Online Matching with High Probability

Thorben Tröbst (joint work with Milena Mihail)
Theory Seminar, January 13, 2022

Department of Computer Science, University of California, Irvine
Randomized Algorithms and Concentration
Many problems in computer science can be solved in a more natural, efficient, or better way using randomization. You all know many examples such as:

- Quicksort
- Miller-Rabin primality test
- Hashing
- Polynomial identity testing
- Perfect matching on parallel machines
- etc...
However, usually the focus is on expectation or showing non-zero probability of success. For example, let C be the total number of comparisons of Quicksort with random pivots.
Expectation versus Concentration

However, usually the focus is on expectation or showing non-zero probability of success. For example, let C be the total number of comparisons of Quicksort with random pivots.

- Most people have seen: $E[C] = O(n \log n)$.

- Fewer know: $P[C > c_0 \cdot n \log n] < \frac{1}{n}$ for some c_0.

- But did you know: $P[|C/E[C] - 1| > \epsilon] < n^{-2 \epsilon (\ln \ln n - \ln(1/\epsilon) + O(\ln \ln \ln n))}$.
However, usually the focus is on expectation or showing non-zero probability of success. For example, let C be the total number of comparisons of Quicksort with random pivots.

- Most people have seen: $\mathbb{E}[C] = O(n \log n)$.
- Fewer know: $\mathbb{P}[C > c_0 \cdot n \log n] < \frac{1}{n}$ for some c_0.
Expectation versus Concentration

However, usually the focus is on expectation or showing non-zero probability of success. For example, let C be the total number of comparisons of Quicksort with random pivots.

- Most people have seen: $\mathbb{E}[C] = O(n \log n)$.
- Fewer know: $\mathbb{P}[C > c_0 \cdot n \log n] < \frac{1}{n}$ for some c_0.
- But did you know:

$$\mathbb{P}[|C/\mathbb{E}[C] - 1| > \epsilon] < n^{-2\epsilon(\ln \ln n - \ln(1/\epsilon) + O(\ln \ln \ln n))}$$
Usefulness of Concentration

- Tight concentration bounds like those for Quicksort provide useful information about behavior in practice.
• Tight concentration bounds like those for Quicksort provide useful information about behavior in practice.
• They tell us that bad behavior is extremely unlikely!
Usefulness of Concentration

- Tight concentration bounds like those for Quicksort provide useful information about behavior in practice.
- They tell us that bad behavior is extremely unlikely!
Usefulness of Concentration

• Tight concentration bounds like those for Quicksort provide useful information about behavior in practice.
• They tell us that bad behavior is extremely unlikely!

However, outside of a few areas (e.g. graph coloring), concentration results are relatively rare because of boosting:
Usefulness of Concentration

- Tight concentration bounds like those for Quicksort provide useful information about behavior in practice.
- They tell us that bad behavior is extremely unlikely!

However, outside of a few areas (e.g. graph coloring), concentration results are relatively rare because of boosting:

- Want good performance? Simply run the algorithm $O(\log n)$ many times.
Usefulness of Concentration

- Tight concentration bounds like those for Quicksort provide useful information about behavior in practice.
- They tell us that bad behavior is extremely unlikely!

However, outside of a few areas (e.g. graph coloring), concentration results are relatively rare because of boosting:

- Want good performance? Simply run the algorithm $O(\log n)$ many times.
- Want good runtime? Simply run the algorithm $O(\log n)$ many times in parallel.
Online Algorithms cannot be repeated and thus cannot be boosted! Still, fairly few examples of online algorithms analyzed wrt. concentration, e.g.

- Online Randomized Call Control Revisited (Leonardi, Marchetti-Spaccamela, Presciutti, Rosen 2001)
- Randomized Online Algorithms with High Probability Guarantees (Komm, Kralovic, Kralovic, Mömke 2014)
- Online Edge Coloring Algorithms via the Nibble Method (Bhattacharya, Grandoni, Wajc 2020)

Should be more results like this!
Online Algorithms cannot be repeated and thus cannot be boosted! Still, fairly few examples of online algorithms analyzed wrt. concentration, e.g.

- Online Randomized Call Control Revisited (Leonardi, Marchetti-Spaccamela, Presciutti, Rosen 2001)
Online Algorithms cannot be repeated and thus cannot be boosted! Still, fairly few examples of online algorithms analyzed wrt. concentration, e.g.

- Online Randomized Call Control Revisited (Leonardi, Marchetti-Spaccamela, Presciutti, Rosen 2001)
- Randomized Online Algorithms with High Probability Guarantees (Komm, Kralovic, Kralovic, Mömke 2014)
Online Algorithms cannot be repeated and thus cannot be boosted! Still, fairly few examples of online algorithms analyzed wrt. concentration, e.g.

- Online Randomized Call Controll Revisited (Leonardi, Marchetti-Spaccamela, Presciutti, Rosen 2001)
- Randomized Online Algorithms with High Probability Guarantees (Komm, Kralovic, Kralovic, Mömke 2014)
- Online Edge Coloring Algorithms via the Nibble Method (Bhattacharya, Grandoni, Wajc 2020)
Concentration for Online Algorithms

Online Algorithms cannot be repeated and thus cannot be boosted! Still, fairly few examples of online algorithms analyzed wrt. concentration, e.g.

- Online Randomized Call Controll Revisited (Leonardi, Marchetti-Spaccamela, Presciutti, Rosen 2001)
- Randomized Online Algorithms with High Probability Guarantees (Komm, Kralovic, Kralovic, Mömke 2014)
- Online Edge Coloring Algorithms via the Nibble Method (Bhattacharya, Grandoni, Wajc 2020)

Should be more results like this!
The tools used for proving concentration of randomized algorithms, are nice results from probability theory:
The tools used for proving concentration of randomized algorithms, are nice results from probability theory:

- Chernoff-Hoeffding bounds
The tools used for proving concentration of randomized algorithms, are nice results from probability theory:

- Chernoff-Hoeffding bounds
- Martingale inequalities (Azuma, McDiarmid)
The tools used for proving concentration of randomized algorithms, are nice results from probability theory:

- Chernoff-Hoeffding bounds
- **Martingale inequalities** (Azuma, McDiarmid)
- Isoperimetric inequalities (Talagrand)

See "Concentration of Measure for the Analysis of Randomized Algorithms" by Dubhashi and Panconesi.
The tools used for proving concentration of randomized algorithms, are nice results from probability theory:

- Chernoff-Hoeffding bounds
- Martingale inequalities (Azuma, McDiarmid)
- Isoperimetric inequalities (Talagrand)
- Transportation cost inequalities

See "Concentration of Measure for the Analysis of Randomized Algorithms" by Dubhashi and Panconesi.
Tools for Proving Concentration

The tools used for proving concentration of randomized algorithms, are nice results from probability theory:

- Chernoff-Hoeffding bounds
- Martingale inequalities (Azuma, McDiarmid)
- Isoperimetric inequalities (Talagrand)
- Transportation cost inequalities
- log-Sobolev inequalities

See “Concentration of Measure for the Analysis of Randomized Algorithms” by Dubhashi and Panconesi.
Tools for Proving Concentration

The tools used for proving concentration of randomized algorithms, are nice results from probability theory:

- Chernoff-Hoeffding bounds
- Martingale inequalities (Azuma, McDiarmid)
- Isoperimetric inequalities (Talagrand)
- Transportation cost inequalities
- log-Sobolev inequalities
- ...

See “Concentration of Measure for the Analysis of Randomized Algorithms” by Dubhashi and Panconesi.
Tools for Proving Concentration

The tools used for proving concentration of randomized algorithms, are nice results from probability theory:

- Chernoff-Hoeffding bounds
- Martingale inequalities (Azuma, McDiarmid)
- Isoperimetric inequalities (Talagrand)
- Transportation cost inequalities
- log-Sobolev inequalities
- ...

See “Concentration of Measure for the Analysis of Randomized Algorithms” by Dubhashi and Panconesi
Online Bipartite Matching
$G = (S, B, E)$ is a bipartite graph consisting of offline vertices S and online vertices B.
$G = (S, B, E)$ is a bipartite graph consisting of offline vertices S and online vertices B.

Online vertices arrive one by one in adverserial order.
$G = (S, B, E)$ is a bipartite graph consisting of offline vertices S and online vertices B.

Online vertices arrive one by one in adverserial order.

The algorithm must irrevocably and immediately match revealed online vertices.
$G = (S, B, E)$ is a bipartite graph consisting of offline vertices S and online vertices B.

Online vertices arrive one by one in adverserial order.

The algorithm must irrevocably and immediately match revealed online vertices.

The goal is to maximize the competitive ratio, i.e.

$$\frac{|M_{\text{online}}|}{\text{OPT}_{\text{offline}}}.$$
Classic results for Online Bipartite Matching:

• The GREEDY algorithm (match whenever possible) is $\frac{1}{2}$-competitive.

• $\frac{1}{2}$-competitive is best possible for deterministic algorithms.

• The randomized RANKING algorithm is $(1 - \frac{1}{e})$-competitive in expectation.

• $(1 - \frac{1}{e})$-competitive in expectation is best possible for randomized algorithms.
Classic results for Online Bipartite Matching:

- The GREEDY algorithm (match whenever possible) is 1/2-competitive.
Classic results for Online Bipartite Matching:

- The GREEDY algorithm (match whenever possible) is 1/2-competitive.
- 1/2-competitive is best possible for deterministic algorithms.
Classic results for Online Bipartite Matching:

- The GREEDY algorithm (match whenever possible) is $1/2$-competitive.
- $1/2$-competitive is best possible for deterministic algorithms.
- The randomized RANKING algorithm is $(1 – 1/e)$-competitive in expectation.
Classic results for Online Bipartite Matching:

- The **GREEDY** algorithm (match whenever possible) is $1/2$-competitive.
- $1/2$-competitive is best possible for **deterministic** algorithms.
- The **randomized** RANKING algorithm is $(1 - 1/e)$-competitive in expectation.
- $(1 - 1/e)$-competitive in expectation is best possible for **randomized** algorithms.
RANKING with High Probability
There are two equivalent descriptions of RANKING:

1. Pick a uniformly random permutation π on the offline vertices.
2. Whenever online vertex i arrives, match it to an unmatched $j \in N(i)$ that comes first wrt. π.
3. Pick a uniformly random real $x_j \in [0, 1]$ for each offline vertex j.
4. Whenever online vertex i arrives, match it to an unmatched $j \in N(i)$ minimizing x_j.
There are two equivalent descriptions of RANKING:

- Pick a uniformly random permutation π on the offline vertices.
There are two equivalent descriptions of RANKING:

- Pick a uniformly random permutation π on the offline vertices.
- Whenever online vertex i arrives, match it to an unmatched $j \in N(i)$ that comes first wrt. π.
There are two equivalent descriptions of RANKING:

• Pick a uniformly random permutation π on the offline vertices.

• Whenever online vertex i arrives, match it to an unmatched $j \in N(i)$ that comes first wrt. π.

is equivalent to
There are two equivalent descriptions of RANKING:

- Pick a uniformly random permutation π on the offline vertices.
- Whenever online vertex i arrives, match it to an unmatched $j \in N(i)$ that comes first wrt. π.

is equivalent to

- Pick a uniformly random real $x_j \in [0, 1]$ for each offline vertex j.
The RANKING Algorithm

There are two equivalent descriptions of RANKING:

1. Pick a uniformly random permutation π on the offline vertices.
2. Whenever online vertex i arrives, match it to an unmatched $j \in N(i)$ that comes first wrt. π.

is equivalent to

1. Pick a uniformly random real $x_j \in [0, 1]$ for each offline vertex j.
2. Whenever online vertex i arrives, match it to an unmatched $j \in N(i)$ minimizing x_j.
RANKING Example

-
-
-
-
-
-
-
-
RANKING Example

0.6
0.5
0.4
0.9
0.7
0.3
RANKING Example

- 0.6
- 0.5
- 0.4
- 0.9
- 0.7
- 0.3
RANKING Example
RANKING Example

0.6

0.5

0.4

0.9

0.7

0.3
RANKING Example
RANKING Example
RANKING Example

0.6

0.5

0.4

0.9

0.7

0.3
RANKING Example

0.6
0.5
0.4
0.9
0.7
0.3
RANKING Example

\[0.6 \leftrightarrow 0.3 \]
\[0.5 \leftrightarrow 0.7 \]

\[0.9 \leftrightarrow 0.3 \]
Main Theorem

Theorem

Consider an instance \((S, B, E)\) of the Biparite Online Matching Problem which admits a matching of size \(n\). Then for any \(\alpha > 0\) and any arrival order,

\[
\mathbb{P} \left[|M| < \left(1 - \frac{1}{e} - \alpha\right)n \right] < e^{-2\alpha^2 n}
\]

where \(M\) is the random variable denoting the matching generated by RANKING.
Theorem

Consider an instance \((S, B, E)\) of the Biparite Online Matching Problem which admits a matching of size \(n\). Then for any \(\alpha > 0\) and any arrival order,

\[
\mathbb{P}\left[|M| < \left(1 - \frac{1}{e} - \alpha \right) n \right] < e^{-2\alpha^2 n}
\]

where \(M\) is the random variable denoting the matching generated by RANKING.

For now assume that \(n\) is also the number of offline / online vertex (i.e. there is a perfect matching).
McDiarmid’s Inequality

We will use the this nice consequence of Azuma’s inequality:
McDiarmid’s Inequality

We will use the this nice consequence of Azuma’s inequality:

Lemma (McDiarmid 1989)

Let $c_1, \ldots, c_n \in \mathbb{R}_+$ and consider some function $f : [0, 1]^n \to \mathbb{R}$ satisfying

$$|f(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n) - f(x_1, \ldots, x_n)| \leq c_i$$

for all $x \in [0, 1]^n$, $i \in [n]$ and $x'_i \in [0, 1]$. Moreover let Δ^n be the uniform distribution on $[0, 1]^n$. Then for all $t > 0$, we have

$$\mathbb{P}_{x \sim \Delta^n} [f(x) < \mathbb{E}_{y \sim \Delta^n} [f(y)] - t] < e^{-\frac{2t^2}{\sum_{i=1}^n c_i^2}}.$$
Proof Strategy

The general strategy is as follows:

1. Let $f(x_1, \ldots, x_n)$ be the size of matching output by RANKING with samples x_1, \ldots, x_n.

2. Prove the necessary bounded differences property of f.

Lemma (Bounded Differences)

Let $x \in [0, 1]^S$, $j^* \in S$ and $\theta \in [0, 1]$ be arbitrary. Define x'_{j^*} to be θ if $j = j^*$ and x_j otherwise. Then $|f(x) - f(x')| \leq 1$.

3. Apply McDiarmid's inequality with $t = \alpha n$ and $c_i = 1$.

The general strategy is as follows:

1. Let $f(x_1, \ldots, x_n)$ be the size of matching output by RANKING with samples x_1, \ldots, x_n.

Lemma (Bounded Differences)

Let $x \in [0, 1]^S$, $j^\star \in S$ and $\theta \in [0, 1]$ be arbitrary. Define x'_{j^\star} to be θ if $j = j^\star$ and x_j otherwise. Then

$$|f(x) - f(x')| \leq 1.$$

2. Prove the necessary bounded differences property of f.

3. Apply McDiarmid's inequality with $t = \alpha n$ and $c_i = 1$.

Proof Strategy
The general strategy is as follows:

1. Let $f(x_1, \ldots, x_n)$ be the size of matching output by RANKING with samples x_1, \ldots, x_n.

2. Prove the necessary **bounded differences property** of f.

Lemma (Bounded Differences)

Let $x \in [0, 1]^S$, $j^* \in S$ and $\theta \in [0, 1]$ be arbitrary. Define x'_j to be θ if $j = j^*$ and x_j otherwise. Then $|f(x) - f(x')| \leq 1$.
Proof Strategy

The general strategy is as follows:

1. Let \(f(x_1, \ldots, x_n) \) be the size of matching output by RANKING with samples \(x_1, \ldots, x_n \).

2. Prove the necessary **bounded differences property** of \(f \).

Lemma (Bounded Differences)

Let \(x \in [0, 1]^S \), \(j^* \in S \) and \(\theta \in [0, 1] \) be arbitrary. Define \(x'_j \) to be \(\theta \) if \(j = j^* \) and \(x_j \) otherwise. Then \(|f(x) - f(x')| \leq 1 \).

3. Apply McDiarmid’s inequality with \(t = \alpha n \) and \(c_i = 1 \).
Bounded differences follows directly from the following:

Lemma

Let $j \in S$, then we can define the graph G_{-j} which contains all vertices of G except for j. For some fixed values of $x \in [0, 1]^S$, we let M be the matching produced by RANKING in G and let M_{-j} be the matching produced by RANKING in G_{-j}. Then $|M_{-j}| \leq |M| \leq |M_{-j}| + 1$.
Bounded differences follows directly from the following:

Lemma

Let \(j \in S \), then we can define the graph \(G_{-j} \) which contains all vertices of \(G \) except for \(j \). For some fixed values of \(x \in [0, 1]^S \), we let \(M \) be the matching produced by RANKING in \(G \) and let \(M_{-j} \) be the matching produced by RANKING in \(G_{-j} \). Then \(|M_{-j}| \leq |M| \leq |M_{-j}| + 1 \).

Proof. Live. \(\square \)
In conclusion, for the Online Bipartite Matching Problem:

- We get a non-trivial exponential concentration result (i.e. no boosting).
- The proof is elegant and uses a nice result from probability theory with an equally nice structural lemma.
- This should be just as well-known as $E[|M|] \geq (1 - 1/e)n!$.

Can this be extended to other Online Matching Problems? Yes!
In conclusion, for the Online Bipartite Matching Problem:

- We get a non-trivial exponential concentration result (i.e. no boosting).
In conclusion, for the Online Bipartite Matching Problem:

- We get a non-trivial exponential concentration result (i.e. no boosting).
- The proof is elegant and uses a nice result from probability theory with an equally nice structural lemma about matchings.
In conclusion, for the Online Bipartite Matching Problem:

- We get a non-trivial exponential concentration result (i.e. no boosting).
- The proof is elegant and uses a nice result from probability theory with an equally nice structural lemma about matchings.
- This should be just as well-known as $\mathbb{E}[|M|] \geq (1 - 1/e)n!$

Can this be extended to other Online Matching Problems? Yes!
Generalizations
In Fully Online Matching:

- We have an (in general) non-bipartite graph $G = (V, E)$.
- Vertices arrive and depart in adversarial order.
- Vertices must be matched after they arrive and before they depart.

Models, e.g., ride-sharing problems and is a direct generalization of Online Bipartite Matching!
In Fully Online Matching:

- We have an (in general) non-bipartite graph $G = (V, E)$.
In Fully Online Matching:

- We have an (in general) non-bipartite graph $G = (V, E)$.
- Vertices arrive and depart in adverserial order.

Models e.g. ride-sharing problems and is a direct generalization of Online Bipartite Matching!
In Fully Online Matching:

- We have an (in general) non-bipartite graph $G = (V, E)$.
- Vertices arrive and depart in adversarial order.
- Vertices must be matched after they arrive and before they depart.

⇒ Models e.g. ride-sharing problems and is a direct generalization of Online Bipartite Matching!
The RANKING algorithm can still be used:

• Whenever vertex i arrives, assign a uniformly random real $x_i \in [0, 1]$.
• Whenever vertex i departs, if it has not been matched, match it to an unmatched neighbor minimizing x_i.
The RANKING algorithm can still be used:

- Whenever vertex i arrives, assign a uniformly random real $x_i \in [0, 1]$.
The RANKING algorithm can still be used:

- Whenever vertex \(i \) arrives, assign a uniformly random real \(x_i \in [0, 1] \).
- Whenever vertex \(i \) departs, if it has not been matched, match it to an unmatched neighbor minimizing \(x_i \).
The RANKING algorithm can still be used:

- Whenever vertex i arrives, assign a uniformly random real $x_i \in [0, 1]$.
- Whenever vertex i departs, if it has not been matched, match it to an unmatched neighbor minimizing x_i.

Huang, Kang, Tang, Wu, Zhang 2018: 0.521-competitive in general, 0.567-competitive on bipartite graphs.
Theorem

Let G be an instance of the Fully Online Matching Problem which admits a matching of size n. Then for any $\alpha > 0$,

$$\mathbb{P} \left[|M| < (\rho - \alpha) n \right] < e^{-\alpha^2 n}$$

where M is the random variable denoting the matching generated by RANKING and ρ is the competitive ratio of RANKING.
Theorem

Let G be an instance of the Fully Online Matching Problem which admits a matching of size n. Then for any $\alpha > 0$,

$$\mathbb{P}[|M| < (\rho - \alpha) n] < e^{-\alpha^2 n}$$

where M is the random variable denoting the matching generated by RANKING and ρ is the competitive ratio of RANKING.

Proof. Almost the same as for Online Bipartite Matching! \qed
In Online Vertex-Weighted Bipartite Matching:

• We have a bipartite graph $G = (S, B, E)$ but also weights $w: S \rightarrow \mathbb{R} \geq 0$.
• Vertices from B arrive online in adversarial order and must be matched immediately.
• Goal is to maximize weight of matched vertices.

Note. Edge-weighted also exists but is much harder!
In Online Vertex-Weighted Bipartite Matching:

- We have a bipartite graph $G = (S, B, E)$ but also weights $w : S \to \mathbb{R}_{\geq 0}$.
- Vertices from B arrive online in adversarial order and must be matched immediately.
- Goal is to maximize weight of matched vertices.

Note. Edge-weighted also exists but is much harder!
In Online Vertex-Weighted Bipartite Matching:

- We have a bipartite graph $G = (S, B, E)$ but also weights $w : S \rightarrow \mathbb{R}_{\geq 0}$.
- Vertices from B arrive online in adversarial order and must be matched immediately.
In Online Vertex-Weighted Bipartite Matching:

- We have a bipartite graph $G = (S, B, E)$ but also weights $w : S \rightarrow \mathbb{R}_{\geq 0}$.
- Vertices from B arrive online in adversarial order and must be matched immediately.
- Goal is to maximize weight of matched vertices.
Vertex-Weighted Matching

In Online Vertex-Weighted Bipartite Matching:

• We have a bipartite graph $G = (S, B, E)$ but also weights $w : S \rightarrow \mathbb{R}_{\geq 0}$.

• Vertices from B arrive online in adverserial order and must be matched immediately.

• Goal is to maximize weight of matched vertices.

Note. Edge-weighted also exists but is much harder!
RANKING for Vertex-Weighted Matching

With vertex-weights, RANKING needs to bias the distribution on permutations:

• For each \(j \in S \), sample a uniformly random real \(x_j \in [0, 1] \).

• Assign a utility \(u_j = w_j (1 - e^{-x_j}) \).

• When \(i \in B \) arrives, match to unmatched neighbor \(j \) maximizing \(u_j \).

Well known that this still gives \((1 - 1/e)\)-competitive!
With vertex-weights, RANKING needs to bias the distribution on permutations:

- For each $j \in S$, sample a uniformly random real $x_j \in [0, 1]$.
- Assign a utility $u_j = w_j \left(1 - e^{x_j} - 1 \right)$.
- When $i \in B$ arrives, match to unmatched neighbor j maximizing u_j.

Well known that this still gives $(1 - 1/e)$-competitive!
With vertex-weights, RANKING needs to bias the distribution on permutations:

- For each $j \in S$, sample a uniformly random real $x_j \in [0, 1]$.
- Assign a utility $u_j = w_j(1 - e^{x_j-1})$.
With vertex-weights, RANKING needs to bias the distribution on permutations:

- For each $j \in S$, sample a uniformly random real $x_j \in [0, 1]$.
- Assign a utility $u_j = w_j(1 - e^{x_j-1})$.
- When $i \in B$ arrives, match to unmatched neighbor j maximizing u_j.
With vertex-weights, RANKING needs to **bias** the distribution on permutations:

- For each $j \in S$, sample a uniformly random real $x_j \in [0, 1]$.
- Assign a utility $u_j = w_j(1 - e^{x_j-1})$.
- When $i \in B$ arrives, match to unmatched neighbor j maximizing u_j.

Well known that this still gives $(1 - \frac{1}{e})$-competitive!
Concentration for Vertex-Weighted Matching

Theorem

For any $\alpha > 0$, there exists a variant of RANKING such that for any instance $G = (S, B, E)$ with weights $w : S \rightarrow \mathbb{R}_+$ of the Online Vertex-Weighted Bipartite Matching, any arrival order of B and any matching M^*,

$$
\mathbb{P} \left[w(M) < \left(1 - \frac{1}{e} - \alpha \right) w(M^*) \right] < e^{-\frac{1}{50} \alpha^4 \frac{w(M^*)^2}{\|w\|_2^2}}
$$

where M denotes the matching generated by RANKING and

$$
w(M) := \sum_{\{i,j\} \in M} w_j.
$$
Initial idea, show:

Lemma (Weighted Bounded Differences)

Let \(x \in [0, 1]^S \), \(j^* \in S \) and \(\theta \in [0, 1] \) be arbitrary. Define \(x'_j \) to be \(\theta \) if \(j = j^* \) and \(x_j \) otherwise. Then \(|f(x) - f(x')| \leq w_j \) where \(f \) is the weight of the RANKING output.
Proof Idea

Initial idea, show:

Lemma (Weighted Bounded Differences)

Let \(x \in [0, 1]^S \), \(j^* \in S \) and \(\theta \in [0, 1] \) be arbitrary. Define \(x'_j \) to be \(\theta \) if \(j = j^* \) and \(x_j \) otherwise. Then

\[
|f(x) - f(x')| \leq w_j
\]

where \(f \) is the weight of the RANKING output.

This would give

\[
\mathbb{E} \left[w(M) < \left(1 - \frac{1}{e} - \alpha \right) w(M^*) \right] < e^{-\frac{2w(M^*)^2}{||w||_2^2}}
\]

via weighted McDiarmid.
But this does not work!

Consider $x_{j'} > 1 - 10^{-11}$. Then for some values of x_j, i picks j over j' because:

$$w_{j'}(1 - e^{x_{j'} - 1}) < w_j(1 - e^{x_j - 1}).$$
We can use more complicated variants of McDiarmid that avoid bad events.
We can use more complicated variants of McDiarmid that avoid bad events.

Or we can just change the algorithm to ϵ-RANKING:
The Fix

We can use more complicated variants of McDiarmid that avoid bad events.

Or we can just change the algorithm to ϵ-RANKING:

- For each $j \in S$, sample a uniformly random real $x_j \in [0, 1]$.
We can use more complicated variants of McDiarmid that avoid bad events.

Or we can just change the algorithm to ϵ-RANKING:

- For each $j \in S$, sample a uniformly random real $x_j \in [0, 1]$.
- Assign a utility $u_j = w_j(1 - e^{x_j - 1 - \epsilon})$.
We can use more complicated variants of McDiarmid that avoid bad events.

Or we can just change the algorithm to ϵ-RANKING:

- For each $j \in S$, sample a uniformly random real $x_j \in [0, 1]$.
- Assign a utility $u_j = w_j (1 - e^{x_j} - 1 - \epsilon)$.
- When $i \in B$ arrives, match to unmatched neighbor j maximizing u_j.
The Fix

We can use more complicated variants of McDiarmid that avoid bad events.

Or we can just change the algorithm to ϵ-RANKING:

- For each $j \in S$, sample a uniformly random real $x_j \in [0, 1]$.
- Assign a utility $u_j = w_j(1 - e^{x_j-1-\epsilon})$.
- When $i \in B$ arrives, match to unmatched neighbor j maximizing u_j.

This is still $(1 - 1/e - \epsilon)$-competitive!
Now we get:

Lemma (Weighted Bounded Differences)

Let $x \in [0, 1]^S$, $j^* \in S$ and $\theta \in [0, 1]$ be arbitrary. Define x'_j to be θ if $j = j^*$ and x_j otherwise. Then $|f(x) - f(x')| \leq \frac{2}{\epsilon} w_j$ where f is the weight of the ϵ-RANKING output.
Now we get:

Lemma (Weighted Bounded Differences)

Let $x \in [0, 1]^S$, $j^* \in S$ and $\theta \in [0, 1]$ be arbitrary. Define x'_j to be θ if $j = j^*$ and x_j otherwise. Then $|f(x) - f(x')| \leq \frac{2}{\epsilon} w_j$ where f is the weight of the ϵ-RANKING output.

So to get concentration above $(1 - 1/e - \alpha)w(M^*)$:
Now we get:

Lemma (Weighted Bounded Differences)

Let $x \in [0, 1]^S$, $j^* \in S$ and $\theta \in [0, 1]$ be arbitrary. Define x'_j to be θ if $j = j^*$ and x_j otherwise. Then $|f(x) - f(x')| \leq \frac{2}{\epsilon} w_j$ where f is the weight of the ϵ-RANKING output.

So to get concentration above $(1 - 1/e - \alpha)w(M^*)$:

1. Run $\frac{\alpha}{2}$-RANKING to be $(1 - 1/e - \alpha/2)$-competitive.
Now we get:

Lemma (Weighted Bounded Differences)

Let $x \in [0, 1]^S$, $j^* \in S$ and $\theta \in [0, 1]$ be arbitrary. Define x'_j to be θ if $j = j^*$ and x_j otherwise. Then $|f(x) - f(x')| \leq \frac{2}{\epsilon} w_j$ where f is the weight of the ϵ-RANKING output.

So to get concentration above $(1 - 1/e - \alpha)w(M^*)$:

1. Run $\frac{\alpha}{2}$-RANKING to be $(1 - 1/e - \alpha/2)$-competitive.
2. Use McDiarmid with $\alpha/2$ to get concentration above $(1 - 1/e - \alpha/2 - \alpha/2)w(M^*)$. □
Conclusion
Some final remarks:

• Concentration results for randomized algorithms are an underappreciated area!

• Particularly interesting for online algorithms!

• Open problem: is there a way to get $e^{-\frac{\alpha^2}{2}||w||^2}$ bounds for Vertex-Weighted Matching?

• Open problem: is there a way to get dependence on M^* instead of $||w||^2$?

• Open problem: Can you show that these bounds are tight in some sense?
Some final remarks:

- Concentration results for randomized algorithms are an underappreciated area!
Some final remarks:

- Concentration results for randomized algorithms are an underappreciated area!
- Particularly interesting for online algorithms!
Some final remarks:

• Concentration results for randomized algorithms are an underappreciated area!

• Particularly interesting for online algorithms!

• **Open problem:** is there a way to get \(e^{-2\alpha^2 \frac{w(M^*)^2}{||w||^2_2}} \) bounds for Vertex-Weighted Matching?
Some final remarks:

• Concentration results for randomized algorithms are an underappreciated area!

• Particularly interesting for online algorithms!

• **Open problem:** is there a way to get $e^{-2\alpha^2 \frac{w(M^*)^2}{||w||_2^2}}$ bounds for Vertex-Weighted Matching?

• **Open problem:** is there a way to get dependence on M^* instead of $||w||_2^2$?
Some final remarks:

• Concentration results for randomized algorithms are an underappreciated area!

• Particularly interesting for online algorithms!

• **Open problem:** is there a way to get $e^{-2\alpha^2 \frac{w(M^*)^2}{||w||_2^2}}$ bounds for Vertex-Weighted Matching?

• **Open problem:** is there a way to get dependence on M^* instead of $||w||_2^2$?

• **Open problem:** Can you show that these bounds are tight in some sense?
Thank You!