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We give new characterizations of core imputations for the following games:7

1. The assignment game.8

2. Concurrent games, i.e., general graph matching games having non-empty core.9

3. The unconstrained bipartite b-matching game (edges can be matched multiple times).10

4. The constrained bipartite b-matching game (edges can be matched at most once).11

The classic paper of Shapley and Shubik [11] showed that core imputations of the assignment12

game are precisely optimal solutions to the dual of the LP-relaxation of the game. Building on13

this, Deng et al. [5] gave a general framework which yields analogous characterizations for several14

fundamental combinatorial games. Interestingly enough, their framework does not apply to the15

last two games stated above. In turn, we show that some of the core imputations of these games16

correspond to optimal dual solutions and others do not. This leads to the tantalizing question of17

understanding the origins of the latter.18

We also present new characterizations of the profits accrued by agents and teams in core19

imputations of the first two games. Our characterization for the first game is stronger than that for20

the second; the underlying reason is that the characterization of vertices of the Birkhoff polytope is21

stronger than that of the Balinski polytope.22
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1 Introduction28

The matching game forms one of the cornerstones of cooperative game theory and the core29

is a quintessential solution concept in this theory; the latter captures all possible ways of30

distributing the total worth of a game among individual agents in such a way that the grand31

coalition remains intact, i.e., a sub-coalition will not be able to generate more profits by itself32

and therefore has no incentive to secede from the grand coalition. The matching game can33

also be viewed as a matching market in which utilities of the agents are stated in monetary34

terms and side payments are allowed, i.e., it is a transferable utility (TU) market. For an35

extensive coverage of these notions, see the book by Moulin [9]. Due to space restrictions,36

we have not presented proofs in this version of the paper; for that, see the full version [12].37

The classic paper of Shapley and Shubik [11] showed that the set of core imputations of38

the assignment game as the set of optimal solutions to the dual of the LP-relaxation of the39

maximum weight matching problem in the underlying graph. Among their other insights40

was a characterization of the two “antipodal” points — imputations which maximally favor41

one side of the bipartition1 — in the core of this game. This in-depth understanding makes42

the assignment game a paradigmatic setting for studying the core; in turn, insights gained43

provide valuable guidance on profit-sharing in real-life situations.44

Deng et al. [5] distilled the ideas underlying the Shapley-Shubik Theorem to obtain a45

general framework (see Section 4.1.1) which helps characterize the core of several games that46

are based on fundamental combinatorial optimization problems, including maximum flow47

in unit capacity networks both directed and undirected, maximum number of edge-disjoint48

s-t paths, maximum number of vertex-disjoint s-t paths, maximum number of disjoint49

arborescences rooted at a vertex r, and concurrent games (defined below).50

In this paper, we study the core of the assignment game and some of its generalizations,51

including two versions of the bipartite b-matching game (Section 4); in the first version52

(Section 4.2) edges can be matched multiple number of times and in the second, edges can be53

matched at most once (Section 5). The intriguing aspect of the latter two games is that they54

don’t fall in framework of Deng et al.; see Section 4.1.1 for the reason. In turn, we show that55

some of the core imputations of these games correspond to optimal dual solutions and some56

not. This leads to a tantalizing question: is there a “mathematical structure” that produces57

the latter?58

For the assignment game (Section 3), we start with the realization is that despite the59

in-depth work of Shapely and Shubik, and the passage of half a century, there are still basic60

questions about the core which have remained unexplored:61

1. Do core imputations spread the profit more-or-less evenly or do they restrict them to62

certain well-chosen agents? If the latter, what characterizes these “chosen” agents?63

2. By definition, under any core imputation, the sum of profits of two agents i and j is at64

least the profit they make by being matched, say wij . What characterizes pairs (i, j) for65

which this sum strictly exceed wij?66

3. How do core imputations behave in the presence of degeneracy?67

An assignment game is said to be degenerate if the optimal assignment is not unique.68

Although Shapley and Shubik had mentioned this phenomenon, they brushed it away,69

claiming that “in the most common case” the optimal assignment will be unique, and if70

not, their suggestion was to perturb the edge weights to make the optimal assignment71

1 Much like the top and bottom elements in a lattice of stable matchings.
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unique. However, this is far from satisfactory, since perturbing the weights destroys crucial72

information contained in the original instance and the outcome becomes a function of the73

vagaries of the randomness imposed on the instance.74

The following broad idea helps answer all three questions. A well-known theorem in75

matching theory says that the LP-relaxation of the optimal assignment problem always has76

an integral optimal solution [8]. Therefore, the worth of the assignment game is given by the77

optimal objective function value of this LP. Next, the Shapley-Shubik Theorem says that the78

set of core imputations of this game are precisely the optimal solutions to the dual of this79

LP. These two facts naturally raise the question of viewing core imputations through the80

lens of complementarity; in turn, it leads to a resolution of all three questions.81

The following setting, taken from [6] and [2], vividly captures the issues underlying82

profit-sharing in an assignment game. Suppose a coed tennis club has sets U and V of83

women and men players, respectively, who can participate in an upcoming mixed doubles84

tournament. Assume |U | = m and |V | = n, where m,n are arbitrary. Let G = (U, V,E) be a85

bipartite graph whose vertices are the women and men players and an edge (i, j) represents86

the fact that agents i ∈ U and j ∈ V are eligible to participate as a mixed doubles team87

in the tournament. Let w be an edge-weight function for G, where wij > 0 represents the88

expected earnings if i and j do participate as a team in the tournament. The total worth of89

the game is the weight of a maximum weight matching in G.90

Assume that the club picks such a matching for the tournament. The question is how to91

distribute the total profit among the agents — strong players, weak players and unmatched92

players — so that no subset of players feel they will be better off seceding and forming their93

own tennis club. We will use this setting to discuss the issues involved in the questions raised94

above.95

Under core imputations, the profit allocated to an agent is a function of the value he/she96

brings to the various sub-coalitions he/she belongs to, i.e., it is consistent with his/her97

negotiating power. Indeed, it is well known that core imputations provide profound insights98

into the negotiating power of individuals and sub-coalitions, see [9]. The first question99

provides further insights into this issue. Our answer to this question is that the core rewards100

only essential agents, namely those who are matched by every maximum weight matching,101

see Theorem 10.102

Our answer to the second question is quite counter-intuitive: we show that a pair of103

players (i, j) get overpaid by core allocations if and only if they are so incompetent, as a104

team, that they don’t participate in any maximum weight matching! Since i and j are105

incompetent as a team, wij is small. On the other hand, a least one of i and j does team up106

with other agents in maximum weight matchings – if not, (i, j) would have been matched in107

a maximum weight matching. Therefore, the sum of the profits of i and j exceeds wij in at108

least one core imputation; this is shown in Theorem 15.109

Our insight into degeneracy is that it treats teams and agents in totally different ways,110

see Section 3.4. Section 2 discusses past approaches to degeneracy.111

Whereas the core of the assignment game is always non-empty, that of the general graph112

matching game can be empty. Deng et al. [5] showed that the core of this game is non-empty113

if and only if the weights of maximum weight integral and fractional matchings concur. For114

this reason, we have named such games as concurrent games. As stated above, their core115

imputations are precisely the set of optimal solutions to the dual LP.116

In the full paper [12], we study the three questions, raised above, for concurrent games as117

well.118
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2 Related Works119

An imputation in the core has to ensure that each of the exponentially many sub-coalitions120

is “happy” — clearly, that is a lot of constraints. As a result, the core is non-empty only for121

a handful of games, some of which are mentioned in the Introduction. A different kind of122

game, in which preferences are cardinal, is based on the stable matching problem defined by123

Gale and Shapley [7]. The only coalitions that matter in this game are ones formed by one124

agent from each side of the bipartition. A stable matching ensures that no such coalition has125

the incentive to secede and the set of such matchings constitute the core of this game.126

Over the years, researchers have approached the phenomenon of degeneracy in the127

assignment game from directions that are different from ours. Nunez and Rafels [10], studied128

relationships between degeneracy and the dimension of the core. They defined an agent129

to be active if her profit is not constant across the various imputations in the core, and130

non-active otherwise. Clearly, this notion has much to do with the dimension of the core,131

e.g., it is easy to see that if all agents are non-active, the core must be zero-dimensional.132

They prove that if all agents are active, then the core is full dimensional if and only if the133

game is non-degenerate. Furthermore, if there are exactly two optimal matchings, then the134

core can have any dimension between 1 and m− 1, where m is the smaller of |U | and |V |;135

clearly, m is an upper bound on the dimension.136

In another work, Chambers and Echenique [3] study the following question: Given the137

entire set of optimal matchings of a game on m = |U |, n = |V | agents, is there an m × n138

surplus matrix which has this set of optimal matchings. They give necessary and sufficient139

conditions for the existence of such a matrix.140

3 The Core of the Assignment Game141

In this section, we provide answers to the three questions, for assignment games, which were142

raised in the Introduction.143

3.1 Definitions and Preliminary Facts144

The assignment game, G = (U, V,E), w : E → R+, has been defined in the Introduction.145

We start by giving definitions needed to state the Shapley-Shubik Theorem.146

I Definition 1. The set of all players, U ∪ V , is called the grand coalition. A subset of the147

players, (Su ∪ Sv), with Su ⊆ U and Sv ⊆ V , is called a coalition or a sub-coalition.148

I Definition 2. The worth of a coalition (Su ∪ Sv) is defined to be the maximum profit that149

can be generated by teams within (Su∪Sv) and is denoted by p(Su∪Sv). Formally, p(Su∪Sv)150

is the weight of a maximum weight matching in the graph G restricted to vertices in (Su ∪Sv)151

only. p(U ∪ V ) is called the worth of the game. The characteristic function of the game is152

defined to be p : 2U∪V → R+.153

I Definition 3. An imputation2 gives a way of dividing the worth of the game, p(U ∪ V ),154

among the agents. It consists of two functions u : U → R+ and v : V → R+ such that155 ∑
i∈U u(i) +

∑
j∈V v(j) = p(U ∪ V ).156

2 Some authors prefer to call this a pre-imputation, while using the term imputation when individual
rationality is also satisfied.
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I Definition 4. An imputation (u, v) is said to be in the core of the assignment game if for157

any coalition (Su ∪ Sv), the total worth allocated to agents in the coalition is at least as large158

as the worth that they can generate by themselves, i.e.,
∑

i∈Su
u(i) +

∑
j∈Sv

v(j) ≥ p(S).159

We next describe the characterization of the core of the assignment game given by Shapley160

and Shubik [11]3.161

As stated in Definition 2, the worth of the game, G = (U, V,E), w : E → R+, is the162

weight of a maximum weight matching in G. Linear program (1) gives the LP-relaxation of163

the problem of finding such a matching. In this program, variable xij indicates the extent to164

which edge (i, j) is picked in the solution. Matching theory tells us that this LP always has165

an integral optimal solution [8]; the latter is a maximum weight matching in G.166

max
∑

(i,j)∈E

wijxij

s.t.
∑

(i,j)∈E

xij ≤ 1 ∀i ∈ U,

∑
(i,j)∈E

xij ≤ 1 ∀j ∈ V,

xij ≥ 0 ∀(i, j) ∈ E

(1)167

Taking ui and vj to be the dual variables for the first and second constraints of (1), we168

obtain the dual LP:169

min
∑
i∈U

ui +
∑
j∈V

vj

s.t. ui + vj ≥ wij ∀(i, j) ∈ E,
ui ≥ 0 ∀i ∈ U,
vj ≥ 0 ∀j ∈ V

(2)170

I Theorem 5. (Shapley and Shubik [11]) The imputation (u, v) is in the core of the assignment171

game if and only if it is an optimal solution to the dual LP, (2).172

By Theorem 5, the core of the assignment game is a convex polyhedron. Shapley and173

Shubik shed further light on the structure of the core by showing that it has two special174

imputations which are furtherest apart and so can be thought of as antipodal imputations.175

In the tennis club setup, one of these imputations maximizes the earnings of women players176

and the other maximizes the earnings of men players.177

Finally, we state a fundamental fact about LP (1); its corollary will be used in a crucial178

way in Theorems 10 and 15.179

I Theorem 6. (Birkhoff [1]) The vertices of the polytope defined by the constraints of LP180

(1) are 0/1 vectors, i.e., they are matchings in G.181

3 Shapley and Shubik had described this game in the context of the housing market in which agents are
of two types, buyers and sellers. They had shown that each imputation in the core of this game gives
rise to unique prices for all the houses. In this paper we will present the assignment game in a variant of
the tennis setting given in the Introduction; this will obviate the need to define “prices”, hence leading
to simplicity.
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I Corollary 7. Any fractional matching in a bipartite graph is a convex combination of182

integral matchings.183

3.2 The first question: Allocations made to agents by core imputations184

I Definition 8. A generic player in U ∪ V will be denoted by q. We will say that q is:185

1. essential if q is matched in every maximum weight matching in G.186

2. viable if there is a maximum weight matching M such that q is matched in M and another,187

M ′ such that q is not matched in M ′.188

3. subpar if for every maximum weight matching M in G, q is not matched in M .189

I Definition 9. Let y be an imputation in the core. We will say that q gets paid in y if190

yq > 0 and does not get paid otherwise. Furthermore, q is paid sometimes if there is at least191

one imputation in the core under which q gets paid, and it is never paid if it is not paid192

under every imputation.193

I Theorem 10. For every player q ∈ (U ∪ V ):194

q is paid sometimes ⇐⇒ q is essential195

Theorem 10 is equivalent to the following. For every player q ∈ (U ∪ V ):196

q is never paid ⇐⇒ q is not essential197

Thus core imputations pay only essential players and each of them is paid in some core198

imputation. Since we have assumed that the weight of each edge is positive, so is the worth199

of the game, and all of it goes to essential players. Hence we get:200

I Corollary 11. In the assignment game, the set of essential players is non-empty and in201

every core imputation, the entire worth of the game is distributed among essential players;202

moreover, each of them is paid in some core imputation.203

I Remark 12. Theorem 5 and Corollary 11 are of much consequence.204

1. Corollary 11 reveals the following surprising fact: the set of players who are allocated205

profits in a core imputation is independent of the set of teams that play.206

2. The identification of these players, and the exact manner in which the total profit is207

divided among them, follows the negotiating process. In turn, this process identifies208

agents who play in all possible maximum weight matchings.209

3. Perhaps the most remarkable aspect of Theorem 5 is that each possible outcome of this210

very real process is captured by an inanimate object, namely an optimal solution to the211

dual, LP (2).212

By Corollary 11, core imputations reward only essential players. This raises the following213

question: Can’t a non-essential player, say q, team up with another player, say p, and secede,214

by promising p almost all of the resulting profit? The answer is “No”, because the dual (2)215

has the constraint yq + yp ≥ wqp. Therefore, if yq = 0, yp ≥ wqp, i.e., p will not gain by216

seceding together with q.217

3.3 The second question: Allocations made to teams by core218

imputations219

I Definition 13. By a mixed doubles team we mean an edge in G; a generic one will be220

denoted as e = (u, v). We will say that e is:221
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1. essential if e is matched in every maximum weight matching in G.222

2. viable if there is a maximum weight matching M such that e ∈M , and another, M ′ such223

that e /∈M ′.224

3. subpar if for every maximum weight matching M in G, e /∈M .225

I Definition 14. Let y be an imputation in the core of the game. We will say that e is fairly226

paid in y if yu + yv = we and it is overpaid if yu + yv > we
4. Finally, we will say that e is227

always paid fairly if it is fairly paid in every imputation in the core.228

I Theorem 15. For every team e ∈ E:229

e is always paid fairly ⇐⇒ e is viable or essential230

Negating both sides of the implication proved in Theorem 15, we get the following231

implication. For every team e ∈ E:232

e is subpar ⇐⇒ e is sometimes overpaid233

Clearly, this statement is equivalent to the statement proved Theorem 15 and hence234

contains no new information. However, it provides a new viewpoint. These two equivalent235

statements yield the following assertion, which at first sight seems incongruous with what we236

desire from the notion of the core and the just manner in which it allocates profits:237

Whereas viable and essential teams are always paid fairly, subpar teams are sometimes238

overpaid.239

How can the core favor subpar teams over viable and essential teams? An explanation240

is provided in the Introduction, namely a subpar team (i, j) gets overpaid because i and j241

create worth by playing in competent teams with other players.242

Finally, we observe that contrary to Corollary 11, which says that the set of essential243

players is non-empty, the set of essential teams may be empty.244

3.4 The third question: Degeneracy245

Next we use Theorems 10 and 15 to get insights into degeneracy. Clearly, if an assignment246

game is non-degenerate, then every team and every player is either always matched or always247

unmatched in the set of maximum weight matchings in G, i.e., there are no viable teams248

or players. Since viable teams and players arise due to degeneracy, in order to understand249

the phenomenon of degeneracy, we need to understand how viable teams and players behave250

with respect to core imputations; this is done in the next corollary.251

I Corollary 16. In the presence of degeneracy, imputations in the core of an assignment252

game treat:253

viable players in the same way as subpar players, namely they are never paid.254

viable teams in the same way as essential teams, namely they are always fairly paid.255

4 The Core of Bipartite b-Matching Games256

In this section, we will define two versions of the bipartite b-matching game and we will study257

their core imputations; both versions generalize the assignment game.258

4 Observe that by the first constraint of the dual LP (2), these are the only possibilities.
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4.1 Definitions and Preliminary Facts259

As in the assignment game, let G = (U, V,E), w : E → R+ be the underlying bipartite graph260

and edge-weight function. Let function b : U ∪V → Z+ give a bound on the number of times261

a vertex can be matched. Under the unconstrained bipartite b-matching game, each edge262

can be matched multiple number of times and under the constrained bipartite b-matching263

game, each edge can be matched at most once. Observe that even in the first version, limits264

imposed by b on vertices will impose limits on edges — thus edge (i, j) can be matched at265

most min{bi, bj} times.266

The worth of a coalition (Su ∪ Sv), with Su ⊆ U, Sv ⊆ V , is the weight of a maximum267

weight b-matching in the graph G restricted to vertices in (Su ∪ Sv) only; we will denote this268

by p(Su ∪ Sv). Whether an edge can be matched at most once or more than once depends269

on the version of the problem we are dealing with. p(U ∪ V ) is called the worth of the game.270

The characteristic function of the game is defined to be p : 2U∪V → R+. Definitions 3 and 4,271

defining an imputation and the core, carry over unchanged from the assignment game.272

The tennis setting, given in the Introduction, provides a vivid description of these two273

variants of the b-matching game as well. Let K denote the maximum b-value of a vertex and274

assume that the tennis club needs to enter mixed doubles teams into K tennis tournaments.275

In the first variant, a team can play in multiple tournaments and in the second version, a276

team can play in at most one tournament. In both cases, a player i can play in at most bi277

tournaments. The goal of the tennis club is to maximize its profit over all the tournaments278

and hence picks a maximum weight b-matching in G. An imputation in the core gives a way279

of distributing the profit in such a way that no sub-coalition has an incentive to secede.280

Linear program (3) gives the LP-relaxation of the problem of finding a maximum weight281

b-matching for the unconstrained version. In this program, variable xij indicates the extent282

to which edge (i, j) is picked in the solution; observe that there is no upper bound on the283

variables xij since an edge can be matched any number of times.284

max
∑

(i,j)∈E

wijxij

s.t.
∑

(i,j)∈E

xij ≤ bi ∀i ∈ U,

∑
(i,j)∈E

xij ≤ bj ∀j ∈ V,

xij ≥ 0 ∀(i, j) ∈ E

(3)285

Taking ui and vj to be the dual variables for the first and second constraints of (3), we286

obtain the dual LP:287

min
∑
i∈U

biui +
∑
j∈V

bjvj

s.t. ui + vj ≥ wij ∀(i, j) ∈ E,
ui ≥ 0 ∀i ∈ U,
vj ≥ 0 ∀j ∈ V

(4)288

Linear program (5) gives the LP-relaxation of the problem of finding a maximum weight289
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b-matching for the constrained version. Observe that in this program, variables xij are upper290

bounded by 1, since an edge can be matched at most once.291

max
∑

(i,j)∈E

wijxij

s.t.
∑

(i,j)∈E

xij ≤ bi ∀i ∈ U,

∑
(i,j)∈E

xij ≤ bj ∀j ∈ V,

xij ≤ 1 ∀(i, j) ∈ E,
xij ≥ 0 ∀(i, j) ∈ E

(5)292

I Remark 17. In both in LPs (3) and (5), the matrices of coefficients of the constraints are293

totally unimodular [8], and therefore both LPs always have integral optimal solutions.294

Taking ui, vj and zij to be the dual variables for the first, second and third constraints295

of (5), we obtain the dual LP:296

min
∑
i∈U

biui +
∑
j∈V

bjvj +
∑

(i,j)∈E

zij

s.t. ui + vj + zij ≥ wij ∀(i, j) ∈ E,
ui ≥ 0 ∀i ∈ U,
vj ≥ 0 ∀j ∈ V,
zij ≥ 0 ∀(i, j) ∈ E

(6)297

4.1.1 The Framework of Deng et al. [5]298

In this section, we present the framework of Deng et al. [5], which was mentioned in the299

Introduction, and point out why it does not apply to the two versions of the b-matching game.300

Let T = {1, · · · , n} be the set of n agents of the game. Let w ∈ Rm
+ be an m-dimensional301

non-negative real vector specifying the weights of certain objects; in the assignment game,302

the objects are edges of the underlying graph. Let A be an n×m matrix with 0/1 entries303

whose ith row corresponds to agent i ∈ T . Let x be an m-dimensional vector of variables304

and 1 be the n-dimensional vector of all 1s. Assume that the worth of the game is given by305

the objective function value of following integer program.306

max w · x

s.t. Ax ≤ 1,
x ∈ {0, 1}

(7)307

Moreover, for a sub-coalition, T ′ ⊆ T assume that its worth is given by the integer308

program obtained by replacing A by A′ in (7), where A′ picks the set of rows corresponding309

to agents in T ′. The LP-relaxation of (7) is:310

max w · x

s.t. Ax ≤ 1,
x ≥ 0

(8)311
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Deng et al. proved that if LP (8) always has an integral optimal solution, then the set of312

core imputations of this game is exactly the set of optimal solutions to the dual of LP (8).313

As stated in Remark 17, the matrices of coefficients of both LPs (3) and (5) are totally314

unimodular and therefore these LPs always have integral optimal solutions. However, they315

still don’t fall in the above-stated framework because their right-hand-sides are b values of316

the vertices and not 1.317

4.2 The Core of the Unconstrained Bipartite b-Matching Game318

Let I denote an instance of this game and let C(I) denote its set of core imputations. We319

will show in Theorem 18 that corresponding to every optimal solution to the dual LP (4),320

there is an imputation in C(I). Let D(I) denote the set of all such core imputations. Since321

D(I) 6= ∅, we get Corollary 19 stating that the core of this game is non-empty. Next, we322

will give an instance I such that D(I) ⊂ C(I), i.e., unlike the assignment game, I has core323

imputations that don’t correspond to optimal solutions to the dual LP.324

The correspondence between optimal solutions to the dual LP (4) and core imputations325

in D(I) is as follows. Given an optimal solution (u, v), define the profit allocation to i ∈ U326

to be αi = bi · ui and that to j ∈ V to be βj = bj · vj .327

I Theorem 18. The profit-sharing method (α, β), which corresponds to an optimal solution328

(u, v) to the dual LP (4), is an imputation in the core of the unconstrained bipartite b-matching329

game.330

I Corollary 19. The core of the unconstrained bipartite b-matching game is always non-empty.331

I Remark 20. Observe that the mapping given from optimal solutions to the dual LP (4) to332

core imputations in D(I) is a bijection.333

Figure 1 The graph for Example 21.

I Example 21. For the bipartite b-matching game defined by the graph of Figure 1, let the b334

values be 2, 1, 2, 1 for u1, u2, v1, v2, and let the edge weights be 1, 3, 1 for (u1, v1), (u1, v2), (u2, v2).335

In this section, we will view the game defined in Example 21 as an unconstrained bipartite336

b-matching game and will show that it has a set of core imputations which do not correspond337

to optimal dual solutions, i.e., they lie in C(I)−D(I). The optimal matching picks edges338
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(u1, v1), (u1, v2) once each, for a total profit of 4. The unique optimal dual solution is 1, 0, 0, 2339

for u1, u2, v1, v2, and the corresponding core imputation is 2, 0, 0, 2.340

Let α1, α2, β1, β2 be the profits allocated to u1, u2, v1, v2. The solutions of the system341

of linear inequalities (9), for non-negative values of the variables, capture all possible core342

imputations, i.e., the set C(I).343

α1 + β1 ≥ 2
α1 + β2 ≥ 3

α1 + β1 + β2 ≥ 4
α2 + β2 ≥ 1

α1 + α2 + β2 ≥ 3
α1 + α2 + β1 + β2 = 4

(9)344

On solving this system, we find that α1, α2, β1, β2 should be 1 +a, 0 b, 1 + c, where a, b, c345

are non-negative and satisfy the system (10).346

a+ b ≥ 1
a+ c ≥ 1

a+ b+ c = 2
(10)347

A fourth constraint, b ≤ 1 follows from the last two in this system. The solution348

a = 1, b = 0, c = 1 gives the core imputation corresponding to the unique optimal dual349

solution; the rest give the remaining core imputations, e.g., the imputation 3, 0, 0, 1.350

For an arbitrary instance I, one can clearly capture all possible core imputations via an351

exponential sized system of inequalities of the type ≥, one corresponding to each coalition352

(Su ∪ Sv); its r.h.s. will be p(Su ∪ Sv) and its l.h.s. will be the sum of all variables denoting353

profits accrued to vertices in this coalition. Note that all the variables of this system will be354

constrained to be non-negative and it will have one equality corresponding to the worth of355

the grand coalition; the latter is the last equality in system (9).356

The following question arises: is there a smaller system which accomplishes this task?357

We observe that it suffices to include in the system only those coalitions whose induced358

subgraph is connected. This is so because if the induced subgraph for coalition (Su ∪ Sv)359

has two or more connected components, then the sum of the inequalities for the connected360

components yields the inequality for coalition (Su ∪ Sv). In particular, if the underlying361

graph of instance I is sparse, this may lead to a much smaller system. Observe that the362

system (9), for Example 21, follows from this idea.363

I Remark 22. Since for the unconstrained bipartite b-matching game, the optimal dual364

solutions don’t capture all core imputations, the characterizations established in Theorems365

10 and 15 for the assignment game, don’t carry over. However, if one restricts to core366

imputations in the set D(I) only, one can see that suitable modifications of these statements367

do hold.368

5 The Core of the Constrained Bipartite b-Matching Game369

Our results for this game are related to, though not identical with, those for the unconstrained370

version. In Theorem 23, we will show that corresponding to every optimal solution to the371
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dual LP (6), there is a set of core imputations. This theorem yields Corollary 24 stating that372

the core of this game is also non-empty. Finally, we will give an instance which has core373

imputations that don’t correspond to optimal solutions to the dual LP.374

The corresponding to an optimal solution to the dual LP (4), (u, v, z), we define a set
of imputations as follows. For each edge (i, j) define two new variables cij and dij ; both
are constrained to be non-negative. Furthermore, consider all possible ways of splitting zij

into cij and dij , i.e., zij = cij + dij . Observe that is xij = 0 then zij = 0 and therefore
cij = dij = 0. Define the profit allocation to i ∈ U to be

αi = bi · ui +
∑

(i,j)∈E

cij

and that to j ∈ V to be
βj = bj · vj + dij +

∑
(i,j)∈E

dij .

Taken over all possible ways of splitting all zijs, this gives a set of imputations.375

I Theorem 23. All profit-sharing methods (α, β), which correspond to the optimal solution376

(u, v, z) to the dual LP (6), are imputations in the core of the constrained bipartite b-matching377

game.378

I Corollary 24. The core of the constrained bipartite b-matching game is always non-empty.379

In this section, we will view the game defined in Example 21 as a constrained bipartite380

b-matching game and will again show that it has a set of core imputations which do not381

correspond to optimal dual solutions. The optimal matching picks edges (u1, v1), (u1, v2)382

once each, for a total profit of 4. Unlike the unconstrained case, this time, the optimal dual383

is not unique. The optimal dual solutions are given by 1, 0, 0, 2− a, for vertices u1, u2, v1, v2,384

and 0, a, 0 for edges (u1, v1), (u1, v2), (u2, v2), where a ∈ [0, 1]. The corresponding core385

imputations are 3− b, 0, 0, 1 + b, for the four vertices u1, u2, v1, v2, where b ∈ [0, 1].386

As in the unconstrained case, let α1, α2, β1, β2 be the profits allocated to u1, u2, v1, v2. This
time, the system of linear inequalities whose solutions capture all possible core imputations
is given by system (9) after replacing the first inequality by

α1 + β1 ≥ 1.

This is so because edge (u1, v1) can be matched twice under the the unconstrained bipartite387

b-matching game, but only once under the constrained version. As before, non-negativity is388

imposed on all these variables. On solving this system, we find that α1, α2, β1, β2 should be389

1, 0 b, 1 + c, where a, b, c are non-negative and satisfy the system (11).390

a+ b ≥ 1
a+ c ≥ 2

a+ b+ c = 3
(11)391

Solutions of this system which do not correspond to dual solutions include 1, 0, 0, 3 and392

0, 0, 1, 3. Observe that neither of these is a core imputation for the unconstrained bipartite393

b-matching game. The method given in Section 4.2, for finding a smaller system, holds for394

this case as well and so does Remark 22.395
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I Remark 25. In the assignment game, core imputations were precisely optimal dual solutions.396

On the other hand, in both versions of the bipartite b-matching game, core imputations397

are obtained from optimal dual solutions via specific operations. As stated in Remark398

20, for the unconstrained version, there is a bijection between optimal dual solutions and399

core imputations in D(I). In contrast, for the constrained version, the set of imputations400

corresponding to optimal dual solutions may not be disjoint.401

Let us illustrate the last point of Remark 25 via Example 21. Consider the two optimal402

dual solutions obtained by setting a = 0 and a = 1, namely 1, 0, 0, 2, for vertices u1, u2, v1, v2,403

and 0, 0, 0 for edges (u1, v1), (u1, v2), (u2, v2); and 1, 0, 0, 1, for vertices u1, u2, v1, v2, and404

0, 1, 0 for edges (u1, v1), (u1, v2), (u2, v2). Both these optimal duals yield the core imputation405

assigning profits of 2, 0, 0, 2 for u1, u2, v1, v2.406

6 Discussion407

Our most important open question is to shed light on the origins of core imputations, for408

the two bipartite b-matching games, which do not correspond to optimal dual solutions. Is409

there a “mathematical structure” that produces them? A related question is to determine410

the complexity of the following question for these two games: Given an imputation for a411

game, decide if it belongs to the core. We believe this question should be co-NP-complete.412

On the other hand, the following question is clearly in P: Given an imputation for a game I,413

decide if it lies in D(I).414

As stated in Section 3.1, for the assignment game, Shapley and Shubik were able to415

characterize “antipodal” points in the core. An analogous understanding of the core of the416

general graph matching games having non-empty core will be desirable.417

For the assignment game, Demange, Gale and Sotomayor [4] give an auction-based418

procedure to obtain a core imputation; it turns out to be optimal for the side that proposes,419

as was the case for the deferred acceptance algorithm of Gale and Shapley [7] for stable420

matching. Is there an analogous procedure for obtaining an imputation in the core of the421

general graph matching games having non-empty core?422
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