
Almost Tight Bounds for
Online Hypergraph Matching

Thorben Tröbst (joint work with Rajan Udwani)
Theory Seminar, October 14, 2022

Department of Computer Science, University of California, Irvine

Online Bipartite Matching

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching

1

Online Bipartite Matching II

𝐺 = (𝑆, 𝐵, 𝐸) is a bipartite graph consisting of offline vertices 𝑆
and online vertices 𝐵.

Online vertices arrive one by one in adverserial order.

The algorithm must irrevocably and immediately match
revealed online vertices.

The goal is to maximize the competitive ratio, i.e.

|𝑀online|
OPToffline

.

2

Online Bipartite Matching II

𝐺 = (𝑆, 𝐵, 𝐸) is a bipartite graph consisting of offline vertices 𝑆
and online vertices 𝐵.

Online vertices arrive one by one in adverserial order.

The algorithm must irrevocably and immediately match
revealed online vertices.

The goal is to maximize the competitive ratio, i.e.

|𝑀online|
OPToffline

.

2

Online Bipartite Matching II

𝐺 = (𝑆, 𝐵, 𝐸) is a bipartite graph consisting of offline vertices 𝑆
and online vertices 𝐵.

Online vertices arrive one by one in adverserial order.

The algorithm must irrevocably and immediately match
revealed online vertices.

The goal is to maximize the competitive ratio, i.e.

|𝑀online|
OPToffline

.

2

Online Bipartite Matching II

𝐺 = (𝑆, 𝐵, 𝐸) is a bipartite graph consisting of offline vertices 𝑆
and online vertices 𝐵.

Online vertices arrive one by one in adverserial order.

The algorithm must irrevocably and immediately match
revealed online vertices.

The goal is to maximize the competitive ratio, i.e.

|𝑀online|
OPToffline

.

2

Algorithms for Online Matching Problems

Classic results for Online Bipartite Matching:

• The deterministic Greedy algorithm (match whenever
possible) is 1/2-competitive (and this is best possible).

• The randomized Ranking algorithm is (1 − 1/𝑒)-competitive
in expectation and with high probability (and this is best
possible).

• The deterministic but fractional Waterfilling algorithm is
(1 − 1/𝑒)-competitive (and this is best possible).

3

Algorithms for Online Matching Problems

Classic results for Online Bipartite Matching:

• The deterministic Greedy algorithm (match whenever
possible) is 1/2-competitive (and this is best possible).

• The randomized Ranking algorithm is (1 − 1/𝑒)-competitive
in expectation and with high probability (and this is best
possible).

• The deterministic but fractional Waterfilling algorithm is
(1 − 1/𝑒)-competitive (and this is best possible).

3

Algorithms for Online Matching Problems

Classic results for Online Bipartite Matching:

• The deterministic Greedy algorithm (match whenever
possible) is 1/2-competitive (and this is best possible).

• The randomized Ranking algorithm is (1 − 1/𝑒)-competitive
in expectation and with high probability (and this is best
possible).

• The deterministic but fractional Waterfilling algorithm is
(1 − 1/𝑒)-competitive (and this is best possible).

3

Algorithms for Online Matching Problems

Classic results for Online Bipartite Matching:

• The deterministic Greedy algorithm (match whenever
possible) is 1/2-competitive (and this is best possible).

• The randomized Ranking algorithm is (1 − 1/𝑒)-competitive
in expectation and with high probability (and this is best
possible).

• The deterministic but fractional Waterfilling algorithm is
(1 − 1/𝑒)-competitive (and this is best possible).

3

Online Hypergraph Matching

𝑘-Uniform Settings

Instead of graphs, consider 𝑘-uniform hypergraphs. We study
the competitive ratio depending on 𝑘:

• The immediate generalization would be 𝑘-partite with
vertex arrivals.

• Can also look at edge arrivals.
• Small 𝑘 and large 𝑘 are different regimes.
• 𝑘-partite does not seem to be too important for the large 𝑘
regime.

4

𝑘-Uniform Settings

Instead of graphs, consider 𝑘-uniform hypergraphs. We study
the competitive ratio depending on 𝑘:

• The immediate generalization would be 𝑘-partite with
vertex arrivals.

• Can also look at edge arrivals.
• Small 𝑘 and large 𝑘 are different regimes.
• 𝑘-partite does not seem to be too important for the large 𝑘
regime.

4

𝑘-Uniform Settings

Instead of graphs, consider 𝑘-uniform hypergraphs. We study
the competitive ratio depending on 𝑘:

• The immediate generalization would be 𝑘-partite with
vertex arrivals.

• Can also look at edge arrivals.

• Small 𝑘 and large 𝑘 are different regimes.
• 𝑘-partite does not seem to be too important for the large 𝑘
regime.

4

𝑘-Uniform Settings

Instead of graphs, consider 𝑘-uniform hypergraphs. We study
the competitive ratio depending on 𝑘:

• The immediate generalization would be 𝑘-partite with
vertex arrivals.

• Can also look at edge arrivals.
• Small 𝑘 and large 𝑘 are different regimes.

• 𝑘-partite does not seem to be too important for the large 𝑘
regime.

4

𝑘-Uniform Settings

Instead of graphs, consider 𝑘-uniform hypergraphs. We study
the competitive ratio depending on 𝑘:

• The immediate generalization would be 𝑘-partite with
vertex arrivals.

• Can also look at edge arrivals.
• Small 𝑘 and large 𝑘 are different regimes.
• 𝑘-partite does not seem to be too important for the large 𝑘
regime.

4

Vertex Arrival / Edge Arrival

Vertex Arrival: when a vertex arrives, all of its hyperedges are
revealed.

Edge Arrival: hyperedges arrive one by one.

Lemma
Edge arrival is at least as hard as vertex arrival.

Lemma
Vertex arrival on a 𝑘-uniform instance is at least as hard as
edge arrival on a (𝑘 − 1)-uniform instance.

5

Vertex Arrival / Edge Arrival

Vertex Arrival: when a vertex arrives, all of its hyperedges are
revealed.

Edge Arrival: hyperedges arrive one by one.

Lemma
Edge arrival is at least as hard as vertex arrival.

Lemma
Vertex arrival on a 𝑘-uniform instance is at least as hard as
edge arrival on a (𝑘 − 1)-uniform instance.

5

Vertex Arrival / Edge Arrival

Vertex Arrival: when a vertex arrives, all of its hyperedges are
revealed.

Edge Arrival: hyperedges arrive one by one.

Lemma
Edge arrival is at least as hard as vertex arrival.

Lemma
Vertex arrival on a 𝑘-uniform instance is at least as hard as
edge arrival on a (𝑘 − 1)-uniform instance.

5

Overview

In this talk we will look at

• 𝑘-Uniform Online Hypergraph Matching with edge arrivals,

• for large 𝑘,
• with integral matchings and
• fractional matchings.

6

Overview

In this talk we will look at

• 𝑘-Uniform Online Hypergraph Matching with edge arrivals,
• for large 𝑘,

• with integral matchings and
• fractional matchings.

6

Overview

In this talk we will look at

• 𝑘-Uniform Online Hypergraph Matching with edge arrivals,
• for large 𝑘,
• with integral matchings and

• fractional matchings.

6

Overview

In this talk we will look at

• 𝑘-Uniform Online Hypergraph Matching with edge arrivals,
• for large 𝑘,
• with integral matchings and
• fractional matchings.

6

Integral Setting

Greedy Lower Bound

Theorem
The greedy algorithm is 1/𝑘-competitive for 𝑘-Uniform Online
Hypergraph Matching with Edge Arrivals.

Proof.
Let OPT = 𝑚. Every edge from the optimum solution must
contain a vertex from Greedy. Thus Greedy covers at least 𝑚
vertices which requires 𝑚/𝑘 edges. Hence the competitive
ratio is at least 1/𝑘.

7

Greedy Lower Bound

Theorem
The greedy algorithm is 1/𝑘-competitive for 𝑘-Uniform Online
Hypergraph Matching with Edge Arrivals.

Proof.
Let OPT = 𝑚.

Every edge from the optimum solution must
contain a vertex from Greedy. Thus Greedy covers at least 𝑚
vertices which requires 𝑚/𝑘 edges. Hence the competitive
ratio is at least 1/𝑘.

7

Greedy Lower Bound

Theorem
The greedy algorithm is 1/𝑘-competitive for 𝑘-Uniform Online
Hypergraph Matching with Edge Arrivals.

Proof.
Let OPT = 𝑚. Every edge from the optimum solution must
contain a vertex from Greedy.

Thus Greedy covers at least 𝑚
vertices which requires 𝑚/𝑘 edges. Hence the competitive
ratio is at least 1/𝑘.

7

Greedy Lower Bound

Theorem
The greedy algorithm is 1/𝑘-competitive for 𝑘-Uniform Online
Hypergraph Matching with Edge Arrivals.

Proof.
Let OPT = 𝑚. Every edge from the optimum solution must
contain a vertex from Greedy. Thus Greedy covers at least 𝑚
vertices which requires 𝑚/𝑘 edges.

Hence the competitive
ratio is at least 1/𝑘.

7

Greedy Lower Bound

Theorem
The greedy algorithm is 1/𝑘-competitive for 𝑘-Uniform Online
Hypergraph Matching with Edge Arrivals.

Proof.
Let OPT = 𝑚. Every edge from the optimum solution must
contain a vertex from Greedy. Thus Greedy covers at least 𝑚
vertices which requires 𝑚/𝑘 edges. Hence the competitive
ratio is at least 1/𝑘.

7

Upper Bounds via Yao’s Principle

To get upper bounds on the competitive ratio, we need the
following famous lemma:

Lemma
Let 𝛼 be the best competitive ratio of any randomized
algorithm. Let 𝛽 be the competitive ratio of the best
deterministic algorithm against some fixed distribution of
instances. Then 𝛼 ≤ 𝛽.

8

4/𝑘 Upper Bound

Let us start with a warmup:

Theorem

If 𝑘 is even, then there does not exist a (4
𝑘 + 𝜖)-competitive

algorithm for the 𝑘-uniform online hypergraph matching
problem for any 𝜖 > 0.

Idea: use Yao’s principle and construct a distribution over
instances with OPT = 𝑘/2 but the best deterministic algorithm
can only get a matching of size 2.

9

4/𝑘 Upper Bound

Let us start with a warmup:

Theorem

If 𝑘 is even, then there does not exist a (4
𝑘 + 𝜖)-competitive

algorithm for the 𝑘-uniform online hypergraph matching
problem for any 𝜖 > 0.

Idea: use Yao’s principle and construct a distribution over
instances with OPT = 𝑘/2 but the best deterministic algorithm
can only get a matching of size 2.

9

4/𝑘 Upper Bound Construction

1

1

10

4/𝑘 Upper Bound Construction

1

1

10

4/𝑘 Upper Bound Construction

1

1

2

2

10

4/𝑘 Upper Bound Construction

1

1

2

2

10

4/𝑘 Upper Bound Construction

1

1

2

2

3

3

10

4/𝑘 Upper Bound Construction

1

1

2

2

3

3

10

4/𝑘 Upper Bound Construction

1

1

2

2

3

3

4

4

10

4/𝑘 Upper Bound Construction

1

1

2

2

3

3

4

4

10

4/𝑘 Upper Bound Construction

1

1

2

2

3

3

4

4

5

5

10

4/𝑘 Upper Bound Construction

1

1

2

2

3

3

4

4

5

5

10

4/𝑘 Upper Bound Proof

Proof.
Let 𝛼𝑖 (𝛽𝑖) be the probability that the red (blue) edge is
matched in phase 𝑖.

Since the red and blue edges are
determined independently and uniformly at random, we must
have 𝛼𝑖 = 𝛽𝑖. Moreover, since at most one blue edge can be
picked, we know 𝛼1 + ⋯ + 𝛼𝑘/2 ≤ 1. Thus the expected size of
the matching generated by the algorithm is at most

𝛼1 + ⋯ + 𝛼𝑘/2 + 𝛽1 + ⋯ + 𝛽𝑘/2 ≤ 2.

11

4/𝑘 Upper Bound Proof

Proof.
Let 𝛼𝑖 (𝛽𝑖) be the probability that the red (blue) edge is
matched in phase 𝑖. Since the red and blue edges are
determined independently and uniformly at random, we must
have 𝛼𝑖 = 𝛽𝑖.

Moreover, since at most one blue edge can be
picked, we know 𝛼1 + ⋯ + 𝛼𝑘/2 ≤ 1. Thus the expected size of
the matching generated by the algorithm is at most

𝛼1 + ⋯ + 𝛼𝑘/2 + 𝛽1 + ⋯ + 𝛽𝑘/2 ≤ 2.

11

4/𝑘 Upper Bound Proof

Proof.
Let 𝛼𝑖 (𝛽𝑖) be the probability that the red (blue) edge is
matched in phase 𝑖. Since the red and blue edges are
determined independently and uniformly at random, we must
have 𝛼𝑖 = 𝛽𝑖. Moreover, since at most one blue edge can be
picked, we know 𝛼1 + ⋯ + 𝛼𝑘/2 ≤ 1.

Thus the expected size of
the matching generated by the algorithm is at most

𝛼1 + ⋯ + 𝛼𝑘/2 + 𝛽1 + ⋯ + 𝛽𝑘/2 ≤ 2.

11

4/𝑘 Upper Bound Proof

Proof.
Let 𝛼𝑖 (𝛽𝑖) be the probability that the red (blue) edge is
matched in phase 𝑖. Since the red and blue edges are
determined independently and uniformly at random, we must
have 𝛼𝑖 = 𝛽𝑖. Moreover, since at most one blue edge can be
picked, we know 𝛼1 + ⋯ + 𝛼𝑘/2 ≤ 1. Thus the expected size of
the matching generated by the algorithm is at most

𝛼1 + ⋯ + 𝛼𝑘/2 + 𝛽1 + ⋯ + 𝛽𝑘/2 ≤ 2.

11

2/k Upper Bound

We can do better:

Theorem

If 𝑘 is a power of two, then there does not exist a
(2

𝑘 + 𝜖)-competitive algorithm for the online hypergraph
matching problem for any 𝜖 > 0.

Idea: use the 4/𝑘 construction recursively.

12

2/k Upper Bound

We can do better:

Theorem

If 𝑘 is a power of two, then there does not exist a
(2

𝑘 + 𝜖)-competitive algorithm for the online hypergraph
matching problem for any 𝜖 > 0.

Idea: use the 4/𝑘 construction recursively.

12

2/k Upper Bound

We can do better:

Theorem

If 𝑘 is a power of two, then there does not exist a
(2

𝑘 + 𝜖)-competitive algorithm for the online hypergraph
matching problem for any 𝜖 > 0.

Idea: use the 4/𝑘 construction recursively.

12

The Gadget 𝐺10

1
2
3
4
5

1 2 3 4 5

13

The Gadget 𝐺10

1
2
3
4
5

1 2 3 4 5

𝐴1

𝐴2

𝐴3

𝐴4

𝐴5

13

The Recursive Construction of 𝐻𝑛

𝐺𝑛

14

The Recursive Construction of 𝐻𝑛

𝐺𝑛

𝐻𝑛/2

…

14

The Recursive Construction of 𝐻𝑛

𝐺𝑛

𝐻𝑛/2

…

𝐴1, … , 𝐴𝑛/2

14

2/𝑘 Upper Bound Proof

Proof.
The construction guarantees:

1. There are 𝑛 red and 𝑛 blue edges.
2. The edges appear in 𝑛 phases, each of which consists of
one red and one blue edge where the color is chosen
uniformly and independently at random.

3. Every blue edge intersects all future edges.
4. Every red edge is disjoint from all future edges.

Thus, the algorithm can still only get 2 whereas OPT = 𝑛.

15

2/𝑘 Upper Bound Proof

Proof.
The construction guarantees:

1. There are 𝑛 red and 𝑛 blue edges.

2. The edges appear in 𝑛 phases, each of which consists of
one red and one blue edge where the color is chosen
uniformly and independently at random.

3. Every blue edge intersects all future edges.
4. Every red edge is disjoint from all future edges.

Thus, the algorithm can still only get 2 whereas OPT = 𝑛.

15

2/𝑘 Upper Bound Proof

Proof.
The construction guarantees:

1. There are 𝑛 red and 𝑛 blue edges.
2. The edges appear in 𝑛 phases, each of which consists of
one red and one blue edge where the color is chosen
uniformly and independently at random.

3. Every blue edge intersects all future edges.
4. Every red edge is disjoint from all future edges.

Thus, the algorithm can still only get 2 whereas OPT = 𝑛.

15

2/𝑘 Upper Bound Proof

Proof.
The construction guarantees:

1. There are 𝑛 red and 𝑛 blue edges.
2. The edges appear in 𝑛 phases, each of which consists of
one red and one blue edge where the color is chosen
uniformly and independently at random.

3. Every blue edge intersects all future edges.

4. Every red edge is disjoint from all future edges.

Thus, the algorithm can still only get 2 whereas OPT = 𝑛.

15

2/𝑘 Upper Bound Proof

Proof.
The construction guarantees:

1. There are 𝑛 red and 𝑛 blue edges.
2. The edges appear in 𝑛 phases, each of which consists of
one red and one blue edge where the color is chosen
uniformly and independently at random.

3. Every blue edge intersects all future edges.
4. Every red edge is disjoint from all future edges.

Thus, the algorithm can still only get 2 whereas OPT = 𝑛.

15

2/𝑘 Upper Bound Proof

Proof.
The construction guarantees:

1. There are 𝑛 red and 𝑛 blue edges.
2. The edges appear in 𝑛 phases, each of which consists of
one red and one blue edge where the color is chosen
uniformly and independently at random.

3. Every blue edge intersects all future edges.
4. Every red edge is disjoint from all future edges.

Thus, the algorithm can still only get 2 whereas OPT = 𝑛.

15

Remarks and Future Work

• Note that the best known approximation algorithm (offline)
achieves 3/𝑘.

• For 𝑘 = 2 it is known, that 1/2 is the best competitive ratio.
• Open Problem: Is there any 𝑘 where we can beat 1/𝑘 by any
amount?

• Open Problem: Can we show that asymptotically, 1/𝑘 is the
best possible?

16

Remarks and Future Work

• Note that the best known approximation algorithm (offline)
achieves 3/𝑘.

• For 𝑘 = 2 it is known, that 1/2 is the best competitive ratio.
• Open Problem: Is there any 𝑘 where we can beat 1/𝑘 by any
amount?

• Open Problem: Can we show that asymptotically, 1/𝑘 is the
best possible?

16

Remarks and Future Work

• Note that the best known approximation algorithm (offline)
achieves 3/𝑘.

• For 𝑘 = 2 it is known, that 1/2 is the best competitive ratio.

• Open Problem: Is there any 𝑘 where we can beat 1/𝑘 by any
amount?

• Open Problem: Can we show that asymptotically, 1/𝑘 is the
best possible?

16

Remarks and Future Work

• Note that the best known approximation algorithm (offline)
achieves 3/𝑘.

• For 𝑘 = 2 it is known, that 1/2 is the best competitive ratio.
• Open Problem: Is there any 𝑘 where we can beat 1/𝑘 by any
amount?

• Open Problem: Can we show that asymptotically, 1/𝑘 is the
best possible?

16

Remarks and Future Work

• Note that the best known approximation algorithm (offline)
achieves 3/𝑘.

• For 𝑘 = 2 it is known, that 1/2 is the best competitive ratio.
• Open Problem: Is there any 𝑘 where we can beat 1/𝑘 by any
amount?

• Open Problem: Can we show that asymptotically, 1/𝑘 is the
best possible?

16

Fractional Setting

Lower Bound: Water-Filling

Somewhat surprisingly, we can do much better for the fractional
setting:

Theorem
For the fractional 𝑘-uniform online hypergraph matching
problem, there exists a 1−𝑜(1)

ln 𝑘 -competitive algorithm.

17

Lower Bound: Water-Filling

Somewhat surprisingly, we can do much better for the fractional
setting:

Theorem
For the fractional 𝑘-uniform online hypergraph matching
problem, there exists a 1−𝑜(1)

ln 𝑘 -competitive algorithm.

17

Water-Filling Algorithm

Algorithm 1: Hypergraph Water-Filling
1 For each 𝑖 ∈ 𝑉, let 𝑥𝑖 = ∑𝑒∶𝑖∈𝑒 𝑦𝑒.
2 for each edge 𝑒 which arrives do
3 Match 𝑒 continuously as long as ∑𝑖∈𝑒(𝑘 ln(𝑘))𝑥𝑖−1 ≤ 1.

Here 𝑦𝑒 is the fill-level of edge 𝑒. The crucial part of the
algorithm is the early stopping condition which depends on 𝑘.

18

Water-Filling Proof Sketch

Proof.
When Water-Filling is matching edge 𝑒 in line 3, we interpret
the quantity ∑𝑖∈𝑒(𝑘 ln(𝑘))𝑥𝑖−1 as the price of edge 𝑒.

Accordingly, if 𝑒 is matched some by some infinitesimal
amount d𝑡, then,

1. For every resource 𝑖 ∈ 𝑒, we increase the revenue 𝑟𝑖 by
(𝑘 ln(𝑘))𝑥𝑖−1d𝑡.

2. We increase the utility 𝑢𝑒 of 𝑒 by (1 − ∑𝑖∈𝑒(𝑘 ln(𝑘))𝑥𝑖−1)d𝑡.

Note that this implies that the total sum of all revenues and
utilities is equal to the total size of the matching.

19

Water-Filling Proof Sketch

Proof.
When Water-Filling is matching edge 𝑒 in line 3, we interpret
the quantity ∑𝑖∈𝑒(𝑘 ln(𝑘))𝑥𝑖−1 as the price of edge 𝑒.
Accordingly, if 𝑒 is matched some by some infinitesimal
amount d𝑡, then,

1. For every resource 𝑖 ∈ 𝑒, we increase the revenue 𝑟𝑖 by
(𝑘 ln(𝑘))𝑥𝑖−1d𝑡.

2. We increase the utility 𝑢𝑒 of 𝑒 by (1 − ∑𝑖∈𝑒(𝑘 ln(𝑘))𝑥𝑖−1)d𝑡.

Note that this implies that the total sum of all revenues and
utilities is equal to the total size of the matching.

19

Water-Filling Proof Sketch

Proof.
When Water-Filling is matching edge 𝑒 in line 3, we interpret
the quantity ∑𝑖∈𝑒(𝑘 ln(𝑘))𝑥𝑖−1 as the price of edge 𝑒.
Accordingly, if 𝑒 is matched some by some infinitesimal
amount d𝑡, then,

1. For every resource 𝑖 ∈ 𝑒, we increase the revenue 𝑟𝑖 by
(𝑘 ln(𝑘))𝑥𝑖−1d𝑡.

2. We increase the utility 𝑢𝑒 of 𝑒 by (1 − ∑𝑖∈𝑒(𝑘 ln(𝑘))𝑥𝑖−1)d𝑡.

Note that this implies that the total sum of all revenues and
utilities is equal to the total size of the matching.

19

Water-Filling Proof Sketch II

Proof.
Now one can show for every 𝑒 ∈ 𝐸:

𝑢𝑒 + ∑
𝑖∈𝑒

𝑟𝑖 ≥
1 − 1

ln(𝑘)
ln(𝑘) + ln(ln(𝑘)) ≥

1 − 𝑜(1)
ln(𝑘) .

The theorem then follows via weak duality since 𝑢𝑒 and 𝑟𝑖 can
be scaled up to be a dual solution for the fractional
hypergraph matching LP.

20

Water-Filling Proof Sketch II

Proof.
Now one can show for every 𝑒 ∈ 𝐸:

𝑢𝑒 + ∑
𝑖∈𝑒

𝑟𝑖 ≥
1 − 1

ln(𝑘)
ln(𝑘) + ln(ln(𝑘)) ≥

1 − 𝑜(1)
ln(𝑘) .

The theorem then follows via weak duality since 𝑢𝑒 and 𝑟𝑖 can
be scaled up to be a dual solution for the fractional
hypergraph matching LP.

20

Upper Bound

In the fractional setting, we can give a matching upper bound
(asymptotically):

Theorem
There does not exist any online algorithm which is
1+𝜖
ln(𝑘)-competitive for the 𝑘-uniform online hypergraph
matching problem as 𝑘 tends to infinity.

21

Upper Bound

In the fractional setting, we can give a matching upper bound
(asymptotically):

Theorem
There does not exist any online algorithm which is
1+𝜖
ln(𝑘)-competitive for the 𝑘-uniform online hypergraph
matching problem as 𝑘 tends to infinity.

21

Upper Bound Construction (𝑘 = 10, 𝑙 = 3, 𝛿 = 0.5)

22

Upper Bound Construction (𝑘 = 10, 𝑙 = 3, 𝛿 = 0.5)

22

Upper Bound Construction (𝑘 = 10, 𝑙 = 3, 𝛿 = 0.5)

22

Upper Bound Construction (𝑘 = 10, 𝑙 = 3, 𝛿 = 0.5)

22

Upper Bound Construction (𝑘 = 10, 𝑙 = 3, 𝛿 = 0.5)

22

Upper Bound Construction (𝑘 = 10, 𝑙 = 3, 𝛿 = 0.5)

22

Upper Bound Construction (𝑘 = 10, 𝑙 = 3, 𝛿 = 0.5)

22

Upper Bound Construction (𝑘 = 10, 𝑙 = 3, 𝛿 = 0.5)

22

Upper Bound Construction (𝑘 = 10, 𝑙 = 3, 𝛿 = 0.5)

22

Upper Bound Proof Sketch

Proof.
Let 𝛼 be the competitive ratio. There are (1 − 𝑜(1)) log1+𝛿(𝑘)
phases. In each, we cover 𝑙 edges with at least (1 + 𝛿)𝑙 − 1
edges. Thus ALG ≥ 𝛼OPT ≥ 𝛼(1 − 𝑜(1)) log1+𝛿(𝑘)(𝛿𝑙 − 1).

Let 𝐸⋆ ⊆ 𝐸 be the most used edges picked in each iteration
and let 𝑦 be the fractional matching constructed by the
algorithm. Then because these edges are always the 𝑙 most
covered edges we know that

𝑦(𝐸⋆) ≥ min
𝑚≥1

𝑙

⌊ 𝑙𝑚
⌊ 𝑚

1+𝛿 ⌋
⌋
ALG ≥

1
1 + 𝛿 − 1

𝑙

ALG.

23

Upper Bound Proof Sketch

Proof.
Let 𝛼 be the competitive ratio. There are (1 − 𝑜(1)) log1+𝛿(𝑘)
phases. In each, we cover 𝑙 edges with at least (1 + 𝛿)𝑙 − 1
edges. Thus ALG ≥ 𝛼OPT ≥ 𝛼(1 − 𝑜(1)) log1+𝛿(𝑘)(𝛿𝑙 − 1).

Let 𝐸⋆ ⊆ 𝐸 be the most used edges picked in each iteration
and let 𝑦 be the fractional matching constructed by the
algorithm. Then because these edges are always the 𝑙 most
covered edges we know that

𝑦(𝐸⋆) ≥ min
𝑚≥1

𝑙

⌊ 𝑙𝑚
⌊ 𝑚

1+𝛿 ⌋
⌋
ALG ≥

1
1 + 𝛿 − 1

𝑙

ALG.

23

Upper Bound Proof Sketch II

Proof.
Lastly, we know that that all edges in 𝐸⋆ overlap in the final 𝑙
vertices. Thus 𝑦(𝐸⋆) ≤ 𝑙 and by combining we get

𝛼 ≤
(1 + 𝛿 − 1

𝑙) 𝑙
(1 − 𝑜(1)) log1+𝛿(𝑘)(𝛿𝑙 − 1)

=
((1 + 𝛿)𝑙 − 1) ln(1 + 𝛿)

(1 − 𝑜(1))(𝛿𝑙 − 1) ⋅
1

ln(𝑘)

24

Remarks and Future Work

• It is interesting that there is such a huge gap between
integral and fractional here (unlike for other online
matching problems).

• The result can be extended to edge weights under a
free-disposal assumption.

• The only exact tight bounds are known for 𝑘 = 2. For larger
𝑘 we know better lower / upper bounds than shown here
but they are not tight.

25

Remarks and Future Work

• It is interesting that there is such a huge gap between
integral and fractional here (unlike for other online
matching problems).

• The result can be extended to edge weights under a
free-disposal assumption.

• The only exact tight bounds are known for 𝑘 = 2. For larger
𝑘 we know better lower / upper bounds than shown here
but they are not tight.

25

Remarks and Future Work

• It is interesting that there is such a huge gap between
integral and fractional here (unlike for other online
matching problems).

• The result can be extended to edge weights under a
free-disposal assumption.

• The only exact tight bounds are known for 𝑘 = 2. For larger
𝑘 we know better lower / upper bounds than shown here
but they are not tight.

25

Thank your for listening!

25

	Online Bipartite Matching
	Online Hypergraph Matching
	Integral Setting
	Fractional Setting

