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1 Introduction

The field of matching markets was initiated by the seminal work of Gale and Shapley on stable
matching. Stable matchings have remarkably deep and pristine structural properties, which have
led to polynomial time algorithms for numerous computational problems as well as quintessen-
tial game-theoretic properties. In turn, these have opened up the use of stable matchings to a
host of important applications.

This chapter1 will deal with the following four aspects:

1. Gale and Shapley’s Deferred Acceptance Algorithm for computing a stable matching; we
will sometimes refer to it as the DA Algorithm.

2. Incentive compatibility properties of this algorithm.

3. The fact that the set of all stable matchings of an instance forms a finite, distributive lattice,
and the rich collection of structural properties associated with this fact.

4. Linear programing approach to computing stable matchings.

A general setting: A setting of the stable matching problem which is particularly useful in
applications is the following (this definition is quite complicated because of its generality, and
can be skipped on the first reading).

Definition 1. Let W be a set of n workers and F a set of m firms. Let c be a capacity function
c : F → Z+ giving the maximum number of workers that can be matched to a firm; each worker
can be matched to at most one firm. Also, let G = (W, F, E) be a bipartite graph on vertex sets
W, F and edge set E. For a vertex v in G, let N(v) denote the set of its neighbors in G. Each
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worker w provides a strict preference list l(w) over the set N(w) and each firm f provides a strict
preference list l( f ) over the set N( f ). We will adopt the convention that each worker and firm
prefers getting matched to one of its neighbors to remaining unmatched, and it prefers remaining
unmatched to getting matched to a non-neighbor2. If a worker or firm remains unmatched, we
will say that it is matched to ⊥

We wish to study all four aspects stated for this setting. However, it will be quite unwise and
needlessly cumbersome to study the aspects directly in this setting. It turns out that the stable
matching problem offers a natural progression of settings, hence allowing us to study the aspects
gradually in increasing generality.

1. Setting I: Under this setting n = m, the capacity of each firm is one and graph G is a
complete bipartite graph. Thus in this setting each worker and firm has a total order over
the other side. This simple setting will be used for introducing the core ideas.

2. Setting II: Under this setting n and m are not required to be equal and G is arbitrary;
however, the capacity of each firm is still one. The definition of stability becomes more
elaborate, hence making all four aspects more difficult in this setting. Relying on the foun-
dation laid In Setting I, we will present only the additional ideas needed.

3. Setting III: This is the general setting defined above. We will give a reduction from this set-
ting to Setting II, so that the algorithm and its consequences carry over without additional
work.

2 The Gale-Shapley Deferred Acceptance Algorithm

In this section we will define the notion of a stable matching for all three settings and give an
efficient algorithm for finding it.

2.1 The DA Algorithm for setting I

In this setting, the number of workers and firms is equal, i.e., n = m, and each firm has unit
capacity. Furthermore, each worker and each firm has a total order over the other side.

Notation: If worker w prefers firm f to f ′, then we represent this as f �w f ′; a similar notation is
used for describing the preferences of a firm.

We next recall a key definition from graph theory. Let G = (W, F, E) be a graph with equal
numbers of workers and firms, i.e., |W| = |F|. Then, µ ⊆ E is a perfect matching in G if each
vertex of G has exactly one edge of µ incident at it. If so, µ can also be viewed as a bijection
between W to F. If (w, f ) ∈ µ then we will say that µ matches w to f and use the notation µ(w) = f
and µ( f ) = w.

Definition 2. Worker w and firm f form a blocking pair with respect to a perfect matching µ, if
they prefer each other over their partners in µ, i.e., w ≺ f µ( f ) and f ≺w µ(w).

2An alternative way of defining preference lists, which we will use in Section 3.2 is the following: Each worker w
has a preference list over F ∪ {⊥}, with firms in N(w) listed in the preference order of w, followed by ⊥, followed by
(F \ N(w)) listed in arbitrary order. Similarly, each firm f ’s preference list is over W ∪ {⊥}.
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If (w, f ) form a blocking pair with respect to perfect matching µ, then they have incentive to
secede from matching µ and pair up by themselves. The significance of the notion of stable
matching, defined next, is that no worker-firm pair has an incentive to secede from this matching.
Hence such matchings lie in the core of the particular instance; this key notion will be introduced
in Chapter ??. For now, recall from cooperative game theory that the core consists of solutions
under which no subset of the agents can gain more (i.e., with each one gaining at least as much
and at least one agent gaining strictly more) by seceding from the grand coalition. Additionally,
in Chapter ?? we will also establish that stable matchings are efficient and individually rational.

Definition 3. A perfect matching µ with no blocking pairs is called a stable matching.

It turns out that every instance of the stable matching problem with complete preference lists
has at least one stable matching. Interestingly enough, this fact follows as a corollary of the
Deferred Acceptance Algorithm, which finds in polynomial time one stable matching among the
n! possible perfect matchings in G.

Example 4. Let I be an instance of the stable matching problem with 3 workers and 3 firms and
the following preference lists:

w1 : f2, f1, f3 f1 : w1, w2, w3
w2 : f2, f3, f1 f2 : w1, w2, w3
w3 : f1, f2, f3 f3 : w1, w3, w2

The next figure shows three perfect matchings in instance I. The first matching is unstable, with
blocking pair (w1, f2), and the last two are stable (this statement is worth verifying).

w1

w3

f1

f3

w2 f2

(a) An unstable perfect matching

w1

w3

f1

f3

w2 f2

(b) Stable matching 1

w1

w3

f1

f3

w2 f2

(c) Stable matching 2

We next present the Deferred Acceptance Algorithm3 for Setting I, described in Algorithm 8. The
algorithm operates iteratively, with one side proposing and the other side acting on the proposals
received. We will assume that workers propose to firms. The initialization involves each worker
marking each firm in its preference list as uncrossed.

Each iteration consists of three steps: First, each worker proposes to the best uncrossed firm on
its list. Second, each firm that got proposals tentatively accepts the best proposal it received and
rejects all other proposals. Third, each worker who was rejected by a firm crosses that firm off its
list. If in an iteration each firm receives a proposal, we have a perfect matching, say µ, and the
algorithm terminates.

The following observations will lead to a proof of correctness and running time.
3The reason for this name is provided in Remark 11.
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Algorithm 8. (Deferred Acceptance Algorithm)

Until all firms receive a proposal, do:

1. ∀w ∈W: w proposes to its best uncrossed firm.

2. ∀ f ∈ F: f tentatively accepts its best proposal and rejects the rest.

3. ∀w ∈W : If w got rejected by firm f , it crosses f off its list.

Output the perfect matching, and call it µ.

Observation 5. If a firm gets a proposal in a certain iteration, it will keep getting at least one proposal in
all subsequent iterations.

Observation 6. As the iterations proceed, for each firm, the following holds: once it receives a proposal,
it tentatively accepts a proposal from the same or a better worker, according to its preference list.

Lemma 7. Algorithm 8 terminates in at most n2 iterations.

Proof. In every iteration, other than the last one, at least one worker will cross a firm off its
preference list. Consider iteration number n2− n+ 1, assuming the algorithm has not terminated
so far. Since the total size of the n preference lists is n2, there is a worker, say w, who will propose
to the last firm on its list in this iteration. Therefore by this iteration w has proposed to every
firm and every firm has received a proposal. Hence, by Observation 5, in this iteration every firm
will get a proposal and the algorithm will terminate with a perfect matching.

Example 9. The figures below show the two iterations executed by Algorithm 8 on the instance
of Example 4. In the first iteration, w2 will get rejected by f2 and will cross it from its list. In the
second iteration, w2 will propose to f3, resulting in a perfect matching.

w1

w3

f1

f3

w2 f2

w1

w3

f1

f3

w2 f2

(a) Iteration 1 (b) Iteration 2

Theorem 10. The perfect matching found by the DA Algorithm is stable.

Proof. For the sake of contradiction assume that µ is not stable and let (w, f ′) be a blocking pair.
Assume that µ(w) = f and µ( f ′) = w′ as shown in the figure below. Since (w, f ′) is a blocking
pair, w prefers f ′ to f and therefore must have proposed to f ′ and got rejected in some iteration,
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say i, before eventually proposing to f . In iteration i, f ′ must have tentatively accepted the
proposal from a worker it likes better than w. Therefore by Observation 6, at the termination of
the algorithm, w′ � f ′ w. This contradicts the assumption that (w, f ′) is a blocking pair.

w f

w′ f ′

Blocking pair (w, f ′)

Remark 11. The Gale-Shapley algorithm is called the Deferred Acceptance Algorithm because firms
do not immediately accept proposals received by them – they defer them and accept only at
the end of the algorithm when a perfect matching is found. In contrast, under the Immediate
Acceptance Algorithm, each firm immediately accepts the best of the proposal it received; see
Chapter ??.

Our next goal is to prove that the DA Algorithm, with workers proposing, leads to a matching
that is favorable for workers and unfavorable for firms. We first formalize the terms “favorable”
and “unfavorable”.

Definition 12. Let S be the set of all stable matchings over (W, F). For each worker w, the realm
of possibilities R(w) is the set of all firms that w is matched to in S, i.e., R(w) = { f | ∃µ ∈
S s.t. (w, f ) ∈ µ}. The optimal firm for w is the best firm in R(w) with respect to w’s preference
list; it will be denoted by optimal(w). The pessimal firm for w is the worst firm in R(w) with
respect to w’s preference list and will be denoted by pessimal(w). The definitions of these terms
for firms are analogous.

Lemma 13. Two workers cannot have the same optimal firm, i.e., each worker has a unique optimal firm.

Proof. Suppose not and suppose two workers w and w′ have the same optimal firm, f . Assume
w.l.o.g. that f prefers w′ to w. Let µ be a stable matching such that (w, f ) ∈ µ and let f ′ be the
firm matched to w′ in µ. Since f = optimal(w′) and w′ is matched to f ′ in a stable matching, it
must be the case that f �w′ f ′. Then (w′, f ) forms a blocking pair with respect to µ, leading to a
contradiction.

w′ f ′

w f

Blocking pair (w′, f ) with respect to µ.
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Corollary 14. Matching each worker to its optimal firm results in a perfect matching, say µW .

Lemma 15. Matching µW is stable.

Proof. Suppose not and let (w, f ′) be a blocking pair with respect to µW , where (w, f ), (w′, f ′) ∈
µW . Then f ′ �w f and w � f ′ w′.

Since opt(w′) = f ′, there is a stable matching, say µ′, s.t. (w′, f ′) ∈ µ′. Assume that w is matched
to firm f ′′ in µ′. Now since opt(w) = f , f �w f ′′. This together with f ′ �w f gives f ′ �w f ′′.
Then (w, f ′) is a blocking pair with respect to µ′, giving a contradiction.

w f

w′ f ′

(a) Blocking pair (w, f ′) with respect to µW (b) Blocking pair (w, f ′) with respect to µ′

w′ f ′

w f ′′

Proofs similar to that of Lemma 13 and Lemma 15 show that each worker has a unique pessimal
firm and the perfect matching that matches each worker to its pessimal firm is also stable.

Definition 16. The perfect matching that matches each worker to its optimal (pessimal) firm is
called the worker optimal (pessimal) stable matching. The notions of firm optimal (pessimal) stable
matching are analogous. The worker and firm optimal stable matchings will be denoted by µW
and µF, respectively.

Theorem 17. The worker-proposing DA Algorithm finds the worker-optimal stable matching.

Proof. Suppose not, then there must be a worker who is rejected by its optimal firm before
proposing to a firm it prefers less. Consider the first iteration in which a worker, say w, is rejected
by its optimal firm, say f . Let w′ be the worker firm f tentatively accepts in this iteration; clearly,
w′ � f w. By Lemma 13, optimal(w′) 6= f and by the assumption made in the first sentence, w′

has not yet been rejected by its optimal firm (and perhaps never will be). Therefore, w′ has not
yet proposed to its optimal firm; let the latter be f ′. Since w′ has already proposed to f , we have
that f �w′ f ′. Now consider the worker optimal stable matching µ; clearly, (w, f ), (w′, f ′) ∈ µ.
Then (w′, f ) is a blocking pair with respect to µ, giving a contradiction.

Blocking pair (w′, f ) with respect to µ

w f

w′ f ′
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Lemma 18. The worker-optimal stable matching is also firm pessimal.

Proof. Let µ be the worker optimal stable matching and suppose that it is not firm pessimal. Let µ′

be the latter stable matching. Now for some (w, f ) ∈ µ, pessimal( f ) 6= w. Let pessimal( f ) = w′;
clearly, w � f w′. Let w = pessimal( f ′), then (w, f ′), (w′, f ) ∈ µ′. Since optimal(w) = f and w is
matched to f ′ in a stable matching, f �w f ′. Then (w, f ) forms a blocking pair with respect to
µ′, giving a contradiction.

2.2 Extension to Setting II

Recall that in this setting, each worker and firm has a total preference order over only its neigh-
bors in the graph G = (W, F, E) and ⊥, with ⊥ being the least preferred element in each list;
matching a worker or firm to ⊥ is equivalent to leaving it unmatched.

In this setting, a stable matching may not be a perfect matching in G even if the number of
workers and firms is equal; however, it will be a maximal matching. Recall that matching µ ⊆ E
is maximal if it cannot be extended with an edge from E− µ. As a result of these changes, the
definition of stability also needs to be enhanced.

Definition 19. Let µ be any maximal matching in G = (W, F, E). Then the pair (w, f ) forms a
blocking pair with respect to µ if (w, f ) ∈ E and either:

• Type 1: w, f are both matched in µ and prefer each other to their partners in µ.

• Type 2a: w is matched to f ′, f is unmatched and f �w f ′.

• Type 2b: w is unmatched, f is matched to w′ and w � f w′.

Observe that since (w, f ) ∈ E, w and f prefer each other to remaining unmatched. Therefore
they both cannot be unmatched in µ — this follows from the maximality of the matching.

The only modification needed to Algorithm 8 is to the termination condition, which is: Every
worker is either tentatively accepted by a firm or has crossed off all firms from its list. When this
condition is reached, each worker of the first type is matched to the firm that tentatively accepted
it and the rest remain unmatched. Let µ denote this matching. We will still call this the Deferred
Acceptance Algorithm. It is easy to see that Observations 5 and 6 still hold and that Lemma 7
holds with a bound of nm on the number of iterations.

Lemma 20. The Deferred Acceptance Algorithm outputs a maximal matching in G.

Proof. Assume that (w, f ) ∈ E and yet worker w and firm f are both unmatched in the matching
found by the algorithm. During the algorithm, w must have proposed to f and got rejected.
Now, by Observation 5, f must be matched, giving a contradiction.

Theorem 21. The maximal matching found by the Deferred Acceptance Algorithm is stable.

Proof. We need to prove that both types of blocking pairs do not exist with respect to µ. For the
first type, the proof is identical to that in Theorem 10 and is omitted.

Assume that (w, f ) is a blocking pair of the second type. There are two cases:
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Case 1: w is matched, f is not, and w prefers f to its match, say f ′. Clearly w will propose to f
before proposing to f ′. Now, by Observation 5, f must be matched in µ, giving a contradiction.

Case 2: f is matched, w is not, and f prefers w to its match, say w′. Clearly w will propose to
f during the algorithm. Since f prefers w to w′, it will not reject w in favor of w′, hence giving a
contradiction.

Notation: If worker w or firm f is unmatched in µ, then we will denote it as µ(w) = ⊥ or
µ( f ) = ⊥. We will denote the set of workers and firms matched under µ by W(µ) and F(µ),
respectively.

Several of the definitions and facts given in Setting I carry over with small modifications; we
summarize these next. The definition of realm of possibilities of workers and firms remains the
same as before; however, note that in Setting II, some of these sets could be the singleton set
{⊥}. The definition of optimal and pessimal firm for a worker also remains the same, with the
change that it will be ⊥ if the realm of possibilities is the set {⊥}. Let W ′ ⊆ W be the set of
workers whose realm of possibilities is non-empty. Then, via a proof similar to that of Lemma
13, it is easy to see that two workers in W ′ cannot have the same optimal firm, i.e., every worker
in W ′ has a unique optimal firm.

Next, match each worker in W ′ to its optimal firm, leaving the remaining workers unmatched.
This is defined to be the worker optimal matching; we will denote it by µW . Similarly, define the
firm optimal matching; this will be denoted by µF. Using ideas from the proof of Lemma 15, it is
easy to show that the worker optimal matching is stable. Furthermore, using Theorem 17 one
can show that the Deferred Acceptance Algorithm finds this matching. Finally, using Lemma 18,
one can show that the worker optimal stable matching is also firm pessimal.

Lemma 22. The number of workers and firms matched in all stable matchings is the same.

Proof. Each worker w prefers getting matched to one of the firms that is its neighbor in G over
remaining unmatched. Therefore, all workers who are unmatched in µW will be unmatched in
all other stable matchings as well. Hence for an arbitrary stable matching µ we have W(µW) ⊇
W(µ) ⊇W(µF).
Thus |W(µW)| ≥ |W(µ)| ≥ |W(µF)|. A similar statement for firms is |F(µW)| ≤ |F(µ)| ≤ |F(µF)|.
Since the number of workers and firms matched in any stable matching is equal, |W(µW)| =
|F(µW)| and |W(µF)| = |F(µF)|. Therefore the cardinalities of all sets given above are equal,
hence establishing the lemma.

Finally, we present the Rural Hospital Theorem4 for Setting II.

Theorem 23. The set of workers matched is the same under all stable matchings; similarly for firms.

4The name of this theorem has its origins in the application of stable matching to the problem of matching residents
to hospitals. The full scope of the explanation given next is best seen in the context of the extension of this theorem
to Setting III, given in Section 2.3. In this application it was found that certain hospitals got very poor matches and
even remained under-filled; moreover, this persisted even when a hospital-optimal stable matching was resorted to. It
turned out that these unsatisfied hospitals were mostly in rural areas and were preferred least by most residents. The
question arose if there was a “better” way of finding an allocation. The Rural Hospital Theorem clarified that every
stable matching would treat under-filled hospitals in the same way, i.e., give the same allocation.
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Proof. As observed in the proof of Lemma 22, W(µW) ⊇ W(µ) ⊇ W(µF). By Lemma 22 these
sets are of equal cardinality. Hence they must all be the same set as well.

2.3 Reduction from Setting III to Setting II

We will first give a definition of blocking pair that is appropriate for Setting III. We will then give
a reduction from this setting to Setting II, thereby allowing us to carry over the algorithm and
its consequences to this setting directly. Finally, we will prove the Rural Hospital Theorem for
Setting III.

Definition 24. Given a graph G = (V, E) and an upper bound function b : V → Z+, a set
µ ⊆ E is a b-matching if the number of edges of µ incident at each vertex v ∈ V is at most b(v).
Furthermore, µ is a maximal b-matching if µ cannot be extended to a valid b-matching by adding
an edge from E− µ.

In Setting III, firms have capacities given by c : F → Z+. For the graph G = (W, F, E) specified
in the given instance in Setting III, define upper bound function b : W ∪ F → Z+ as follows: for
w ∈ W, b(w) = 1 and for f ∈ F, b( f ) = c( f ). Let µ be a maximal b-matching in G = (W, F, E)
with upper bound function b. We will say that firm f is matched to capacity if the number of
workers matched to f is exactly c( f ) and it is not matched to capacity if f is matched to fewer
than c( f ) workers. Furthermore, if a set S ⊆ W of workers is matched to firm f under µ, with
|S| ≤ c( f ), then we will use the notation µ( f ) = S and for each w ∈ S, µ(w) = f .

Definition 25. Let µ be a maximal b-matching in G = (W, F, E) with upper bound function b.
For w ∈ W and f ∈ F, (w, f ) forms a blocking pair with respect to µ if (w, f ) ∈ E and one of the
following hold:

• Type 1: f is matched to capacity, w is matched to f ′ and there is a worker w′ that is
matched to f such that w � f w′ and f �w f ′.

• Type 2a: f is not matched to capacity, w is matched to f ′ and f �w f ′.

• Type 2b: w is unmatched, w′ is matched to f and w � f w′.

Reduction to Setting II: Given an instance I of Setting III, we show below how to reduce it in
polynomial time to an instance I′ of Setting II so that there is bijection φ between the sets of
stable matchings of I and I′ such that φ and φ−1 can be computed in polynomial time.

Let I be given by (W, F, E, c) together with preference lists l(w), ∀w ∈ W and l( f ), ∀ f ∈ F. In-
stance I′ will be given by (W ′, F′, E′) together with preference lists l′(w), ∀w ∈W ′ and l′( f ), ∀ f ∈
F′, where:

• W ′ = W.

• F′ = ∪ f∈F { f (1), . . . , f (c( f ))}, i.e., corresponding to firm f ∈ I, I′ will have c( f ) firms, namely
f (1), . . . , f (c( f )).

• Corresponding to each edge (w, f ) ∈ E, E′ has edges (w, f (i)), for each i ∈ [1 . . . c( f )].

• ∀w ∈ W ′, l′(w) is obtained by replacing each firm, say f , in l(w) by the ordered list
f (1), ..., f (c( f )). More formally, if f �w f ′ then for all 1 ≤ i ≤ c(i) and 1 ≤ j ≤ c(j) we
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have f (i) �w f ′(j) and for all 1 ≤ i < j ≤ c(i) we have f (i) �w f (j).

• ∀ f ∈ F and i ∈ [1 . . . c( f )], l′( f (i)) is the same as l( f ).

Lemma 26. Let µ be a stable matching for instance I of Setting III. Then the following hold:

• If firm f is matched to k < c( f ) workers, then f (1)... f (k) must be matched and f (k+1)... f (c( f )) must
remain unmatched.

• If ( f (i), w), ( f (j), w′) ∈ µ with i < j, then w � f w′.

Proof. For contradiction assume that f (i) is unmatched and f (j) is matched, to w say, in µ, where
i < j. Clearly, f (i) �w f (j) and w � f (i) ⊥. Therefore (w, f (i)) is a blocking pair; see figure below.

The second proof is analogous, with ⊥ replaced by w′.

Blocking pair
(

w, f (i)
)

w f (j)

⊥ f (i)

Theorem 27. There is a bijection between the sets of stable matchings of I and I ′.

Proof. We will first define a mapping φ from the first set to the second and then we will prove
that it is a bijection.

Let µ be a stable matching of instance I. Assume that set S ⊆ W of workers is matched in µ to
firm f and worker w ∈ S and w is the ith most preferred worker in S with respect to l( f ). Then,
under φ(µ) we will match w to f (i). This defines φ(µ) completely.

For contradiction assume that φ(µ) is not stable and let (w, f (i)) be a blocking pair with respect
to φ(µ). Assume that f (i) is matched to w′, where either w′ ∈ W ′ or w′ = ⊥. Clearly f (i) prefers
w to w′, therefore by construction, if w is matched to f (j), then j < i, contradicting the fact that
(w, f (i)) is a blocking pair. Hence w is either unmatched or is matched to f ′(k) for some f ′ 6= f
and some k.

In the first case, under µ, w is unmatched, w′ is matched to f , w � f w′ and f �w ⊥. In the
second case, under µ, w is matched to f ′, w′ is matched to f , w � f w′ and f �w f ′. Therefore in
both cases (w, f ) is a blocking pair with respect to µ, giving a contradiction.

Finally we observe that φ has an inverse map such that φ−1(φ(µ)) = µ. Let µ′ be a stable matching
of instance I′. If µ′(w) = f (i), then φ−1(µ′) matches w to f . The stability of φ−1(µ′) is easily
shown; in particular, because each f has the same preference lists as f (i) for i ∈ [1, . . . , c( f )].

As a consequence of Theorem 27, we can transform the given instance I to an instance I′ of
Setting II, run the Deferred Acceptance Algorithm on it and transform the solution back to obtain
a stable matching for I. Clearly, all notions established in Setting II following the algorithm, such
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as realm of possibilities and worker optimal and firm optimal stable matching, also carry over to
the current setting.

Finally, we present the Rural Hospital Theorem for Setting III.

Theorem 28. The following hold for an instance in Setting III:

1. Over all the stable matchings of the given instance: the set of matched workers is the same and the
number workers matched to each firm is also the same.

2. Assume that firm f is not matched to capacity in the stable matchings. Then, the set of workers
matched to f is the same over all stable matchings.

Proof. 1). Let us reduce the given instance, say I, to an instance I′ in Setting II and apply Theorem
23. Then we get that the set of matched workers is the same over all the stable matchings of I′,
hence yielding the same statement for I as well. We also get that the set of matched firms is the
same over all the stable matchings of I′. Applying bijection φ−1 to I′ we get that the number
workers matched to each firm is also the same over all stable matchings.

2). Let µW and µF be the worker-optimal and firm-optimal stable matchings for instance I,
respectively. Assume for contradiction that firm f is not filled to capacity and µW( f ) 6= µF( f ).
Then there is a worker w who is matched to f in µW but not in µF. Since µW is worker-optimal,
w prefers f to its match in µF. Since f is not filled to capacity, (w, f ) forms a blocking pair of
Type 2a with respect to µF, giving a contradiction.

3 Incentive Compatibility

In this section we will study incentive compatibility properties of the Deferred Acceptance Al-
gorithm for all three settings. Theorem 17 showed that if workers propose, then the matching
computed is worker optimal in the sense that each worker is matched to the best firm in its
realm of possibilities. However, for an individual worker this “best” firm may be very low in its
preference list, see Exercise 6. If so, this worker may have incentive to cheat, i.e., manipulate its
preference list in order to get a better match.

A surprising fact about the DA Algorithm is that this worker will not be able to get a better
match by falsifying its preference list. Hence its best strategy is to report its true preference list.
Moreover, this holds no matter what preference lists the rest of the workers report. Thus the
worker-proposing DA Algorithm is dominant-strategy incentive compatible (DSIC) for workers.

This ground-breaking result on incentive compatibility opened up the DA Algorithm to a host
of highly consequential applications. An example is its use for matching students to public
schools in big cities, such as NYC and Boston, with hundreds of thousands of students seeking
admission each year into hundreds of schools. Previously, Boston was using the Immediate
Acceptance Algorithm which did not satisfy incentive compatibility. It therefore led to much
guessing and gaming, making the process highly stressful for the students and their parents.
With the use of the student-proposing DA Algorithm, each student is best off simply reporting
her true preference list. For further details on this application, see Chapter ??.
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The proof of Theorem 32, showing DSIC for Setting I, is quite non-trivial and intricate, and more
complexity is introduced in Setting II. In this context, the advantage of partitioning the problem
into the three proposed settings should become evident.

The rest of the picture for incentive compatibility of the DA Algorithm is as follows. In Setting
I, the worker-proposing DA Algorithm is not DSIC for firms; see Exercise 6. The picture is
identical in Setting II and Setting III for the worker-proposing DA Algorithm. However, Setting
III is asymmetrical for workers and firms, since firms have capacities. For this setting, Theorem
35 establishes that there is no mechanism that is DSIC for firms.

3.1 Proof of DSIC for Setting I

The following lemma will be critical to proving Theorem 32; it guarantees a blocking pair with
respect to an arbitrary perfect matching µ. Observe that the blocking pair involves a worker
which does not improve its match in going from µW to µ.

Lemma 29 (Blocking Lemma). Let µW be the worker-optimal stable matching under preferences � and
let µ be an arbitrary perfect matching, not necessarily stable. Further let W ′ be the set of workers who
prefer their match under µ to their match under µW , i.e., W ′ = {w ∈W | µ(w) �w µW(w)}, and assume
that W ′ 6= ∅. Then W ′ 6= W and there exist w ∈ (W \W ′) and f ∈ µ(W ′) such that (w, f ) is a blocking
pair for µ.

Proof. Clearly, for w ∈ (W \W ′), µW(w) �w µ(w). Two cases arise naturally: whether the workers
in W ′ get better matches in µ over µW by simply trading partners, i.e., whether µ(W ′) = µW(W ′)
or not. We will study the two cases separately.

W F

w′

w

f ′

f ′′

f
µ(W ′)

µW(W ′)

µ

µW

Figure 2

Case 1: µ(W ′) 6= µW(W ′).

Since |µ(W ′)| = |µW(W ′)| = |W ′| and (µ(W ′) \ µW(W ′)) 6= ∅, therefore W ′ 6= W. Pick any
f ∈ (µ(W ′) \ µW(W ′)) and let w = µW( f ). Now w ∈ (W \W ′) since if f /∈ µW(W ′) then
µW( f ) /∈W ′. We will show that (w, f ) is a blocking pair for µ. Towards this end, we will identify
several other workers and firms.
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Let w′ = µ( f ); since f ∈ µ(W ′), w′ ∈ W ′. Let f ′′ = µW(w′); clearly, f ′′ ∈ µW(W ′). Finally let
f ′ = µ(w); since w ∈ (W \W ′), f ′ ∈ (F \ µ(W ′)). Figure 2 will be helpful in visualizing the
situation.

Finally we need to show that f �w f ′ and w � f w′. The first assertion follows on observing that
w ∈ (W \W ′) and f 6= f ′. Assume that the second assertion is false, i.e., that w′ � f w. Now
f �w′ f ′′, since w′ ∈ W ′, f = µ(w′) and f ′′ = µW(w′). But this implies that (w′, f ) is a blocking
pair for stable matching µW . The contradiction proves that w � f w′. Hence (w, f ) is a blocking
pair for µ.

W F

w

w′

f ′′

f

µ

µW

w′′

f ′
temporary match during

beginning of iteration i

µ(W ′) = µW(W ′)

Figure 3

Case 2: µ(W ′) = µW(W ′).

In this case, unlike the previous one, we will critically use the fact that µW is the matching
produced by the DA Algorithm with workers proposing. Let i be the last iteration of the DA
Algorithm in which a worker, say w′ ∈ W ′, first proposes to its eventual match; let the latter be
f ∈ µW(W ′). Let w′′ = µ( f ). Since f ∈ µ(W ′), w′′ ∈W ′.

By definition of W ′, f = µ(w′′) �w′′ µW(w′′). Therefore, w′′ must have proposed to f before
iteration i and subsequently moved on to its eventual match under µW no later than iteration i.
Now, by Observation 5, f must keep getting proposals in each iteration after w′′ proposed to it.
In particular, assume that at the end of iteration (i− 1), f had tentatively accepted the proposal
of worker w. In iteration i, f will reject w and w will propose to its eventual match in iteration
(i + 1) or later. Since w′ is the last worker in W ′ to propose to its eventual match, w /∈ W ′.
Therefore W ′ 6= W. We will show that (w, f ) is a blocking pair for µ. Figure 3 will be helpful in
visualizing the situation.

Since f must have rejected w′′ before tentatively accepting the proposal of w, w � f w′′. Let
f ′ = µW(w) and f ′′ = µ(w). In the DA Algorithm, w had proposed to f before being finally
matched to f ′, therefore f �w f ′. Since w ∈ (W \W ′), f ′ �w f ′′. Therefore f �w f ′′. Together
with the assertion w � f w′′, we get that (w, f ) is a blocking pair for µ.
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Notation 30. Assume that a worker w reports a modified list; let us denote it by �′w. Also assume
that all other workers and all firms report their true preference lists. Define for all x ∈ F ∪W,

�′x =

{
�x if x ∈ F or x ∈W \ {w},
�′w if x = w

Let µW and µ′W be the worker-optimal stable matchings under the preferences � and �′, respec-
tively. We will use these notions to state and prove Theorem 32. However, first we will give the
following straightforward observation.

Observation 31. Let (W, F,�) be an instance of stable matching and consider alternative preference lists
�′w for every worker w ∈ W and �′f for every firm f ∈ F. Assume that we are given a perfect matching
µ which has a blocking pair (w, f ) with respect to the preferences �′. Moreover, assume that w and f
satisfy: �′w = �w and �′f = � f . Then (w, f ) is a blocking pair in µ with respect to � as well.

Theorem 32. Let � and �′ be the preference lists defined above and let µW and µ′W be the worker-optimal
stable matchings under these preferences, respectively. Then

µW(w) �w µ′W(w),

i.e., the match of w, with respect to its original preference list, does not improve if it misrepresents its list
as �′w.

Proof. We will invoke Lemma 29; for this purpose, denote µ′W by µ. Suppose w prefers its match
in µ to its match in µW . Let W ′ = {w ∈ W | µ(w) �w µW(w)}; clearly w ∈ W ′ and therefore
W ′ 6= ∅. Now by Lemma 29, there is a blocking pair (w′, f ) for µ with respect to the preferences
�, with w′ /∈W ′; clearly, w′ 6= w.

Since �′ and � differ only for w, by Observation 31, (w′, f ) is a blocking pair for µ with respect
to �′ as well. This contradicts the fact that µ is a stable matching with respect to �′.

3.2 DSIC for Setting II

While studying incentive compatibility for the case of incomplete preference lists, we will allow
a worker w to not only alter its preference list over its neighbors in graph G but to also alter its
set of neighbors, i.e., to alter G itself. For this reason, it will be more convenient to define the
preference list of each worker over the set F ∪ {⊥} and of each firm over the set W ∪ {⊥}, as
stated in the footnote to Definition 1 in Section 1.

Let � denote the original preference lists of workers and firms and let µW denote the worker-
optimal stable matching under preferences �. The definition of blocking pair with respect to a
matching µ is changed in one respect only, namely µ(w) = ⊥ or µ( f ) = ⊥ is allowed. Thus
(w, f ) is a blocking pair if and only if (w, f ) /∈ µ, µ(w) �w f and µ( f ) � f w.

The only change needed to the statement of the Blocking Lemma, stated as Lemma 29 for Setting
I, is that µ is an arbitrary matching, i.e., not necessarily perfect. Once again, the proof involves
the same two cases presented in Lemma 29. The proof of the first case changes substantially and
is given below.
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Proof. Case 1: µ(W ′) 6= µW(W ′).

For w ∈ W ′, µ(w) �w µW(w), therefore µ(w) 6= ⊥. However, µW(w) = ⊥ is allowed. Therefore
|µ(W ′)| = |W ′| ≥ |µW(W ′)|. Hence, µ(W ′) 6⊂ µW(W ′), and since µ(W ′) 6= µW(W ′), we get that
(µ(W ′) \ µW(W ′)) 6= ∅. Pick any f ∈ (µ(W ′) \ µW(W ′)). Clearly µ( f ) 6= ⊥; let w′ = µ( f ). Let
µW(w′) = f ′′, where f ′′ = ⊥ is possible. By definition of W ′, f �w′ f ′′ = µW(w′).

Assume for contradiction that µW( f ) = ⊥. Since µ( f ) = w′, w′ � f ⊥. Therefore we get that
w′ � f µW( f ). If so, (w′, f ) is a blocking pair for µW , leading to a contradiction. Therefore
µW( f ) 6= ⊥. Let µW( f ) = w. Clearly, w /∈ W ′. Hence W ′ 6= W. Let µ(w) = f ′, where f ′ = ⊥
is possible. Clearly, f 6= f ′ and f �w f ′. This together with the assertion w � f w′ gives us that
(w, f ) is a blocking pair for µ.

Consider Case 2, namely µ(W ′) = µW(W ′). Since for each w ∈W ′, µ(w) �w µW(w), w cannot be
unmatched under µ. Therefore, in this case, ∀w ∈ W ′, w is matched in both µ and µW . The rest
of proof is identical to that in Lemma 29, other than the fact that f ′ = ⊥ and f ′′ = ⊥ are allowed.
We will not repeat the proof here. This establishes the Blocking Lemma for Setting II.

As in Setting I presented in Section 3.1, we will adopt the notation � and �′ given in Notation 30.
Let µ′W be the worker-optimal stable matchings under the preferences �′. Note that Observation
6 still holds. Finally, the statement of Theorem 32 carries over without change to this setting and
its proof is also identical, provided one uses the slightly-modified statement of Blocking Lemma.

3.3 DSIC for Setting III

For Setting III, DSIC for workers follows easily using the reduction from Setting II to Setting III,
given in Section 2.3, and the fact that the worker-proposing DA Algorithm is DSIC for workers.
However, this setting is asymmetric for workers and firms, since firms have capacities. Therefore,
we need to study incentive compatibility of the firm-proposing DA Algorithm as well. The
answer is quite surprising: not only is this algorithm not DSIC, but in fact no mechanism can be
DSIC for this setting.

Example 33. Let the set of workers be W = {w1, w2, w3, w4} and firms be F = { f1, f2, f3}. Firm
f1 has capacity 2 and f2 and f3 have unit capacities. Preferences are given by:

f1 : w1 � w2 � w3 � w4,
f2 : w1 � w2 � w3 � w4,
f3 : w3 � w1 � w2 � w4,
w1 : f3 � f1 � f2,
w2 : f2 � f1 � f3,
w3 : f1 � f3 � f2,
w4 : f1 � f2 � f3.

Consider the instance given in Example 33. If firms propose, the resulting stable matching, µF,
assigns µF( f1) = {w3, w4}, µF( f2) = {w2} and µF( f3) = {w1}.

Next consider matching µ with µ( f1) = {w2, w4}, µ( f2) = {w1} and µ( f3) = {w3}. This matching
is strictly preferred by all firms but it is not stable since (w1, f1) and (w3, f1) are both blocking
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pairs. However, if f1 misrepresents its preferences as

f1 : w2 �′ w4 �′ w1 �′ w3,

then µ becomes stable and firm-optimal. Hence we get:

Lemma 34. For the instance given in Example 33, there exists a matching µ which is not stable and which
all firms strictly prefer to the firm-optimal stable matching µF. Moreover, there is a way for one firm to
misrepresent its preferences so that µ becomes stable.

The next theorem follows.

Theorem 35. For the stable matching problem in Setting III with capacitated firms, there is no mechanism
that is DSIC for firms.

4 The Lattice of Stable Matchings

The notions of worker-optimal and worker-pessimal stable matchings, defined in Section 2.1,
indicate that the set of all stable matchings of an instance has structure. It turns out that these
notions form only the tip of the iceberg! Below we will define the notion of a finite distributive
lattice and will prove that the set of stable matchings of an instance forms such a lattice. To-
gether with the non-trivial notion of rotation and Birkhoff’s Representation Theorem, this leads
to an extremely rich collection of structural properties and efficient algorithms which find use in
important applications.

4.1 The lattice for Setting I

Definition 36. Let S be a finite set, ≥ be a reflexive, anti-symmetric, transitive relation on S and
π = (S,≥) be the corresponding partially ordered set. For any two elements a, b ∈ S, u ∈ S is
said to be an upper bound of a and b if u ≥ a and u ≥ b. Further, u is said to be a least upper bound
of a and b if u′ ≥ u for any upper bound u′ of a and b. The notions of (greatest) lower bound of two
elements are analogous. Partial order π is said to be a lattice if any two elements a, b ∈ S have a
unique least upper bound and a unique greatest lower bound. If so, these will be called the join
and meet of a and b and will be denoted by a∨ b and a∧ b, respectively, and the partial order will
typically be denoted by L. Finally, L is said to be a finite distributive lattice, abbreviated FDL, if
for any three elements a, b, c ∈ S, the distributive property holds, i.e.,

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Birkhoff’s Representation Theorem, mentioned above, holds for FDLs. We next define a natural
partial order on the set of stable matchings of an instance and show that it forms such a lattice.

Definition 37. Let Sµ be the set of stable matchings of a given instance in Setting I. Define a
relation ≥ on Sµ as follows: for µ, µ′ ∈ Sµ, µ ≥ µ′ if and only if every worker w weakly prefers
her match in µ to her match in µ′, i.e.,

∀w ∈W : µ(w) �w µ′(w).

Theorem 41 shows that the partial order Lµ = (Sµ,≥) is a finite distributive lattice. Lµ will be
called the stable matching lattice for the given instance.
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Let µ and µ′ be two stable matchings. We define the following four operations: For worker w,
max {µ(w), µ′(w)} is the firm which w weakly prefers among µ(w) and µ′(w), and min {µ(w), µ′(w)}
is the firm that w weakly dislikes, where “dislikes” is the opposite of the relation prefers. For a
firm f , max {µ( f ), µ′( f )} and min {µ( f ), µ′( f )} are analogously defined.

Define two maps MW : W → F and MF : F →W as follows:

∀w ∈W : MW(w) = max {µ(w), µ′(w)} and ∀ f ∈ F : MF( f ) = min {µ( f ), µ′( f )}.

Lemma 38. ∀w ∈W, if MW(w) = f , then MF( f ) = w.

Proof. Assume µ(w) 6= µ′(w), since otherwise the proof is obvious. Let µ(w) = f and µ′(w) = f ′,
and without loss of generality assume that f �w f ′. Let µ′( f ) = w′; clearly w 6= w′. Now if
w � f w′ then (w, f ) is a blocking pair for µ′, leading to contradiction. Therefore, w′ � f w and
hence MF( f ) = w; see Figure 4 for an illustration.

w′

w

f

f ′

µ

µ′

<f
<w

Figure 4: Figure for proof of Lemma 38.

Corollary 39. MW and MF are both bijections, and MW = M−1
F .

As a consequence of Corollary 39, MW is a perfect matching on W ∪ F; denote it by µ1. Analo-
gously, mapping each worker w to min {µ(w), µ′(w)} gives another perfect matching; denote it
by µ2. Observe that µ2 matches each firm f to max {µ( f ), µ′( f )}, see Figure 5.

µ1 = µ ∨ µ′

µ µ′

µ2 = µ ∧ µ′

< <

< <

Figure 5: The meet and join of µ and µ′.

Lemma 40. Matchings µ1 and µ2 are both stable.
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Proof. Assume that (w, f ) is a blocking pair for µ1. Let µ(w) = f ′ and µ′(w) = f ′′ and assume
without loss of generality that f ′ �w f ′′. Then µ1(w) = max {µ(w), µ′(w)} = f ′.

Let µ( f ) = w′ and µ′( f ) = w′′. By the definition of map MF, w′′ � f w′ and µ1( f ) = w′; observe
that w 6= w′. Since (w, f ) is a blocking pair for µ1, w � f w′. This implies that (w, f ) is a blocking
pair for µ, leading to a contradiction. Hence µ1 is stable. An analogous argument shows that µ2
is also stable; see Figure 6 for an illustration.

w′′

w′

w f

f ′

f ′′

µ

µ′
<f

<

f

<w

<w

Figure 6: Figure for proof of Lemma 40.

Consider the partial order Lµ = (Sµ,≥) defined in Definition 37. Clearly, µ1 and µ2 are an upper
bound and a lower bound of µ and µ′, respectively. It is easy to see that they are also the unique
lowest upper bound and the unique greatest lower bound of µ and µ′. Therefore Lµ supports the
operations of meet and join given by:

µ ∨ µ′ = µ1 and µ ∧ µ′ = µ2,

Finally, it is easy to show that the operations of meet and join satisfy the distributive property,
see Exercise 7. Hence we get:

Theorem 41. The partial order Lµ = (Sµ,≥) is a finite distributive lattice.

Remark 42. If µ, µ′ ∈ Sµ with µ > µ′, then by definition, workers get weakly better matches in µ
as compared to µ′. The discussion presented above implies that firms get weakly worse matches.

Using the finiteness of Lµ, it is easy to show that there are two special matchings, say µ>, µ⊥ ∈ Sµ,
which we will call top and bottom, respectively, such that ∀µ ∈ Sµ, µ> ≥ µ and µ ≥ µ⊥. These
stable matchings were already singled out in Section 2.1: µ> is the worker-optimal and firm-
pessimal matching and µ⊥ is the firm-optimal and worker-pessimal matching, see Figure 7.

4.1.1 Rotations, and their use for traversing the lattice

Several applications require stable matchings which are not as “extreme” as µ> and µ⊥, i.e., they
treat the two sets W and F more equitably. These can be found in the rest of the lattice. In this
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µ>

µ⊥

µ

µ′

<

<

<

Figure 7: A path from the worker optimal matching, µ>, to the firm optimal matching, µ⊥, in
lattice Lµ. The edge (µ, µ′) indicates that µ′ = ρ(µ), for a rotation ρ with respect to µ.

section we will define the notion of a rotation, which will help traverse the lattice. In particular,
we will prove that rotations help traverse paths from µ> to µ⊥, as illustrated in Figure 7, with
intermediate “vertices” on such a path being stable matchings and an “edge” (µ, µ′) indicating
that µ > µ′; see Lemma 45 and Corollary 46. By Remark 42, the intermediate matchings on
any such path will gradually become better for firms and worse for workers. For an example of
the use of rotations, see Exercise 12, which develops an efficient algorithm for finding a stable
matching that treats workers and firms more equitably.

Definition 43. Fix a stable matching µ 6= µ⊥ and define the function next : W → F ∪ {�} as
follows: for worker w, find its most preferred firm, say f , such that f prefers w to µ( f ). If such
a firm exists, then next(w) = f and otherwise next(w) = �. A rotation ρ with respect to µ is an
ordered sequence of pairs ρ = {(w0, f0), (w1, f1), ... (wr−1, fr−1)} such that for 0 ≤ i ≤ r− 1:

• (wi, fi) ∈ µ, and

• next(wi) = f(i+1) ( mod r)

By applying rotation ρ to µ we mean switching the matching of w0, . . . , wr−2, wr−1 to f1, . . . , fr−1, f0,
respectively, and leaving the rest of µ unchanged. Clearly this results in a perfect matching; let
us denote it by µ′. We will denote this operation as µ′ = ρ(µ). For example in the figure given
below, rotation {(1, 1), (2, 2), (3, 4), (4, 5)} applied to µ yields µ′. Observe that the matched edge
(5, 3) is not in the rotation and remains unchanged in going from µ to µ′.
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w1
w2

w3

w4

w5 f5

f4

f3

f2

f1

w5

w4

w3

w2

w1 f1
f2

f3

f4

f5

µ µ′

Lemma 44. Let ρ be a rotation with respect to µ and let µ′ = ρ(µ). Then:

1. Workers get weakly worse matches and firms get weakly better matches in going from µ to µ′.

2. µ′ is a stable matching.

3. µ > ρ(µ).

w′

w f = next(w)

f ′
µ

<f

<w

Figure 8

Proof. 1). Suppose next(w) = f ; clearly µ( f ) 6= w. Let µ(w) = f ′ and µ( f ) = w′. By the definition
of next, w � f w′. Observe that f �w f ′ is not possible, since then (w, f ) will be a blocking pair
for µ. Therefore, f ′ �w f . Hence, after the rotation, the matching of f improved and that of w
became worse. Clearly, this holds for all workers and firms in the rotation, see Figure 8.

2). Assume that µ′ has a blocking pair, namely (w, f ), where µ′(w) = f ′ and µ′( f ) = w′. From
this blocking pair, we can infer that w � f w′ and f �w f ′. Now there are two cases:

Case 1: µ(w) = f ′.
Assume that µ( f ) = w′′, by part (1) of this lemma, we have w′ � f w′′. The above-stated assertions
give us w � f w′′, hence showing that (w, f ) is a blocking pair for µ and leading to a contradiction,
see Figure 9.

Case 2: µ(w) 6= f ′.
If µ( f ) 6= w′, then let µ( f ) = w′′. Since f improves its match after the rotation, w′ � f w′′ and
using the above-stated assertion, w � f w′′. Therefore, whether or not µ( f ) = w′, we have that
w � µ( f ).

Clearly, next(w) = f ′. Since f prefers w to its match in µ and f 6= next(w), we get that f ′ �w f ,
hence contradicting the above-stated assertion that f �w f ′, see Figure 10.

3). This follows from the previous two statements.
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w′

w′′

w

f = next(w)

f ′
µ

µ′

<f

<f

<

w

Figure 9: Figure for proof of Case 1 in Lemma 44.

Assume that next(w) 6= ⊥, i.e., next(w) is a firm. We note that this does not guarantee that w
will be in a rotation, see Exercise 9. For that to happen, the “cycle must close”, i.e., for some r,
next(wr−1) = f0.

w′

w′′

w

f = next(w)

f ′

µ

µ′

<f

6f

<
w

Figure 10: Figure for proof of Case 2 in Lemma 44.

The next lemma will justify Figure 7 via Corollary 46.

Lemma 45. Let µ > µ′. Then there exists a rotation ρ with respect to µ such that µ > ρ(µ) ≥ µ′.

Proof. Define map g : W →W ∪ {�} as follows:

g(w) =

{
µ(next(w)) if next(w) ∈ F
� otherwise.

Let W ′ = {w ∈ W | µ(w) � µ′(w)}. We will prove that the range of g when restricted to W ′ is
W ′ and for w ∈W ′, g(w) 6= w.

Let w ∈ W ′. We will first prove that next(w) ∈ F, hence showing that g(w) ∈ W. Let µ′(w) = f ′

and µ( f ′) = w′′. Since µ > µ′, µ is weakly better than µ′ for workers. Therefore, f ′ �w′′ µ′(w′′).
If w′′ � f ′ w, then (w′′, f ′) will be a blocking pair for µ′, leading to a contradiction. Therefore,
w � f ′ w′′. Hence there is a firm that likes w better than its own match under µ. Among such
firms, let f be one that w prefers most. Then next(w) = f and g(w) = µ( f ) = w′, say.

Next, we will show that µ(w′) � µ′(w′), hence getting that w′ ∈ W ′; see Figure 11. Suppose not.
Since µ > µ′ and µ is not strictly better than µ′ for w′, we must have that µ′(w′) = µ(w′) = f .
Let µ′(w) = f ′. Since µ > µ′, we have that w � f ′ µ( f ′). Therefore f ′ is a firm that prefers w
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to its match under µ. However, since f is the most preferred such firm per w, we get f �w f ′.
Furthermore, since µ( f ) = w′, w � f w′. Therefore (w, f ) is a blocking pair for µ′, leading to a
contradiction. Therefore, µ(w′) � µ′(w′) and hence w′ ∈W ′. Clearly w′ is distinct from w, hence
giving g(w) 6= w.

Finally, we will use the map g : W ′ → W ′ to complete the proof. Start with any worker w ∈ W ′

and repeatedly apply g until a worker is encountered a second time. This gives us a “cycle”,
i.e., a sequence of workers w0, w1, . . . , wr−1 such that for 0 ≤ i ≤ r − 1, g(wi) = wi+1( mod r).
Then ρ = {(w0, f0), (w1, f1), ... (wr−1, fr−1)} is a rotation with respect to µ, where fi = µ(wi) for
0 ≤ i ≤ r− 1. Clearly, µ > ρ(µ) ≥ µ′.

w′′

g(w) = w′

w

f = next(w)

f ′′

f ′
µ

µ′

<

f ′

<f

<
w

Figure 11: Figure to illustrate why w′ ∈W ′ in the proof of Lemma 45.

Corollary 46. The following hold:

1. Let µ be a stable matching such that µ 6= µ⊥. Then there is a rotation ρ with respect to µ.

2. Start with µ> as the “current matching” and successively apply a rotation with respect to the current
matching. This process will terminate at µ⊥.

Let Gµ = (Sµ, Eµ) be a directed graph with vertex set Sµ and (µ, µ′) ∈ Eµ if and only if there is a
rotation ρ with respect to µ such that ρ(µ) = µ′. Then any path from µ> to µ⊥ is obtained by the
process given in Corollary 46.

Definition 47. Let ρ be a rotation with respect to stable matching µ and let ρ(µ) = µ′. Then the
inverse of the map ρ is denoted by ρ−1. We will call ρ−1 the inverse rotation with respect to stable
matching µ′. Clearly, ρ−1(µ′) = µ.

Clearly inverse rotations help traverse paths from µ⊥ to µ> in Gµ, and a combination of rotations
and inverse rotations suffice to find a path from any matching to any other matching in Gµ.

4.1.2 Rotations correspond to join-irreducibles

Definition 48. A stable matching µ is said to be join-irreducible if µ 6= µ⊥ and µ is not the join of
any two stable matchings. Let µ and µ′ be two stable matchings. We will say that µ′ is the direct
successor of µ if µ > µ′ and there is no stable matching µ′′ such that µ > µ′′ > µ′; if so, we will
denote this by µB µ′.
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Let µ be a join-irreducible stable matching. By Lemma 44 and Corollary 46 there is a unique
rotation ρ with respect to µ. Let ρ(µ) = µ′. Clearly µ′ is the unique stable matching such that
µB µ′.

Lemma 49. Let ρ1 and ρ2 be two distinct rotations with respect to stable matching µ, and let µ1 = ρ1(µ)
and µ2 = ρ2(µ). Then the following hold:

1. ρ1 and ρ2 cannot contain the same worker-firm pair.

2. ρ1 and ρ2 are rotations with respect to µ2 and µ1, respectively.

Proof. 1). Clearly, µ > µ1 and µ > µ2. Consider the set W ′ and the map g : W ′ → W ′ defined in
the proof of Lemma 45. It is easy to see that ρ1 and ρ2 correspond to two disjoint “cycles” in this
map, hence giving the lemma.

2). Since ρ1 and ρ2 correspond to disjoint “cycles”, applying one results in a matching to which
the other can be applied.

Notation 50. We will denote the set of all rotations used in lattice Lµ by Rµ, and the set of
join-irreducibles of Lµ by Jµ.

Lemma 51. Let ρ ∈ Rµ. Then there is a join-irreducible, say µ, such that ρ is the unique rotation with
respect to µ.

Proof. Let Sρ = {ν ∈ Sµ | ρ is a rotation with respect to ν}. Let µ be the meet of all matchings in
Sρ. Clearly µ ∈ Sρ and hence ρ is a rotation with respect to µ. Suppose µ is not join-irreducible
and let ρ′ be another rotation with respect to µ. By the second part of Lemma 49, ρ is a rotation
with respect to ρ′(µ), therefore ρ′(µ) ∈ Sρ. This implies that ρ′(µ) ≥ µ. But µ > ρ′(µ), giving a
contradiction. Uniqueness follows from the fact that µ is join-irreducible.

Lemma 52. Two rotations ρ and ρ′ cannot contain the same worker-firm pair.

Proof. Suppose rotations ρ and ρ′ both contain the same worker-firm pair, say (w, f ). By Lemma
51, there are two join-irreducible stable matchings µ and ν such that ρ and ρ′ are rotations with
respect to these matchings. Let µB µ′ and νB ν′.

Consider the matching µ ∨ ν. Since (w, f ) ∈ µ and (w, f ) ∈ ν, (w, f ) ∈ (µ ∨ ν). On the other
hand, since (w, f ) is in rotations ρ and ρ′, w is matched to a better firm than f in µ′ and in ν′.
Therefore w is matched to a better firm than f in µ′ ∨ ν′. But since µ and ν are join irreducible,
(µ′ ∨ ν′) = (µ ∨ ν), leading to a contradiction. Hence ρ and ρ′ cannot contain the same worker-
firm pair.

Lemmas 51 and 52, together with the facts that there are n2 worker-firm pairs and each rotation
has at least two worker-firm pairs, give:

Corollary 53. The following hold:

1. There is a bijection f : Jµ → Rµ such that if f (µ) = ρ then ρ is the unique rotation with respect
to µ.
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2. |Rµ| ≤ n2/2.

4.1.3 Birkhoff’s Representation Theorem

FDLs arise in diverse settings; Definition 54 gives perhaps the simplest of these. A consequence
of Birkhoff’s Representation Theorem is that each FDL is isomorphic to a canonical FDL. In this
section we will prove this for stable matching lattices; the general statement follows along similar
lines.

Definition 54. Let S be a finite set and F be a family of subsets of S which is closed under union
and intersection. Denote the partial order (F ,⊇) by LF . Then LF is a FDL with meet and join
being given by:

A ∧ B = A ∩ B and A ∨ B = A ∪ B,

for any two sets A, B ∈ F . LF will be called a canonical finite distributive lattice.

Definition 55. The projection of Lµ onto Jµ will be called a join-irreducible partial order and will
be denoted by πµ = (Jµ,≥). We will say that S ⊆ Jµ is a lower set of πµ if it satisfies: if µ ∈ S
and µ > µ′ then µ′ ∈ S.

Let Fπ be the family of subsets of Jµ consisting of all lower sets of πµ. It is easy to see that Fπ

is closed under union and intersection, and therefore Lπ = (Fµ,⊇) is a canonical FDL.

Theorem 56. The lattice Lµ is isomorphic to Lπ, i.e., there is a bijection fµ : Sµ → Fπ such that µ � µ′

if and only if fµ(µ) ⊇ fµ(µ′).

Proof. Define function fµ : Sµ → Fπ as follows: for µ ∈ Sµ, f (µ) is the set of all join-irreducibles
ν such that µ � ν; let this set be S. Then S is a lower set of πµ since if µ1, µ2 ∈ Jµ, with µ1 ∈ S
and µ1 � µ2 then µ � µ2, therefore giving that µ2 ∈ S. Hence S ∈ Fπ. Next define function
g : Fπ → Sµ as follows: for a lower set S of πµ, g(S) is the join of all join-irreducibles ν ∈ S.

We first show that the compositions g • f and f • g are both the identity function, thereby showing
that f and g are both bijections. Then fµ = f is the required bijection.

Let µ ∈ Sµ and let f (µ) = S. For the first composition, we need to show that g(S) = µ. There
exist j1, . . . , jk, join-irreducibles of Lµ, such that µ = (j1 ∨ . . . ∨ jk)5. Clearly, j1, . . . , jk ∈ S and
therefore g(S) � (j1 ∨ . . . ∨ jk). Furthermore, µ � g(S). Therefore, µ � g(S) � (j1 ∨ . . . ∨ jk) = µ.
Hence g(S) = µ.

Let S be a lower set of πµ, j1, . . . , jk be the join-irreducibles in S and µ be g(S), i.e., the join of these
join-irreducibles. Let j be a join-irreducible of Lµ such that µ � j. For the second composition,
we need to show that j ∈ S, since then f (µ) = S. Now,

j ∧ µ = j ∧ (j1 ∨ . . . ∨ jk) = (j ∧ j1) ∨ . . . ∨ (j ∧ jk),

where the second equality follows from the distributive property. Since j is a join-irreducible, it
cannot be the join of two or more elements. Therefore, j = j ∧ ji, for some i. But then ji � j,
therefore giving j ∈ S.

5Observe that every µ ∈ Sµ can be written as the join of a set of join-irreducibles as follows: If µ is a join-irreducible,
there is nothing to prove. Otherwise, it is the join of two or more matchings. Continue the process on each of those
matchings.
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Finally, the definitions of f and g give that µ � µ′ if and only if fµ(µ) ⊇ fµ(µ′).

Observe that an instance may have exponentially many, in n, stable matchings, hence leading to
an exponentially large lattice. On the other hand, by Corollary 53, πµ, which encodes this lattice,
has a polynomial sized description. The precise way that πµ encodes Lµ is clarified in Exercise
10.

Corollary 57. There is a succinct description of the stable matching lattice.

4.2 The lattice for Settings II and III

The entire development on the lattice of stable matchings for Setting I, presented in Section 4.1,
can be easily ported to Setting II with the help of the Rural Hospital Theorem, Theorem 23, which
proves that the set of workers and firms matched is the same in all stable matchings.

Let these sets be W ′ ⊆ W and F′ ⊆ F. Let w ∈ W ′. Clearly, it suffices to restrict the preference
list of w to F′ only. If this list is not complete over F′, simply add the missing firms of F′ at the
end; since w is never matched to these firms, their order does not matter. Applying this process
to each worker and each firm yields an instance of stable matching over W ′ and F′ which is in
Setting I. The lattice for this instance is also the lattice for the original instance in Setting II.

The lattice for Setting III requires the reduction from Setting III to Setting II, given in Section
2.3, and the Rural Hospital Theorem for Setting III, given in Theorem 28. The latter proves that
if a firm is not matched to capacity in a stable matching, then it is matched to the same set of
workers in all stable matchings. However, a firm that is matched to capacity may be matched to
different sets of workers in different stable matchings.

Assume that firm f is matched to capacity in µ1 and µ2. A new question that arises is: which
of these two matchings does f prefer? Observe that questions of this sort have natural answers
for workers and firms in the previous settings (and for workers in Setting III) and these answers
were a key to formulating the lattice structure. The new difficulty is the following: if the two sets
µ1( f ) and µ2( f ) are interleaved in complicated ways, when viewed with respect to the preference
order of f , we will have no grounds for declaring one matching better than the other. Lemma 60
shows that if µ1 and µ2 are stable matchings, then such complications do not arise.

Definition 58. Fix a firm f . For W ′ ⊆ W, define min(W ′) to be the worker whom f prefers the
least among workers in W ′. For W1 ⊆ W and W2 ⊆ W, we will say that f prefers W1 to W2 if f
prefers every worker in W1 to every worker in W2 and we will denote this as W1 � f W2.

W1 = {w ∈W | µ1(w) �w µ2(w)} and W2 = {w ∈W | µ2(w) �w µ1(w)}.

Also let
F1 = { f ∈ F | min(µ2( f )− µ1( f ))� f min(µ1( f )− µ2( f ))} and

F2 = { f ∈ F | min(µ1( f )− µ2( f ))� f min(µ2( f )− µ1( f ))}.

Lemma 59. Let (w, f ) ∈ (µ1 − µ2). Then,

1. w ∈W1 =⇒ f ∈ F1
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2. w ∈W2 =⇒ f ∈ F2.

Lemma 60. Let µ1 and µ2 be two stable matchings and f be a firm that is matched to capacity in both
matchings. Then one of these possibilities must hold:

1. µ1( f )− µ2( f )� f µ2( f ) or

2. µ2( f )− µ1( f )� f µ1( f ).

> f

µ1( f )− µ2( f )

µ2( f )

Figure 12: Figure illustrating the first possibility in Lemma 60. The horizontal line indicates the
preference list of f , in decreasing order from left to right. The markings below the line indicate
workers in set µ1( f ) and those above indicate workers in µ2( f ).

Definition 61. Let µ1 and µ2 be two stable matchings and f be a firm that is matched to capacity
in both matchings. Then f prefers µ1 to µ2 if the first possibility in Lemma 60 holds and it prefers
µ2 to µ1 otherwise. We will denote these as µ1 � f µ2 and µ2 � f µ1, respectively.

Using Definition 61, whose validity is based on Lemma 60, we get a partial order on the set of
stable matchings for Setting III. Using the reduction stated above and facts from Section 4.1, this
partially ordered set forms a FLD.

5 Linear Programming Formulation

The stable matching problem in Setting I admits a linear programming formulation in which
the polyhedron defined by the constraints has integral optimal vertices, i.e., the vertices of this
polyhedron are stable matchings. This yields an alternative way of computing a stable matching
in polynomial time using well-known ways of solving LPs. LPs for Settings II and III follow
using the Rural Hospital Theorem 23 and the reduction from Setting III to Setting II given in
Section 2.3, respectively.

5.1 LP for Setting I

A sufficient condition for a worker-firm pair, (w, f ) to not form a blocking pair with respect to
a matching µ is that if w is matched to firm f ′ such that f �w f ′ then f should be matched
to a worker w′ such that w′ � f w. The fractional version of this condition appears in the third
constraint of LP (1); see also Exercise 14. The first two constraints ensure that each worker and
firm is fully matched. Observe that the objective function is simply 0.
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max 0

s.t. ∑
w

xw f = 1 ∀w ∈W,

∑
f

xw f = 1 ∀ f ∈ F,

∑
f�w f ′

xw f ′ − ∑
w′� f w

xw′ f ≤ 0 ∀w ∈W, ∀ f ∈ F,

xw f ≥ 0 ∀w ∈W, ∀ f ∈ F

(1)

By the first two constraints, every integral feasible solution to LP (1) is a perfect matching on
W ∪ F and by the third constraint, it has no blocking pairs. It is therefore a stable matching.

Taking αw, β f and γw f to be the dual variables for the first, second and third constraints of LP
(1), respectively, we obtain the dual LP:

min ∑
w∈W

αw + ∑
f∈F

β f

s.t. αw + β f + ∑
f ′�w f

γw f ′ + ∑
w� f w′

γw′ f ≥ 1 ∀w ∈W, ∀ f ∈ F,

γw f ≥ 0 ∀w ∈W, ∀ f ∈ F

(2)

Lemma 62. If x is a feasible solution to LP (1) then α = 0, β = 0, γ = x is an optimal solution to LP
(2). Furthermore, if xw f > 0 then

∑
f�w f ′

xw f ′ = ∑
w′� f w

xw′ f .

Proof. The feasibility of (α, β, γ) follows from the feasibility of x. The objective function value of
this dual solution is 0, i.e., the same as that of the primal. Therefore, this solution is also optimal.

Since γ = x is an optimal solution, if xw f > 0 then γw f > 0. Now the desired equality follows by
applying the complementary slackness condition to the third constraint of LP (1).

Next, we will prove Theorem 65 and Corollary 66. Let x be a feasible solution to LP (1). Corre-
sponding to x, we will define 2n unit intervals, Iw and I f , one corresponding to each worker w and
one corresponding to each firm f , as follows. For each worker w, we have ∑ f∈F xw f = 1. Order
the firms according to w’s preference list; for simplicity, assume it is f1 �w f2 �w . . . �w fn. Par-
tition Iw into n ordered subintervals so that the ith interval has length xw fi ; if this quantity is zero,
the length of the interval is also zero. Next, for each firm f , we have ∑w xw f = 1. This time, order
the workers according to f ’s preference list in reverse order; assume it is w1 ≺ f w2 ≺w . . . ≺w wn,
and partition I f into n ordered subintervals so that the ith interval has length xwi f .

Pick θ with uniform probability in the interval [0, 1] and for each worker w, determine which
subinterval of the interval Iw contains θ. The probability that any of these n subintervals is of
zero length is zero, so we may assume that this event does not occur. Define perfect matching µθ

as follows: if the subinterval of Iw containing θ corresponds to firm f , then define µθ(w) = f .

27



Iw

I f
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p f a b

θ

w′

f ′

Figure 13

Lemma 63. If µθ(w) = f then the subinterval of I f containing θ corresponds to worker w.

Proof. Assume that the subinterval containing θ in Iw is [a, b], where a, b ∈ [0, 1]; since it corre-
sponding to f , b − a = xw f . Since xw f > 0, by the second part of Lemma 62, the subinterval
corresponding to w in I f is also [a, b]. Clearly, it contains θ.

Lemma 64. For each θ ∈ [0, 1], the perfect matching µθ is stable.

Proof. Assume that µθ(w) 6= f . Let µθ(w) = f ′ and µθ( f ) = w′, where f �w f ′. We will show
that w′ � f w, thereby proving that (w, f ) is not a blocking pair. Extending this conclusion to all
worker-firm pairs that are not matched by µθ , we get that µθ is a stable matching.

Since µθ(w) = f ′, θ lies in the subinterval corresponding to f ′ in Iw. In Figure 13, this subinterval
has been marked as [a, b]. θ also lies in subinterval corresponding to w′ in I f ; this subinterval
is marked as [c, d] in Figure 13. Let p f and pw denote the larger endpoints of the subintervals
containing f and w in Iw and I f , respectively. By the third constraint of LP (1), the subinterval
[pw, 1] of I f is at least as large as the subinterval [p f , 1] of Iw. Since f �w f ′, θ lies in [p f , 1] and
therefore, it also lies in [pw, 1]. Therefore, w′ � f w and the lemma follows.

Theorem 65. Every feasible solution to LP (1) is a convex combination of stable matchings.

Proof. The feasible solution x of LP (1) has at most O(n2) positive variables xw f and therefore
there are O(n2) non-empty subintervals corresponding to these variables in the intervals Iw and
I f . Hence [0, 1] can be partitioned into at most O(n2) non-empty subintervals, say I1, . . . Ik, so
that none of these subintervals straddles the subintervals corresponding to the positive variables.
For 1 ≤ i ≤ k, each θ ∈ Ii corresponds to the same stable matching µi = µθ . Let the length of Ii
be αi; clearly ∑k

i=1 αi = 1. Then we have

x =
k

∑
i=1

αiµi.

The theorem follows.
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Corollary 66. The polyhedron defined by the constraints of LP (1) has integral optimal vertices; these are
stable matchings.

5.2 LPs for Settings II and III

For Settings II by the Rural Hospital Theorem 23, the set of workers and firms matched in all
stable matchings is the same. Let these sets be W ′ and F′, respectively. Clearly, it suffices to work
with the primal LP (1) restricted to these sets only.

For Setting III, we will use the reduction from Setting III to Setting II given in Section 2.3.

6 Exercises

1. In Setting I, say that a perfect matching µ is Pareto optimal if there is no perfect matching
µ′ 6= µ under which each agent is weakly better off, i.e., for each agent a ∈W ∪ F, µ(a) �a µ′(a).
Prove that every stable matching is Pareto optimal. Is the converse true? Give a proof or a
counter-example.

2. Define a preferred couple in Setting I to be a worker-firm pair such that each is the most preferred
in the other’s preference list.

• Prove that if an instance has a preferred couple (w, f ), then in any stable matching, w and
f must be matched to each other.

• Prove that if in an instance with n workers and n firms there are n disjoint preferred couples,
then there is a unique stable matching.

• Prove that the converse of the previous problem does not hold, i.e., there is an instance
which does not have n disjoint preferred couples, yet it has a unique stable marriage.

3. Construct an instance for Setting I that has exponentially many stable matchings.

4. Design a polynomial time algorithm which given an instance for Setting I, finds an unstable
perfect matching, i.e., one having a blocking pair.

5. In Setting II, let us add a second termination condition to the algorithm, namely terminate
when every firm gets at least one proposal. If this condition holds, match every firm to its best
proposal, leaving the rest of the workers unmatched. Give a counter-example to show that this
matching is not stable.

6. These exercises are on the issue of incentive compatibility.

1. Find an instance (W, F,�) in which some worker is matched to the last firm with respect
to its preference list in the worker-optimal stable matching. How many such workers can
there be in a instance?

2. For Setting I, find an instance in which a firm can improve its match in the worker-optimal
stable matching by misreporting its preference list.
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3. For Setting I, find an instance in which two workers can collude, i.e. lie together, in such a
way that one of them does better and the other does no worse, in the worker-optimal stable
matching.

7. Use the fact that the operations of min and max on two element sets satisfy the distributive
property to prove that the operations of meet and join for the lattice of stable matching also
satisfy this property.

8. ([Bla84]) Prove that lattices arising from instances of stable matching form a complete set of
FDLs, i.e., every FDL is isomorphic to some stable matching lattice.

9. These exercises are on rotations.

1. Give an example of a stable matching µ such that next(w) 6= ⊥ and yet w is not in a rotation
with respect to µ.

2. Let ρ be a rotation with respect to stable matching µ. Obtain ρ′ by permuting the sequence
of pairs in ρ. Show that if the permutation is a cyclic shift then ρ′(µ) = ρ(µ) and otherwise
the matching ρ′(µ) is not stable.

3. Let ρ be a rotation with respect to stable matching µ and let ρ(µ) = µ′. Prove that µ′ is a
direct successor of µ, i.e., µB µ′.

4. Show that any path in Gµ from µ> to µ⊥ involves applying each rotation in Rµ exactly
once. Use this fact to give a polynomial time algorithm for finding all rotations in Rµ.

5. Give a polynomial time algorithm for: Given a rotation ρ ∈ Rµ, find the join-irreducible it
corresponds to.

10. These exercises are on Birkhoff’s Theorem.

1. Give a polynomial time algorithm for computing the succinct description of lattice Lµ

promised in Corollary 53, i.e., πµ.

2. Let S be a lower set of πµ and let Sρ be the set of rotations corresponding to the join-
irreducibles in S. Let τ be any topological sort of the rotations in Sρ that is consistent with
the partial order πµ. Show that if starting with the matching µ>, the rotations in Sρ are
applied in the order given by τ, then the matching obtained in Lµ will be f−1

µ (S). Use this
fact to show that f−1

µ (S) can be computed in polynomial time for any lower set S of πµ.

11. For any positive integer n, let Sn denote the set of divisors of n. Define partial order πn =
(Sn,�) as follows: for a, b ∈ Sn, a � b if b|a. Prove that πn is a FDL with the meet and join of
two elements a, b ∈ Sn being the gcd and lcm of a and b, respectively. Figure 14 shows the lattice
for n = 60. Give a characterization of the join-irreducibles of π60 and find the projection of π60
onto the join-irreducibles of this lattice. Do the set of lattices {πn | n ∈ Z+} form a complete set
of FDLs, as defined in Exercise 8? Prove or disprove.

12. ([ILG87]) For a stable matching µ in Setting I, define its value as follows: Assume µ(w) = f ,
and that f is the jth firm on w’s preference list and w is the kth worker on f ’s list; if so, define the
value of the match (w, f ) to be k + j. Define the value of µ to be the sum of values of all matches

30



<
> <

< >
< <

< < >

<
>

<

<
>

< <

< < >

1

25

15 10
4

12

60

30 20

3

6

Figure 14: The lattice of divisors of 60.

in µ. Define an eqitable stable matching to be one that minimizes the value. Give a polynomial
time algorithm for finding such a matching.

Hint: Use the algorithms developed in Exercise 10. Also note that the problem of finding a
minimum weight lower set of πµ is solvable in polynomial time, assuming that integral weights
(positive, negative or zero) are assigned to the elements of Jµ. The weight of a lower set S is
defined to be the sum of weights of elements in S.

13. Prove Lemma 59 and use it to prove Lemma 60.

Hint: For the first part of Lemma 59, use a blocking pair argument, and for the second part, first
prove

|W1|+ |W2| = ∑
f∈F1

n1( f ) + ∑
f∈F2

n2( f ),

where n1( f ) = |µ1( f )− µ2( f )| and n2( f ) = |µ2( f )− µ1( f )|.

14. LP (1) for the stable matching problem was derived from a sufficient condition, given in
Section 5.1, which ensures that a worker-firm pair (w, f ) does not form a blocking pair with
respect to a matching µ. Another sufficient condition is that if f is matched to firm w′ such that
w � f w′ then w should be matched to a worker f ′ such that f ′ �w f . The fractional version of
this condition is:

∀w ∈W, ∀ f ∈ F : ∑
w� f w′

xw′ f − ∑
f ′�w f

xw f ′≤ 0

Show that this condition holds for any feasible solution x to LP (1).

15. ([TS98]) Suppose that an instance of stable matching in Setting I has an odd number, k, of
stable matchings. For each worker w, order its k matches, with multiplicity, per its preference list
and do the same for each firm f . Match w to the median element in its list. Let us call this the
median matching. This exercise eventually helps show that not only is this matching perfect, but
it is also stable. Moreover, it matches each firm to the median element in its list as well.
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First, let µ1, . . . µl be any l stable matchings, not necessarily distinct, for an instance of stable
matching in Setting I. For each worker-firm pair (w, f ) let n(w, f ) be the number of these match-
ings in which w is matched to f and let xw f = (1/l) · n(w, f ).

Show that x is a feasible solution to LP (1), i.e., it is a fractional stable matching. For any k such
that 1 ≤ k ≤ l, let θ = (k/l)− ε, where ε > 0 is smaller than 1/l. Consider the stable matching
µθ as defined by the procedure given in Section 5.1 for writing a fractional stable matching as a
convex combination of stable matchings. Show that matching µθ matches each worker w to the
kth firm in the ordered list of the l firms, not necessarily distinct, which w is matched to under
µ1, . . . , µl . Furthermore, show that µθ matches each firm f to the (l − k + 1)th worker in the
ordered list of the l workers that f is matched to.

Using the above-stated fact, prove the assertions made above about the median matching.

7 Notes

The seminal paper of Gale and Shapley [GS62] introduced the stable matching problem and gave
the Deferred Acceptance Algorithm. For basic books on this problem and related topics see
Gusfield and Irving [GI89], Roth and Sotomayor [RS92], Knuth [Knu97], and Manlove [Man13].

Dubins and Freedman [DF81] proved that the worker-proposing DA Algorithm is DSIC for work-
ers. This ground-breaking result was instrumental in opening up the DA Algorithm to highly
consequential applications, such as school choice; for a discussion of the latter, see Chapter
??. Theorem 35, showing that there is no DSIC mechanism for firms in Setting III, is due to
Roth[Rot85].

John Conway proved that the set of stable matchings of an instance forms a finite distributive
lattice, see [Knu97]. The notion of rotation is due to Irving and Leather [IL86] and Theorem 56
is due to Birkhoff [Bir+37]. The LP formulation for stable matching was given by Vande Vate
[Vat89]; the proof given in Section 5.1 is due to Teo and Sethuraman [TS98].
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