
• For each edge, we add 𝑘 elements where 𝑘 is minimal such
that (1 + 𝜖)−𝑘 < 𝜖.

• So there are 𝑂(𝑚 log1+𝜖(𝜖−1)) = 𝑂(𝑚𝜖−1 log(𝜖−1))
elements.

• How many buckets?
• We assume 𝑤max

𝑤min
≤ 𝑛

𝜖 and the smallest weight in 𝑄 will be
𝜖𝑤min.

• So there are 𝑂(log1+𝜖( 𝑛
𝜖2 )) buckets.
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Dynamic Algorithms

The algorithm can easily be made dynamic by maintaining all 𝑄𝑖:

• Edge deletions
• If a non-matching edge was deleted, nothing changes.
• Otherwise continue running Match(𝑖) on the 𝑖 that was
unmatched.

• Vertex insertions on the buyer side
• Create new 𝑄𝑖 for the 𝑖 that was inserted. Takes

𝑂(𝜖−1 log(𝜖−1)) time per edge if edges are presorted.
• Continue running Match(𝑖).
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Thank your for listening!
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