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Abstract. Perhaps the strongest notion of truth-revealing in a cost sharing mechanism is group
strategyproofness. However, matters are not so clear-cut on fairness, and many different, sometimes
even conflicting, notions of fairness have been proposed which have relevance in different situations.
We present a large class of group strategyproof cost sharing methods, for submodular cost functions,
satisfying a wide range of fairness criteria, thereby allowing the service provider to choose a method
that best satisfies the notion of fairness that is most relevant to its application. Our class includes
the Dutta–Ray egalitarian method as a special case. It also includes a new cost sharing method,
which we call the opportunity egalitarian method.
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1. Introduction. Distributing the cost of a shared resource in a fair and truth-
revealing manner is a central problem in cooperative game theory. Perhaps the
strongest notion of truth-revealing is group strategyproofness, under which the dom-
inant strategy of users is to reveal their true utility, even if they collude. However,
matters are not so clear-cut on fairness—many different, sometimes conflicting, no-
tions have been proposed which have relevance in different situations. Let us clarify
that we are not necessarily postulating a service provider who is inherently “fair,” but
that in the long run, it is in the best interest of the service provider to subscribe to
some form of fairness in choosing its cost allocations. We will assume that the cost
function is submodular, a natural economies-of-scale condition. Equivalently, these
results also apply to the situation of profit sharing under a convex transferable utility
game; e.g., see [23]. In this paper, we will be concerned with fully budget-balanced
methods; i.e., the total amount accrued from the users should be exactly equal to the
cost of the shared resource.

As shown by Moulin [23], a cross-monotone cost sharing method for the given
cost function gives rise to a group strategyproof mechanism, and for submodular cost
functions, essentially the converse holds as well. Informally, a cost sharing method
is cross-monotone, also called population monotone, if the cost share of any user can
only decrease if a superset is being served.

Two well-known cross-monotone cost sharing methods for submodular cost func-
tions are the Shapley value and the egalitarian method of Dutta and Ray [6] (the
former requires that the cost function be nondecreasing as well; i.e., the cost of serv-
ing a set should not be larger than the cost of serving any of its supersets). Both these
methods have been extensively studied; for the latter, see [12, 11, 13, 16, 21, 3, 2, 5, 7].
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242 KAMAL JAIN AND VIJAY V. VAZIRANI

These two methods satisfy different fairness criteria. The Shapley value charges higher
amounts from users who are more expensive to serve. The egalitarian method at-
tempts to charge equal amounts from all users subject to the coalition participation
constraint that the method lies in the core of the game; i.e., no subset is charged more
than its stand-alone cost (thereby precluding the possibility of its seceding).

Consider the following situation in which neither of these criteria appears to be
fair. Suppose that two users, Fred Smith and Gill Bates, are proximally located so that
they are equally expensive to serve. For concreteness, assume that the service provider
is transmitting valuable financial data and needs to recover a cost of $2000, regardless
of whether it serves one or both users. Fred Smith and Gill Bates derive widely
different utilities on receiving this data—the former is a man of modest means, and
the latter is a multimillionaire. Hence, they are also willing to pay different amounts
for this data. In this situation, the Shapley value as well as the egalitarian method
will assign cost shares of $1000 each for the service, an amount that is not acceptable
to Fred Smith. However, Gill Bates considers this data useful for wisely managing
his vast acquisitions and ends up paying the entire $2000 for the service. If, instead,
the cost sharing method were to take into consideration the relative paying powers of
the two users and charge differentially, it may be able to find an outcome that Pareto
dominates the previous outcome. For instance, if it charges Fred Smith $100 and Gill
Bates $1900, both accept the service and both are better off. In addition, the service
provider is also better off since it has a larger and more satisfied pool of customers.

This form of differential pricing, sometimes also called price discrimination, is
widely resorted to and is in fact crucial to the survival of many industries [25, 27, 28,
29]. For instance, it provides mechanisms to the airline industry to charge higher fares
from business travelers, who can afford to pay higher fares, than from casual travelers.
Clearly, the fate of the airline industry, which has been on the brink of bankruptcy
numerous times, would be dire without such a mechanism. Another common example
is differential subscription rates for journals charged from students, professionals, and
institutions.

Can the service provider resort to differential pricing and still ensure that the
mechanism is strategyproof or, better, group strategyproof? In this paper, we pro-
vide a formal setting to accomplish this. We present a large class of group strategy-
proof mechanisms for submodular cost functions, satisfying a wide range of fairness
criteria—hence the name “equitable.” Our class includes the Dutta–Ray egalitarian
method as a special case. It also includes a new cost sharing method, which we call
the opportunity egalitarian method. Assuming that individual utilities are drawn from
probability distributions which are known to the service provider, this method finds
cost shares that attempt to equalize the users’ probabilities of accepting the service,
subject to core constraints. The above-stated examples of differential cost shares can
be viewed as approximations of the opportunity egalitarian method.

Each equitable cost sharing method is parameterized by n equalizing functions
which encode the fairness criterion chosen. The method ensures that w.r.t. the cho-
sen criterion, the cost shares satisfy min-max as well as max-min fairness; i.e., no
one underpays, and no one overpays. Thus, in the case of the egalitarian method
(opportunity egalitarian method), among all cost allocations in the core, the chosen
allocation minimizes the maximum cost shares (probability of accepting service) as
well as maximizes the minimum cost shares (for fairness). Precise definitions appear in
sections 3, 5.1, and 6. Max-min fairness has been used in the networking community
for tackling issues of bandwidth allocation [4, 15] and has also been algorithmically
studied in the context of routing in networks [22, 1, 20]. Approximate versions of this
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EQUITABLE COST ALLOCATIONS 243

notion have also been studied [9].

Our algorithms are inspired by the primal-dual schema from the field of approx-
imation algorithms (see [30]). In the latter setting, it is natural to view the dual
program as “paying” for the primal, and the algorithm as progressive bidding to
get access to a shared resource (this viewpoint is particularly clear in the primal-
dual algorithm presented in [18]). The equalizing functions determine the rates at
which individual users increase their “bids.” Each iteration of our algorithm runs in
polynomial time. We utilize recently discovered polynomial time algorithms for the
minimization of a submodular function [14, 26]. The precise number of iterations
depends upon the accuracy needed.

We have recently found some rather unexpected applications of the results of
this paper. The cross-monotonic cost sharing method developed in this paper for
submodular cost functions has been used for proving competition monotonicity for
submodular utility allocation markets in [19]. Our max-min and min-max fairness
results for these cost sharing methods have also been used in [19] for establishing that
the equilibrium allocations for submodular utility allocation markets are max-min
fair.

It is interesting to note that independently, though somewhat preceding our work,
Hokari [11] generalized Dutta–Ray solutions to give a class of cost sharing methods
that turns out to be identical to ours. He calls his methods monotone path cost allo-
cations. Hokari’s formalization and point of view are quite different from ours—the
definitions of the cost sharing methods are strikingly different,1 and so are the algo-
rithms for computing them (Hokari does not address issues of algorithmic efficiency).
We believe that this class deserves further study—in the past, notions derived from
diverse considerations have turned out to be particularly robust and canonical.

Mutuswami [24] proved the following interesting fact about the Dutta–Ray egal-
itarian method. If the utilities of individual users are independently and identically
distributed (i.i.d.) (and the distribution satisfies the monotone hazard rate condition;
see section 7 for a formal definition), then for every set S of users, the egalitarian
method maximizes the probability that all members of S accept the service, among
all cost sharing methods in the core. We generalize this result by removing the re-
striction that all utilities come from the same distribution. We show that for each
choice of distributions from which the utilities are picked (provided they satisfy the
strict monotone hazard rate condition), there is an equitable cost sharing method
that maximizes, for every set S ⊆ U , the probability that all members of S accept
the service, among all cost sharing methods for S in the core.

2. Basic definitions. Let U = {1, . . . , n} denote the set of users and cost :
2U → R+ denote the function that gives the cost of serving any subset of the users.
We will assume that this function is submodular ; i.e.,

∀S, T ⊆ U, cost(S) + cost(T ) ≥ cost(S ∪ T ) + cost(S ∩ T ).

Following is an equivalent definition that makes it clear that such cost functions satisfy
a natural economies-of-scale condition. The marginal cost of including a new user can
only be smaller if a superset is being served:

∀S ⊂ T ⊂ U, i /∈ T, cost(S + i) − cost(S) ≥ cost(T + i) − cost(T ).

1See section 8 for an implication that is easier to derive from our formulation.
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244 KAMAL JAIN AND VIJAY V. VAZIRANI

We consider the following game. The service provider picks a mechanism for
deciding the set S ⊆ U of users that get the service and the individual cost shares
of users in S so as to retrieve the cost of serving them, cost(S). It obtains from the
users their utilities for receiving the service. Thus each user’s strategy is simply the
utility he reports. The service provider is not allowed to charge a user more than his
reported utility (otherwise, the user will refuse the service).

We will say that the service provider’s mechanism is strategyproof if the dominant
strategy of each user is to report his true utility. It is group strategyproof if the above
holds despite collusions among users. Let us make this precise. Consider a coalition
C of users. Let u and u′ be two vectors of bids (we will think of the former as agents’
true values and u′ as strategically chosen bids). Assume that uj = u′

j for all j /∈ C.
Let (q,x) and (q′,x′) denote the users served and costs at u and u′, respectively.
Now, group strategyproofness requires that if the inequality

u′
iqi − xi ≥ u′

iq
′
i − x′

i

holds for all i ∈ C, then it must hold with equality for all i ∈ C as well; i.e., if no
member of C is made worse off by misreporting of their utility values, then no member
of C is made better off either. Moulin [23] showed that it is sufficient for the service
provider to pick a cross-monotone cost sharing method in order to obtain a group
strategyproof mechanism. His procedure for obtaining such a mechanism from the
method is recapitulated below.

A cost sharing method, ξ, specifies how to distribute, for any set S ⊆ U , cost(S)
among the users in S. It satisfies the following:

1. Users will not be paid for receiving service; i.e.,

∀S ⊆ U, i ∈ S, ξ(S, i) ≥ 0.

2. Budget balance

∀S ⊆ U,
∑
i∈S

ξ(S, i) = cost(S).

3. Users not being served will not be charged; i.e.,

∀S ⊆ U, i /∈ S, ξ(S, i) = 0.

For any set S ⊆ U , the slice of ξ at S, i.e., ξ(S, ·), will be denoted by ξS . Thus,
ξS : S → R+ specifies the cost shares of users in S, assuming that S is the set being
served. We will say that ξ is cross-monotonic if it satisfies the following economies of
scale condition:

∀S ⊂ T ⊆ U, ∀i ∈ S, ξS(i) ≥ ξT (i);

i.e., the cost share of a user can only be smaller if a superset is being served.
Let ξ be a cross-monotone cost sharing method. Consider the following mech-

anism. Initialize S ← U . If for each user i ∈ S, his cost share ξ(S, i) is at most
his utility, HALT. Else, drop users whose utilities are smaller than their cost shares,
update S, and repeat.

Theorem 1 (Moulin [23]). If ξ is a cross-monotone cost sharing method, then
the mechanism specified above is group strategyproof.

A cost allocation for set S ⊆ U , α : S → R+ is said to satisfy the coalition
participation constraint if it satisfies the following:
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1. Budget balance, i.e.,

∑
i∈S

α(i) = cost(S).

2. No subset S′ ⊂ S is charged more than the stand-alone cost of serving S′;
i.e.,

∀S′ ⊂ S,
∑
i∈S′

α(i) ≤ cost(S′).

The core is usually defined as the set of all cost allocations for U (i.e., the grand
coalition) satisfying the coalition participation constraint. In this paper, we will
define the core to consist of all cost allocations satisfying the coalition participation
constraint for all sets S ⊆ U , rather than only U . We will say that a cost sharing
method ξ is in the core if for all S ⊆ U , ξS is in the core.

3. Equitable cost sharing methods. Let q and r be n-dimensional vectors
with nonnegative coordinates. We will denote by qINC the vector obtained by sorting
the components of q in increasing order. Thus qINC(i) ≤ qINC(i + 1) for 1 ≤ i ≤
n − 1. Define a partial order as follows: say that q max-min dominates r if qINC is
lexicographically larger than rINC , i.e., if there is an i such that qINC(i) > rINC(i)
and qINC(j) = rINC(j) for j < i. Clearly, qINC = rINC may hold even though
q �= r.

An equitable cost sharing method is parameterized by n strictly increasing, con-
tinuous, and unbounded functions from R+ to R+, f1, . . . , fn satisfying further that
fi(0) = 0. These will be called equalizing functions. The equitable cost sharing method
corresponding to this set of equalizing functions, say ξ, is defined as follows. We will
specify ξS for each set S ⊆ U . Without loss of generality assume that S consists of
users 1, . . . , s. Let α be a cost allocation for S that lies in the core. Let t(α) denote
the s-dimensional vector whose ith component is f−1

i (α(i)). We will show in Theo-
rem 6 that there is a unique cost allocation for set S in the core, say β, such that t(β)
max-min dominates t(α) for all other allocations, α, for S in the core. We will define
ξS = β.

If all n equalizing functions are picked to be the identity function, the resulting
cost sharing method will be the egalitarian method of Dutta and Ray (strictly speak-
ing, this is not the way they defined their method; see section 5.2). The egalitarian
method maximizes the minimum cost shares, i.e., ensures that no one underpays,
subject to core constraints—in that sense, it tries to make the cost shares of individ-
ual users as equal as possible. Our generalization optimizes the max-min objective
function relative to the equalizing functions f1, . . . , fn, which encode the particular
fairness criterion chosen. As shown in Theorem 10, equitable methods (including the
egalitarian method) optimize the min-max objective as well, ensuring that no one
overpays.

4. The algorithm. We now present a primal–dual-type algorithm for obtaining
ξS for any set S. First we give some definitions. Let x : S → R+ be a function
assigning costs to users in S. Set A ⊆ S will be said to be tight if

∑
i∈A xi = cost(A).

It will be said to be overtight if
∑

i∈A xi > cost(A). We will say that x is feasible
if no subset of S is overtight. Note that we have not imposed the condition that∑

i∈S xi = cost(S). The algorithm will utilize the following properties.
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Lemma 2. Let cost be submodular and x be feasible for S. If A,B ⊆ S are both
tight, then A ∪B is also tight.

Proof. By submodularity,

cost(A ∪B) ≤ cost(A) + cost(B) − cost(A ∩B).

Since x is feasible for S,

∑
i∈(A∩B)

xi ≤ cost(A ∩B).

Combining this with the fact that A and B are both tight, we get

cost(A ∪B) ≤
∑
i∈A

xi +
∑
i∈B

xi −
∑

i∈(A∩B)

xi =
∑

i∈(A∪B)

xi.

Therefore, A ∪B must also be tight.
Corollary 3. If cost is submodular and x is feasible for S, then there is a

unique maximal tight set. It is given by {i ∈ S | i belongs to some tight set}.
For each set S ⊆ U , the algorithm below computes a cost allocation for S.
Algorithm 1. We will associate a notion of time with our algorithm. Initially,

the time t is set to zero. As the algorithm proceeds, we raise cost shares of users in
S in proportion to their respective functions fi; thus, at time t, the cost share of a
user i is fi(t). Whenever a set A ⊆ S goes tight, the cost shares of all users in A are
frozen at the current value. The cost shares of the remaining users keep increasing
with time as before. The algorithm terminates when the cost shares of all users are
frozen. For each user i ∈ S, define ξS(i) to be i’s cost share at termination.

By Corollary 3, at any time, there is a unique maximal tight set. This tight set
can be found in polynomial time using a submodular function minimization algorithm
[14, 26] as follows. The difference of a submodular function and a modular function is
a submodular function. Hence, the following function, defined on 2S , is submodular:

cost′(A) = cost(A) −
∑
i∈A

fi(ti)

for A ⊆ S, where ti’s are fixed for each element i ∈ S. For an element i that is already
frozen, fix ti to be the time at which i froze. For an element i that is not yet frozen,
let ti = t. Now we will do a binary search on t to find the smallest time at which
there is a set A ⊆ S such that cost′(A) is a small negative number. At that value of
time, the set whose cost′ is minimum will clearly be the maximal set to go tight next.

Remark 4. Observe that t(ξS) is precisely the vector of times at which individual
elements went tight (t is defined at the beginning of section 3).

Lemma 5. For each set S ⊆ U , the cost allocation given by ξS lies in the core.
Proof. Clearly, ξS is feasible for S and no subset of S is overtight. Furthermore,

by Corollary 3, at termination, set S must be tight.
Theorem 6. For any set S ⊆ U , the cost allocation, ξS, found by Algorithm 1

is such that t(ξS) max-min dominates t(α) for all other cost allocations, α, for S in
the core.

Proof. Let α be an allocation for set S that lies in the core. Suppose that t(ξS)
does not max-min dominate t(α). Then we will show that ξS and α are in fact the
same allocation, hence proving the theorem.
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Let A1 ⊂ A2 ⊂ · · · ⊂ S be the sequence of maximal sets that go tight when the
algorithm is run on set S. We will show by induction on i that all users in Ai must
have the same cost allocation in α and ξS . Observe that all elements in Ai − Ai−1

go tight at the same time, and hence the components corresponding to them in t(ξS)
are identical.

Clearly,

∑
i∈A1

α(i) ≤
∑
i∈A1

ξS(i) = cost(A1).

If this inequality is strict, there exists i ∈ A1 such that α(i) < ξS(i). Since users
i ∈ A1 give rise to the smallest entries of tINC(ξS), t(ξS) max-min dominates t(α),
leading to a contradiction. Therefore, this inequality must hold with equality. If for
some user i ∈ A1, α(i) > ξS(i), then for some other user j ∈ A1, α(j) < ξS(j), and
again t(ξS) max-min dominates t(α), leading to a contradiction. Therefore,

∀i ∈ A1, α(i) = ξS(i).

The idea for the induction step is the same as for the basis.
Remark 7. Observe that the precise manner of “dual” increase in the algorithm

was essential for proving Theorem 6.
For a definition of equitable cost sharing method, see the beginning of section 3.
Corollary 8. The cost sharing method, ξ, found by Algorithm 1 is the equitable

cost sharing method for equalizing functions f1, . . . , fn.
Theorem 9. The cost sharing method ξ is cross-monotonic.
Proof. Suppose that S ⊂ T ⊆ U . Let us call the two runs of the algorithm S-run

and T -run, respectively. It suffices to prove that at each time t, the tight set in the
T -run is a superset of the tight set in the S-run, because then each user i ∈ S can
be frozen only at an earlier time in the T -run and hence can have only a smaller cost
share under the T -run.

Consider time t, and let A and B be the tight sets in the S- and T -runs, respec-
tively. Let xi denote the cost share of i ∈ S at time t under the S-run, and let x′

i

denote the cost share of i ∈ T at time t under the T -run.
By submodularity,

cost(A ∪B) + cost(A ∩B) ≤ cost(A) + cost(B).

Since x is feasible for S, we have

∑
i∈(A∩B)

xi ≤ cost(A ∩B).

Using the additional fact that A and B are tight in the S- and T -runs, respectively,
we get

cost(A ∪B) +
∑

i∈(A∩B)

xi ≤
∑
i∈A

xi +
∑
i∈B

x′
i.

Therefore,

cost(A ∪B) ≤
∑

i∈(A−B)

xi +
∑
i∈B

x′
i.
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Observe that at time t, the users in A − B are frozen in the S-run but not in the
T -run. Therefore for each i ∈ A−B, xi ≤ x′

i. Therefore,

cost(A ∪B) ≤
∑

i∈(A∪B)

x′
i.

Therefore, A ∪ B is tight at time t in the T -run. Hence A ⊆ B, and the theorem
follows.

5. Alternative characterizations of equitable methods. In this section, we
will give two alternative characterizations of equitable methods. The proofs of both
characterizations appeal to Algorithm 1, and we do not know of direct proofs. These
alternative characterizations are as basic as the definition of equitable methods and
could have been taken as alternative definitions of these methods.

5.1. Min-max domination. Let q and r be n-dimensional vectors with non-
negative coordinates. We will denote by qDEC the vector obtained by sorting the com-
ponents of q in decreasing order and will say that q min-max dominates r if qDEC is
lexicographically smaller than rDEC , i.e., if there is an i such that qDEC(i) < rDEC(i)
and qDEC(j) = rDEC(j) for j < i.

Theorem 10. For any set S ⊆ U , the cost allocation, ξS, found by Algorithm 1
is such that t(ξS) min-max dominates t(α) for all other cost allocations, α, for S in
the core.

Proof. The proof is similar to that of Theorem 6. Let α be an allocation for set S
that lies in the core. Suppose that t(ξS) does not min-max dominate t(α). Then we
will show that ξS and α are in fact the same allocation, hence proving the theorem.

Let S = A1 ⊃ A2 ⊃ · · · ⊃ ∅ be the reverse order in which sets go tight when the
algorithm is run on set S. We will show by induction on i that all users in Ai −Ai+1

must have the same cost allocation in α and ξS . Observe that all elements in Ai−Ai+1

go tight at the same time, and hence the components corresponding to them in t(ξS)
are identical.

Clearly,

∑
i∈A2

α(i) ≤
∑
i∈A2

ξS(i) = cost(A2).

Therefore,

∑
i∈A1−A2

α(i) ≥
∑

i∈A1−A2

ξS(i).

If this inequality is strict, there exists i ∈ A1 −A2 such that α(i) > ξS(i). Since users
i ∈ A1 − A2 give rise to the largest entries in tINC(ξS), t(ξS) min-max dominates
t(α), leading to a contradiction. Therefore, this inequality must hold with equality.
If for some user i ∈ A1 − A2, α(i) < ξS(i), then for some other user j ∈ A1 − A2,
α(j) > ξS(j), and again t(ξS) min-max dominates t(α), leading to a contradiction.
Therefore,

∀i ∈ A1 −A2, α(i) = ξS(i).

The idea for the induction step is the same as for the basis.
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5.2. L-domination. The next characterization is along the lines of Dutta and
Ray’s definition of the egalitarian method which uses the notion of Lorentz orderings.
Following is their definition when applied to the case of a submodular cost function
(for the complete definition, which involves a recursive construct, see [6]).

Let α1 ≤ · · · ≤ αn and β1 ≤ · · · ≤ βn be such that α1 + · · ·+ αn = β1 + · · ·+ βn.
We will say that (α1, . . . , αn) Lorentz dominates (β1, . . . , βn) if for 1 ≤ k ≤ n, we
have

α1 + · · · + αk ≥ β1 + · · · + βk,

and the inequality is strict for at least one k.
Dutta and Ray [6] showed that if the underlying cost function is submodular,

there is a core cost allocation for S, say q, such that qINC Lorentz dominates rINC

for all other cost allocations, r, for S in the core. q is the egalitarian cost allocation
for S.

Note that the definition of Lorentz ordering may compare cost shares of different
users, since qINC(i) and rINC(i) may be cost shares of different users. In our setting,
the equalizing functions for different users may be very different, thus making such
comparisons meaningless. We give below an ordering that takes this into consider-
ation. This ordering is not a generalization of Lorentz ordering—if all fi’s are the
identity function, it does not necessarily reduce to the Lorentz ordering, but it does
preserve the property established in Lemma 11.

Let V be the set of all nonnegative s-dimensional vectors q such that f1(q(1)) +
· · · + fs(q(s)) = cost(S). Let Vc ⊆ V be the set of vectors q such that (f1(q(1)), . . . ,
fs(q(s))) forms a cost allocation for S lying in the core. For q, r ∈ V , say that q
L-dominates r if there exists a permutation π such that

1. q(π(1)) ≤ · · · ≤ q(π(s)),
2. for 1 ≤ i ≤ s, we have

i∑
k=1

fπ(k)(q(π(k))) ≥
i∑

k=1

fπ(k)(r(π(k))),

and the inequality is strict for at least one i.
It is easy to construct examples showing that the relation defined above is not

necessarily transitive. However, it is acyclic in the following sense: if q1, . . . , qk ∈ V ,
then it cannot be the case that qi L-dominates qi+1, for 1 ≤ i ≤ k, and qk L-
dominates q1. The definition of L-dominates requires that vectors q and r be ordered
according to the same permutation—it is for this reason that this notion does not
generalize the notion of Lorentz ordering.

Lemma 11. Let q, r ∈ V , and suppose that q L-dominates r. Then qINC is
lexicographically larger than rINC .

Proof. Without loss of generality, assume that the permutation π showing that
q L-dominates r is the identity permutation. Let i be the smallest index, 1 ≤ i ≤ s,
such that

∑i
k=1 fk(q(k)) >

∑i
k=1 fk(r(k)). Clearly, q(k) = r(k), for k < i, and

q(i) > r(i). Therefore, r(1) ≤ · · · ≤ r(i). By assumption, q = qINC . On the other
hand, the first i components of rINC can be only smaller than the corresponding
components of r. Hence qINC is lexicographically larger than rINC .

Since lexicographic domination is acyclic, we get the following corollary.
Corollary 12. The relation of L-domination is acyclic.
We will need the following technical lemma for the main result.
Lemma 13. Let M,a1, . . . , al,m, b1, . . . , bl be nonnegative real numbers satisfying
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• M ≥ m,
• M + a1 + · · · + al ≥ m + b1 + · · · + bl.

Then, there is a permutation π over [1, . . . , l] such that for 1 ≤ i ≤ l,

M +

i∑
k=1

aπ(k) ≥ m +

i∑
k=1

bπ(k).

Proof. Let us show how to construct π. Let us first determine π(1). We claim
that there exists k, 1 ≤ k ≤ l, such that

M + ak ≥ m + bk.

Suppose not. Then, for 1 ≤ k ≤ l,

M + ak < m + bk.

Adding these l inequalities, we get

(l − 1)M + (M + a1 + · · · + al) < (l − 1)m + (m + b1 + · · · + bl).

But this contradicts the assumptions made on these numbers, proving existence of k
satisfying the inequality above. Set π(1) = k. The idea for constructing the rest of π
is the same.

Theorem 14. Let q ∈ Vc correspond to the equitable cost allocation χS, and let
r ∈ Vc be any other vector. Then q L-dominates r.

Proof. We need to construct permutation π that shows that q L-dominates r.
Let A1 ⊂ A2 ⊂ · · · ⊂ S be the sequence in which sets go tight when Algorithm 1
computes cost shares for S. In the simple case that each of Ai+1 −Ai is a singleton,
let π be the order in which elements go tight. Then, for 1 ≤ i ≤ s,

i∑
k=1

fπ(k)(q(π(k))) = cost(Ai) ≥
i∑

k=1

fπ(k)(r(π(k))).

The inequality holds because the cost allocation corresponding to r lies in the core.
Since q �= r, one of these inequalities must be strict, thereby showing that q L-
dominates r.

In the general case, we will order elements of A1 first, the elements of A2 − A1

next, and so on. This ensures that
∑
k∈Ai

fk(q(k)) = cost(Ai) ≥
∑
k∈Ai

fk(r(k)).

Next, let us specify the precise order given to elements of Ai+1 − Ai = {j1, . . . , jl}.
For this, we will use Lemma 13 with

M =
∑
k∈Ai

fk(q(k)) = cost(Ai), m =
∑
k∈Ai

fk(r(k))

and for 1 ≤ k ≤ l,

ak = fjk(q(jk)) and bk = fjk(r(jk)).

Observe that the proof given above uses the fact that the functions fj are strictly
increasing.
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6. The opportunity egalitarian method. For each user i ∈ U , let Gi :
R+ → [0, 1] be the cumulative probability distribution function from which i’s util-
ity is drawn; assume that these distributions are independent. Assume that Gi is
monotonically increasing.

Let α be any cost allocation for S ⊆ U that lies in the core. User i will accept the
service only if his utility turns out to be at least α(i), his cost share. The probability
of this event is 1−Gi(α(i)). Let p(α) denote the vector whose ith component is this
probability. We will say that a cost sharing method ξ is the opportunity egalitarian
method for cumulative distribution functions G1, . . . , Gn if for each set S ⊆ U , ξS is
the cost allocation in the core such that

1. p(ξS) max-min dominates p(α) and
2. p(ξS) min-max dominates p(α)

for all other cost allocations, α, for S in the core. Theorem 15 shows that there is a
unique such cost allocation. Observe that ξ is attempting to equalize the probabilities
of users receiving the service, subject to core constraints. The two characterizations,
min-max and max-min, ensure that both extremes are avoided.

Let fi : [0, 1] → R+ denote the inverse of Gi. Let ξ be the equitable cost sharing
method for functions f1, . . . , fn.

Theorem 15. ξ is the opportunity egalitarian method for probability density
functions G1, . . . , Gn.

Proof. Consider any set S ⊆ U , and let α be a cost allocation for S lying in the
core. Clearly, for i ∈ S,

t(α)(i) = f−1
i (α(i)) = Gi(α(i)) = 1 − p(α)(i);

i.e., this is the probability that user i does not accept service under cost allocation
α. Since ξ is the equitable method for f1, . . . , fn, t(ξS) max-min dominates t(α) for
all cost allocations, α, for S in the core. Equivalently, p(ξS) min-max dominates
p(α) for all core cost allocations for S. Its uniqueness follows from Theorem 6. By
Theorem 10, p(ξS) max-min dominates p(α) for all other cost allocations, α, for S in
the core. Hence, ξ is the opportunity egalitarian method for cumulative distribution
functions G1, . . . , Gn.

By Theorem 9, the opportunity egalitarian method is cross-monotone.

7. Maximizing acceptance probability. As in the last section, for each user
i ∈ U , let Gi : R+ → [0, 1] be the cumulative probability distribution function
from which i’s utility is drawn; assume that these distributions are independent. Let

gi be the corresponding probability density function, i.e., gi(x) = ∂Gi(x)
∂x . Assume

that gi(0) = 0. We further assume that Gi satisfies the strict monotone hazard rate
condition, i.e.,

∂

∂x

[
gi(x)

1 −Gi(x)

]
> 0.

If gi represents the failure probability of a component as a function of time, the
above condition says that the failure rate, conditioned on the component still being
intact, strictly increases with age. The monotone hazard rate condition is satisfied by
most standard probability distributions and is a standard assumption in the Bayesian
mechanism design literature [8].

Let λi : R+ → R+ be the function

λi(x) =
gi(x)

1 −Gi(x)
.
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Observe that under the assumption of strict monotone rate hazard rate condition,
λi is an invertible function. Let fi be the inverse of this function, and let χ be the
equitable method corresponding to equalizing functions f1, f2, . . . , fn.

Let ξ be any cost sharing method in the core. Let P (ξS) denote the probability
that all users in S accept service when it is offered at cost shares ξS . Clearly,

P (ξS) =
∏
i∈S

[1 −Gi(ξ
S
i )].

Theorem 16. Let χ be the equitable cost sharing method defined above, and ξ
be any cost sharing method in the core. Then, for each set of users S ⊆ U , P (χS) ≥
P (ξS).

This is a generalization of Mutuswami’s result [24], which deals with the case that
Gi’s are i.i.d. (on the other hand, he requires only monotone hazard rate condition—
not necessarily strict). In this case, χ is the Dutta–Ray egalitarian method. Mu-
tuswami’s proof uses the original definition of Dutta and Ray, in terms of Lorentz
orderings, and a theorem of Hardy, Littlewood, and Polya [10], giving a condition that
is equivalent to Lorentz domination. To prove the generalization, we prove a charac-
terization for L-domination, in Lemma 18, in the style of the Hardy–Littlewood–Polya
theorem. The proof of Theorem 16 is given below.

By Theorem 16, χ simultaneously maximizes the probability of all users accepting
service, for each set S of users, among all cost sharing methods in the core. One may
be led to believe that if the mechanism of Theorem 1 is run with χ, then the expected
size of the set served is maximized, over all cost sharing methods in the core. However,
this is not true, as shown in the example below.

Example. Let U = {a, b} and the cost function be cost(a, b) = 10, cost(a) = 8,
cost(b) = 6, cost(∅) = 0. Suppose the utilities of a and b are picked from the uniform
distribution over the interval [0, 20]. In this case, χ will be the egalitarian method:

χ({a, b}, a) = χ({a, b}, b) = 5, χ({a}, a) = 8, χ({b}, b) = 6.

The expected size of set picked by the mechanism is 1.45. However, using the following
cross-monotonic cost sharing method, ξ, the expected size of set picked is 1.45125:

ξ({a, b}, a) = 5.5, ξ({a, b}, b) = 4.5, ξ({a}, a) = 8, ξ({b}, b) = 6.

For completeness, we first state the following theorem.
Theorem 17 (Hardy, Littlewood, and Polya [10]). Let α1 ≤ · · · ≤ αn and

β1 ≤ · · · ≤ βn be such that α1 + · · · + αn = β1 + · · · + βn. The following two
statements are equivalent.

1. (α1, . . . , αn) Lorentz dominates (β1, . . . , βn).
2. (α1, . . . , αn) can be obtained from (β1, . . . , βn) by applying the following trans-

formations to (β1, . . . , βn) a finite number of times:
(a) Find i < j such that βi < βj and the next step can be performed.
(b) Increase βi and decrease βj by a small ε > 0.

Following is an analogous fact for L-domination. As defined in section 5.2, let V be
the set of all nonnegative s-dimensional vectors q such that f1(q(1))+ · · ·+fs(q(s)) =
cost(S).

Lemma 18. Let q, r ∈ V . The following two statements are equivalent.
1. q L-dominates r, with π being the identity permutation.
2. q can be obtained from r by applying the following transformations to r a

nonzero number of times:
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(a) Find i < j such that r(i) < r(j) and the next step can be performed.
(b) Increase r(i) and decrease r(j) by small positive amounts such that

• fi(r(i)) + fj(r(j)) is preserved,
• r(i) ≤ r(j) is preserved.

Proof. We will prove the forward direction only; the reverse direction is straight-
forward. Let i be the smallest index such that q(i) �= r(i) (if such an index i does not
exist, then q and r are identical). Since q L-dominates r, q(i) > r(i). By definition,

f1(q(1)) + · · · + fs(q(s)) = f1(r(1)) + · · · + fs(r(s)).

Let j be the smallest index > i such that

f1(q(1)) + · · · + fj(q(j)) = f1(r(1)) + · · · + fj(r(j)).

By the choice of j, it must be the case that

f1(q(1)) + · · · + fj−1(q(j − 1)) > f1(r(1)) + · · · + fj−1(r(j − 1));

therefore q(j) < r(j). Since i < j, q(i) ≤ q(j). Now we have r(i) < q(i) ≤ q(j) <
r(j). Increase r(i) and decrease r(j) as much as possible so that the following are
preserved:

1. fi(r(i)) + fj(r(j)).
2. r(i) ≤ r(j).
3. For 1 ≤ k ≤ s,

f1(q(1)) + · · · + fk(q(k)) ≥ f1(r(1)) + · · · + fk(r(k)).

Clearly, r(i) must increase by a positive amount, and r(j) must decrease by a
positive amount. Therefore, in the limit, q can be obtained from r by applying such
steps.

Proof of Theorem 16. Consider any set of users S ⊆ U . Let q, r ∈ Vc correspond
to χS and ξS , respectively. By Theorem 14, q L-dominates r. Now, q can be obtained
from r by steps specified in Lemma 18. Finally, by Lemma 19 given below, each of
these steps will only increase the probability that all users accept service. Hence
P (χS) ≥ P (ξS).

Lemma 19. Let f1, . . . , fs be the equalizing functions specified above. Let xi ≥ 0,
1 ≤ i ≤ s, and define v = (f1(x1), . . . , fs(xs)). Define P (v) =

∏s
i=1[1 − Gi(fi(xi))].

Suppose there exist i and j such that xi < xj. Then,

dP (v) =
s∑

k=1

∂P (v)

∂fk(xk)
dfk(xk) ≥ 0,

where 0 < dfi(xi) = −dfj(xj) and dfk(xk) = 0 if k �= i, j.
Proof.

dP (v) =

s∑
k=1

∂P (v)

∂fk(xk)
dfk(xk)

=

s∑
k=1

P (v)

1 −G(fk(xk))
× (−g(fk(xk))) × dfk(xk)
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= P (v)

[
gj(fj(xj))

1 −Gj(fj(xj))
− gi(fi(xi))

1 −Gi(fi(xi))

]
dx

= P (v)[λj(fj(xj)) − λi(fi(xi))]dx

= P (v)[xj − xi]dx ≥ 0,

where dx = dfi(xi) = −dfj(xj).

The second-to-last step uses the fact that fi is the inverse of λi and the last step
follows from the assumption that xi < xj .

8. Discussion. Submodular cost functions admit a rich class of cross-monotone
cost sharing methods. Of these, equitable methods capture a large subclass, though
not all, as evidenced by the example below. Our definition as well as Hokari’s [11]
appears quite natural, and despite differences, they lead to the same class of cost
sharing methods. This raises the following question: how to impose an economic
criterion on cross-monotone methods so as to obtain precisely the class of equitable
methods.

Example. Consider the following cross-monotone cost sharing method (the costs
of individual sets are simply the sum of cost shares of their elements).

ξ({a, b, c, d}, a) = 2,
ξ({a, b, c, d}, b) = 2, ξ({a, b, c, d}, c) = 1, ξ({a, b, c, d}, d) = 1,
ξ({a, b, c}, a) = 2, ξ({a, b, c}, b) = 3, ξ({a, b, c}, c) = 1,
ξ({a, b, d}, a) = 3, ξ({a, b, d}, b) = 2, ξ({a, b, d}, d) = 1,
ξ({a, c, d}, a) = 2, ξ({a, c, d}, c) = 2, ξ({a, c, d}, d) = 2,
ξ({b, c, d}, b) = 2, ξ({b, c, d}, c) = 2, ξ({b, c, d}, d) = 2,
ξ({a, b}, a) = 3, ξ({a, b}, b) = 3,
ξ({a, c}, a) = 3, ξ({a, c}, c) = 3,
ξ({a, d}, a) = 3, ξ({a, d}, d) = 3,
ξ({b, c}, b) = 3, ξ({b, c}, c) = 3,
ξ({b, d}, b) = 3, ξ({b, d}, d) = 3,
ξ({c, d}, c) = 3, ξ({c, d}, d) = 3,
ξ({a}, a) = 5, ξ({b}, b) = 5, ξ({c}, c) = 5, ξ({d}, d) = 5.

We will show, by contradiction, that this is not an equitable cost sharing method.
First run Algorithm 1 on S = {a, b, c}. In order to produce the above method, S
must be the first set to go tight. Suppose this happens at time t. Clearly, none of the
proper subsets of S is tight at time t. Therefore, fa(t) = 2, and fb(t) = 3. Next, run
Algorithm 1 on set S′ = {a, b, d}. The first set to go tight must be the entire set S′,
at time t′, say. Therefore, fa(t

′) = 3, and fb(t
′) = 2. But then at least one of fa or

fb is not monotonically increasing.

Observe that Algorithm 1 is very explicitly trying to impose equality among users,
as specified by the equalizing functions. Of course, the precise notion of “equality”
or “fairness” imposed depends on these functions. An exciting research direction is
to characterize the notions of fairness captured by particular choices of the equalizing
functions.

This very explicit seeking of “equality” is also the chief difference between our
definition and Hokari’s definition and algorithm. Hokari defines sequential monotone
path cost sharing methods by partitioning the set of users, ordering the partitions
sequentially, and applying monotone path methods within each partition, with an
incremental method applied on the ordered list of partitions. In our setting it is easy
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to see that the resulting method is also equitable, and so this operation does not lead
to new cost sharing methods.

Considering the fact that for submodular cost functions, our definition is a nat-
ural generalization of the Dutta–Ray egalitarian method, one wonders whether there
is a similar generalization for nonsubmodular cost functions as well. L-orderings, pre-
sented in section 5.2, may lead to such a definition. At present it is not clear how to
generalize Algorithm 1 to this setting—if the cost function is not submodular, then
every element may be in a tight set, without the entire set being tight. Algorithm 1
will halt at this point, and the resulting cost allocation will not be budget balanced.

Next, assume that the cost function is nondecreasing and submodular. Let σ be
a permutation on 1, . . . , n. The incremental cost sharing method, ξσ, corresponding
to permutation σ is defined as follows. Let S ⊆ U , |S| = k, and let i1, . . . , ik be the
users in S ordered according to σ. Then, ξσ(S, i1) = cost(i1), and for 2 ≤ j ≤ k,
ξσ(S, ij) = cost({i1, . . . , ij}) − cost({i1, . . . , ij−1}).

In [17] we showed that the class of cross-monotone methods for a nondecreasing
submodular cost function form a polytope and that incremental cost sharing methods
form corner points of this polytope. We also gave an example of a cross-monotone
method that is not in the convex hull of these corner points (corresponding to incre-
mental cost sharing methods) and left the open problem of characterizing the rest of
the corner points. We show below that this example is in fact an equitable method. It
is easy to see that all incremental methods are also equitable. Do equitable methods
capture all corner points of this polytope? Are equitable methods closed under convex
combinations? Since not all cost sharing methods are equitable, the answers to both
these questions cannot be “Yes.”

Example. Consider the following cost sharing method:
ξ({a, b, c}, a) = 2, ξ({a, b, c}, b) = 3, ξ({a, b, c}, c) = 4,
ξ({a, b}, a) = 4, ξ({a, b}, b) = 3,
ξ({a, c}, a) = 3, ξ({a, c}, c) = 4,
ξ({b, c}, b) = 3, ξ({b, c}, c) = 4,
ξ({a}, a) = 4, ξ({b}, b) = 4, ξ({c}, c) = 4.
In [17] we showed that this cross-monotone method is not a convex combination of
incremental cost sharing methods. However, it is an equitable cost sharing method
corresponding to equalizing functions fa, fb, fc satisfying

fa(2) = 0, fb(1) = 0, fb(2) = 3, fb(3) = 3, fb(4) = 4, and fc(1) = 4.

Finally, the example given in section 7 raises the question of identifying the cost
sharing method that maximizes the expected size of the set served.
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