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1. Introduction 

There has been a great deal of interest recently in 
the relative power of on-line and off-line algorithms. An 
on-line algorithm receives a sequence of requests and 
must respond to each request as soon as it is receiveD. An 
off-line algorithm may wait until all requests have been 
received before determining its responses. One approach 
to evaluating an on-line algorithm is to compare its per- 
formance with that of the best possible off-line algorithm 
for the same problem. Thus, given a measure of "profit", 
the performance of an on-line algorithm can be measured 
by the worst-case ratio of its profit to that of the optimal 
off-line algorithm. This general approach has been 
applied in a number of contexts, including data structures 
[SITa], bin packing [CoGaJo], graph coloring [GyLe] and 
the k-server problem [MaMcSI]. Here we apply it to 
bipartite matching and show that a simple randomized 
on-line algorithm achieves the best possible performance. 

2. Problem Statement 

Let G (U ,V,E) be a bipartite graph on 2n vertices 
such that G contains a perfect matching. Let B be an 
n xn matrix representing the structure of G (U ,V,E). The 
rows of B correspond to vertices in U (the boys) and the 
columns to vertices in V (the girls); each edge is 
represented by a 1 in the appropriate position. We con- 
sider the problem of constructing a large matching in 

G (U,V,E) on-line. Assume that the girl vertices arrive 
in a preselected order, and that the edges incident to a 
vertex are revealed to us only when the vertex arrives. 
The task is to decide, as each girl vertex arrives, which 
boy vertex to match her to, so that the size of the match- 
ing obtained is maximized. Alternatively, we can view 
the matching as being constructed while the matrix is 
revealed column-by-column. As a convention we will 
assume that columns are revealed in the order 
n ,n -1 ,  . . .  1. 

The performance of a randomized algorithm A for this 
task is denoted by p (A) and is defined to be: 

MIN MIN E [size of matching achieved by A ] 
G order of girl vertic~ 

where the expectation is taken over the internal coin flips 
of A. 

R e m a r k :  A greedy algorithm which always matches a 
girl if possible (to an arbitrarily chosen boy among the 
eligible ones), achieves a maximal matching - and there- 

n fore a matching of size at least ~-. On the other hand an 

adversary can limit any deterministic algorithm to a 
n 

matching of size ~ :  for example, by letting the first ~2 

n 
columns contain all ones and the last ~ columns contain 

ones only in those rows which are matched by the deter- 
n 

ministic algorithm in the first ~- steps. 
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Many of the results in the literature of on-line algorithms 
concern the performance of randomized on-line algo- 
rithms against an adaptive on-line adversary [BeBoKa- 
TaWi]. In the context of the present problem, adaptive- 
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ness means that the adversary is permitted to specify the 
matrix column-by-column, and to take into account, in 
specifying any given column, the decisions that the ran- 
domized algorithm has made in response to the arrivals 
of earlier columns. The fact that the adversary is on-line 
means that the adversary must construct his own perfect 
matching column-by-column, choosing the row to be 
matched in each column at the same time as he specifies 
the column. An adaptive on-line adversary can limit any 
randomized on-line algorithm to a matching of expected 
size n/2+0 (logn) by choosing the matrix, and his own 
perfect matching, as follows: for i--0 to n/2, there is a 1 
in position j , n - i  if and only if row j does not lie in the 
matching constructed so far by the algorithm, and also 
does not lie in the matching constructed so far by the 
adversary; for his perfect matching, the adversary chooses 
a 1 in column n - i  at random. For i=n/2+1 to n, there is 
a 1 in position j , n - i  if and only if row j does not lie in 
the matching constructed so far by the adversary; in this 
case also, the adversary chooses for his perfect matching 
a random 1 in column n - i .  To show that no randomized 
algorithm can achieve more than n/2+O (logn) on the 
average against this adversary, we argue as follows. First, 
any non-greedy randomized algorithm can be replaced by 
a greedy one that performs at least as well on the average. 
Secondly, for any greedy algorithm A, let T(A) be the set 
of rows that are matched in columns n,  n -1  ..... n/2+l by 
both A and the adversary. Then the expected cardinality 
of T(A) is O(logn), and the size of the matching pro- 
duced by algorithm A does not exceed n/2+ I T(A) I. 

The Ranking Algorithm: 

We shall analyze the performance of the following 
randomized on-line matching algorithm, which we shall 
refer to as the RANKING algorithm: 

Initialization: Pick a random permutation of the boy ver- 
tices - thereby assigning to each boy a random priority or 
ranking. 

Matching Phase: As each girl arrives, match her to the 
eligible boy (if any) of highest rank. 

Remark: At first sight it might appear more natural to 
analyze the algorithm RANDOM, which picks a boy at 
random from among the eligible boys each time a girl 
arrives. However, RANDOM performs nearly as poorly 
as a deterministic greedy algorithm; 

it achieves a matching of expected size only n + o  (logn) 

on the following matrix: Bii=l if i=j or if ~<j<n and 

l ~ < n / 2 ,  and 0 otherwise. RANDOM performs poorly in 
this example because it concentrates too much effort on 

n 
the dense upper half of the matrix for the first -~ moves, 

thereby missing out on the crucial edges in the sparse 
lower half of the matrix. RANKING has an implicit self- 
correcting mechanism that tends to favor those currendy 
eligible boys who have been eligible least often in the 
past. It is this feature of RANKING that allows it to per- 
form well even on graphs where local density considera- 
tions are misleading. 

2. Analysis of the Ranking Algorithm 

The Duality Principle: 

After the initialization phase of RANKING, there is 
an ordering on both the boy and girl vertices (the 
preselected ordering on girls and the randomly chosen 
ordering on the boys). At this point there is a symmetry 
between the boy vertices and the girl vertices: the perfor- 
mance of RANKING remains unchanged if we inter- 
change the roles of the boys and girls by letting the boys 
arrive according to their ranking and picking the highest 
ranked eligible girl. 

Lemma 1: For any fixed orderings of the boy and girl 
vertices, the matching picked during the matching phase 
of RANKING remains unchanged if the roles of the boy 
and girl vertices are interchanged. 

Proof: The proof is by induction on the number of boys 
and girls. Let b be the highest ranked boy, and g,  the 
highest ranked girl that b has an edge to. Now, if the 
matching is found from the boys' side, b will be matched 
to g in the first step. Also, if the matching is found from 
the girls' side, the first time that b is eligible to be 
matched is when g arrives; clearly, they are matched at 
that time. The lemma follows by removing b and g from 
the graph, and applying the induction hypothesis to the 
remaining graph. 

Henceforth we shall regard the columns as ordered 
from 1 to n with column n having highest rank and 
column 1 lowest, and the rows as arriving in random 
order. As each row arrives it is matched to the highest 
ranking available eligible column. Viewing rows as 
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arriving in random order gives us a new notion of time 
which is crucial to our analysis of the algorithm. Let 
6(1) . .  • or(n) be an ordering of the rows. By time t we 
mean the instant of the t th row arrival, i.e. 6(t). 

We next give a technical lemma that will be useful at 
several points. Consider a variant of RANKING which, as 
each boy arrives, either matches him to the highest rank- 
ing eligible girl, or else refuses to match him at all, even 
though one or more eligible girls may be available. The 
rule that determines whether this algorithm refuses may 
be quite arbitrary. 

Lemma 2: For any fixed ordering of the boys and ranking 
of the girls, the set of girls matched by RANKING is a 
superset of the set matched by any refusal algorithm. 

Proof: By induction on t. By the induction hypothesis, 
the set of girls eligible to be matched at time t+l  by the 
refusal algorithm forms a superset of those eligible to 
RANKING. Now, since both algorithms use the same 
ranking on the girls, if the refusal algorithm chooses to 
match a girl who is also eligible for RANKING, then 
RANKING must match her too. Thus, in all cases, the set 
of girls matched by RANKING remains a superset of the 
set matched by the refusal algorithm. 

Next, we prove that we can assume w.l.o.g, that the adja- 
cency matrix B of the graph is upper-triangular. 

Lemma 3: The expected size of the matching produced 
by RANKING is minimum for some upper-triangular 
matrix. 

Proof: Let B be any matrix. Renumber the rows of B so 
that a perfect matching sits on the main diagonal (i.e. 
Bil = 1 for l #_/<n). This renumbering has no effect on the 
performance of RANKING, since the rows arrive in a 
random order. Let B' be the matrix obtained when all 
entries of B below the main diagonal are replaced by 0 
(i.e. B'ij = Bij if i <j and 0 if i >j) .  Now RANKING on 
B" may be viewed as a refusal algorithm on B.  Thus, by 
lemma 2, the expected size of matching obtained by rank- 
ing on B" is at most as large as on B.  [] 

Remark:  We conjecture that in fact the expected size of 
matching achieved by RANKING is minimized by the 
complete upper-triangular matrix. However, we do not 
know how to prove this directly. We shall show a perfor- 
mance guarantee for RANKING that is matched to within 
low order terms by its performance on the complete 
upper-triangular matrix, thus proving indirectly that this is 

the worst case (to within lower order terms). Proving the 
conjecture will yield the stronger result that RANKING 
has the best performance guarantee. 

Henceforth we will assume that B is upper- 
triangular, with diagonal entries 1, corresponding to the 
unique perfect matching in the graph. Consider the sym- 
metric difference of this perfect matching with the maxi- 
mal matching M produced by RANKING. If I M I = n/2, 
each connected component of the symmetric difference is 
an augmenting path is of length 3, and no diagonal entries 
are picked. In this case, for each i,  either row i or 
column i is matched, but not both. On the other hand, 
whenever many diagonal elements are chosen or many 
long augmenting paths occur, there will correspondingly 
be a large number of indices i such that row i and column 
i are both matched. The idea behind our proof is that ,  
under a random ordering of the rows, RANKING is likely 
to yield a large number of such indices, and hence a large 
matching. This last implication is made precise in the fol- 
lowing lemma. 

Lemma 4: Let B be an n xn upper triangular matrix with 
diagonal entries 1. Let M be any matching in the associ- 
ated graph such that for each i .either row i or column i is 
matched, and let D ={i: row i and column i are both 

matched in M}. Then IMI= n+ ID I 
2 

Proof: For each i ,  either row i or column i is matched, 
i.e. covered by some edge in M. I D I= number of i such 
that both row i and column i are covered. Now, the 
number of vertices covered by M is n+ I DI and the 

n+ lDI  
number of edges in M is 

2 

Corollary: E [ IMI ]  = n / 2 +  1/2E[IDI]. 

We will lower-bound E [ IM I ] by lower-bounding 

E [ I D I ]  = ~; Pr [column i and row i both get matched], 
i=1 

where the probability is over random row arrivals. 

For the purpose of analyzing the performance of RANK- 
ING, it is useful to consider a modification - the algorithm 
EARLY - which refuses to match row i if it arrives after 
column i has already been matched. Notice that on the 
complete upper-triangular matrix algorithm EARLY is 
identical to RANKING. 

Lemma 5: For every ordering of the rows, RANKING 
produces at least as large a matching as that produced by 
algorithm EARLY. 
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Proof: This follows from Lemma 2, since EARLY is a 
refusal algorithm. 

We will lower-bound E [ I D I ]  for algorithm EARLY. 
Algorithm EARLY has the property that row i gets 
matched if and only if column i is not already matched 
when row i arrives. In particular, if in some ordering 
column i gets matched at time t and row i arrived at time 
<t then row i must also get matched (because, in particu- 
lar, column i was available for row i). Index i enters the 
set D in precisely this way. 

Definition: Let cr be a permutation of the rows, and let 
c~ ~) be the sequence obtained by deleting i from its origi- 
nal position in ff and moving it to the last position. If 
EARLY does not match column i under a,  then define 
W(c, i )  = 0. Otherwise, define W(~,/)  to be the time at 
which column i gets matched under the permutation ff¢i); 
if column i remains unmatched under c~ ¢i) then define 
W (or,i) = n. Now, define 

w[ = Pr [W(~,i) = t] for O~_t<n. 

where ff is a random permutation of the rows. Clearly, Pr 
n 

[column i gets matched] = Z w~. The next lemma shows 
t = l  

what fraction of this probability corresponds to the favor- 
able event that column i and row i both get matched. 

Lemma 6: Let W(c, i )  = t and t<n. Obtain permutation 
o" from c~ ¢i) by moving row i into the jth position. Then, 
under o", EARLY will match row i as well as column i 
by time t+l ,  ifj<_t, and will not match row i at all i f j > t .  

Proof." I f j > t  then column i will get matched under o" at 
time t, before row i arrives, so row i will not get 
matched. If  j<t then the i th column is eligible when row 
i arrives; therefore EARLY matches row i. Running 
EARLY on ~(z) for t steps can be regarded as a refusal 
algorithm on o J run for t+ l  steps. So by lemma 2, the 
columns matched under o ¢ by time t+ l  form a super-set 
of the columns matched under a¢i) by time t; hence 
column i gets matched under o" by time t+ l .  

Lemma 7: Pr[row i and column i both get matched] = 

--' w;. 
t=l !l 

Proof: Firstly, notice that if W~r,/)  = n,  then row i must 
have arrived at or before the ~ e  when column i got 
matched in a ,  and hence r o w ~ ' m u s t  also have gotten 
matched. Consider any time t, l<t<n, and consider the 
orderings such that W(c~,/) = t. Say that two such order- 

ings ff and rc are equivalent if c~ ¢I) = ~¢i). Clearly, each 
equivalence class has n orderings, and row i falls in one 
of the first t positions in t of  these. The proof follows by 
Lemma 6. [] 

- ~ : t  
Letwt=__Zlw ~ . ,  B y L e m m a 6 ,  E [ I D I ] =  t=l --W,.n We 

will now lower-bound E[ID I] by lower-bounding the 
right hand side. We first present an easy bound establish- 
ing that the expected size of the matching is at least 
(2-~r-2)n. 

Lemma 8: If column i gets matched at time t under c~ 
then under O "(i) column i either remains unmatched, or 
gets matched at some time >t -1 .  

Proof: The algorithm under a (i) for the first t - 1  steps 
can be regarded as a refusal algorithm for our algorithm 
run on c~ for t steps. Now the lemma follows by applying 
lemma 2. 

Definition: Let mt = Pr [some column is matched at 
time t ]. 

Corollary: E ws < E ms. 
s~t s~t+l 

Lemma 9: EARLY produces a matching of size at least 
(2--/--2)n on an n ><n upper-triangular matrix. 

Proof: Let c~ be the size of matching produced. Then, 
by Lemmas 3 and 6, 

n I ~ Iwt. 
ff.n > ~ + -~n ,=1 

Since mt < 1 and ~: wt = c ~ ,  we see by the corollary to 
t= l  

n 

lemma 7 that Z twt is minimized by setting 
t= l  

m l = m 2  = - ' '  =man= 1~, Wl=ml+m 2 and wt =mr+l, 
t> l .  Substituting the resulting bound into the above ine- 
quality yields ~ 2-~--2. [] 

In Lemma 9, we have made the pessimistic assump- 
tion that mt = 1 for l<t<_ctn, which would mean that the 
first ¢xn rows to arrive all get matched. This is, of course, 
not the case, since, even early in the process, a row may 
arrive after its column is already matched. Thus the mt 's, 
and hence also the wt 's, are spread out in time. Lemma 10 
makes this observation more precise. 

Lemma 10: For all t, m t =  1 - n s~<'t " 

Proof: Let m[ = P r [ r o w  i occurs at time t and gets 

355 



matched]. 

Then clearly mt = Z m~. Now, Pr [row i occurs at 
i--1 

time t and does not get matched] = 1 E w,/. i.e. pick a 
II s < t  

permutation o such that W ( c , i )  <t, and move row i into 

• i The lemma the t ~ place. Therefore, m[ = 1 1 y. w~. 
II t l  s <t 

follows by summing over i .  [] 

Let om be the expected size of matching produced 
pl 

by EARLY. We need to lower-bound Y. twt subject to: 
t= l  

(i). ~ wt=an 
t=l  

(ii). mt=  1- 1 I; ws, and 
n s < t  

(iii). Z w s <  Z ms. 
s ~  s~ t+ l  

The solution is much simpler if condition (iii) is replaced 
by condition (iii)' below: 
(iii)' Y. ws -< 2; ms 

s.~t sSt 

Also, we will drop condition (ii) for t=n (this does not 
affect the validity of our bound). Lemma 11 establishes 
that replacing (iii) by condition (iii)' does not change the 
desired lower-bound by much. Lemma 12 asserts that, 

subject to (i), (ii) and (iii)', ~ twt is minimized by pick- 
t=l  

ing the w i ' s  greedily, i.e. by making each 
w i ,i=1,2, • • • in turn as large as possible. 

Lemma 11: Let ff = (w 1 ,w2, • • • w, ) be any solution 
to conditions (i), (ii), and (iii). Then there is a solution 
x = (xl ,x2, " "  x~ ) to conditions (i), (ii) and (iii)' such 
that the L 1 norm of (ff - ~) is at most 2. 

Proof: By conditions (ii) and (iii) we have 

(iv). Y. ws < t + l -  1 y. ( t + l - s ) w s .  
a~ n a~t 

~" is obtained from ~ by moving one unit from the lowest 
k 

possible indices to wn, Pick k such that ~ wi --- I and 
k+l  i=I  

5". wi > 1. Set xl = 0 for 1~  <__k, 
i=1 

k 

xk+l = wk+l -- (1-- iE1 wi ) and x ,  = w~+l. The remaining 

indices of £ are the same as those of ft .  Clearly if 
satisfies (iv), then ~ satisfies condition (v) stated below, 
and the L 1 norm of (ff - x--) is at most 2. 

Lemma 12: Subject to conditions (i), (ii) and (iii)' ~; twt 
t=l  

is minimized by picking wi "s greedily. 

Proof: By conditions (ii) and (iii)' we have: 

(v) y. w, _< t - ± z ( t - s )  w, 
s.~t I'1 s <t 

Suppose for contradiction that the wi "s that minimize 
Ft 

~: twt are not picked greedily according to conditions (i) 
t=l  

and (v). Let t be the last time such that wt is not as large 
as possible. Let the deficiency in wt be e. Increase wt by 
e, decrease wt+ 1 by e( l+l /n) ,  and increase w, by e/n. The 

n 

new wi ' s  satisfy (i) and (v), and have a smaller Y. twt. 
t=l 

Contradiction. [] 

Remark:  The greedy solution resulting from condition 

(v) is w, = ( 1 - 1  ) ,-1 
n 

Theorem 1: The performance of algorithm EARLY is 

n ( 1 - 1 ) + o  (n) 
e 

Proof: By Lemma I0 and I 1, it is sufficient to pick wi "s 
greedily subject to conditions (i), (ii) and (iii)'. This 
yields 

w, = ( 1 - 1 )  t-I ,for t=l ,2  .... T 
n 

T 

where T is such that E wt = o~n. Substituting for wt and 
t=l  

solving for T yields T< -n  In(l-c0. 

Let ( 1 - 1 )  = 0. Then, 0 r = 1-a .  Now, 
n 

T T Z t w, = Y~ tO'-1= (1--(0r)-- TOT (1--0)) >__ 
t=l  t=l  (1-0) 2 

n 2 (Ot+(1-e01n(1 - a ) )  

Substituting this into our lower-bound of n/2 + E [ID I] 
on the size of the matching yields: 

n 1 T 
~.n >- "-~ + -~n t~=l twt 

n n > -~ + ~ (~ + (1-~) In (1-~)) 

This gives (¢t-1) > (1-o01n(/-¢ 0 

Thus c~2 ( 1 - 1  ). [] 
e 

Remark:  A simple consequence of our proof is that if 
RANKING is applied to a n ×n matrix B for which the 
size of the maximum matching is m <n, then the expected 
size of the matching produced by RANKING is at least 

(l-Lira + o(m). 
e 
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3. Bounding the Performance of Any 
On-Line Algorithm 

In this section we will show that RANKING is 
optimal, up to lower order terms. 

Theorem 2: The performance of any on-line bipartite 

matching algorithm is < n (1-  e )  + o (n). 

Let T be the nxn  complete upper-triangular 
matrix. As before, we assume that the columns of T 
arrive in the order n ,n-1 ..... 1. By the k *h column arrival 
we mean the arrival of column number n-k+l .  Consider 
the algorithm RANDOM, which matches each column to 
a randomly chosen eligible row. 

Definition: Let T be the n ×n complete upper-triangular 
matrix. With every permutation n on (1, - . .  n} associ- 
ate a problem instance (T,n), where the adjacency matrix 
is obtained by permuting the rows of T under n, and the 
columns arrive in the order n , n - I ,  • • • 1. Let P denote 
the uniform probability distribution over these n! 
instances. 

Lemma 13: Let A be a deterministic on-line algorithm 
that is 'greedy' in the sense that it never leaves a column 
unmatched if there is an eligible row. Then, the expected 
size of matching produced by A when given an instance 
(T,~) from P is the same as the expected size of matching 
produced by RANDOM on T. 

Proof: The lemma follows from the two claims listed 
below, which may be proved by a straightforward induc- 
tion on time: 
1. For algorithm A on (T,r0, as well as for RANDOM on 
T, if there are k eligible rows at time t, then they are 
equally likely to be any set of k rows from among the first 
n - t + l  rows of T. 
2. For each k, the probability that there are k eligible 
rows at time t is the same for RANDOM run on T as it is 
for A run on (T,n). [] 

Lemma 14: The performance of any on-line matching 
algorithm is upper bounded by the expected size of 
matching produced by the algorithm RANDOM on the 
complete upper-triangular matrix. 

Proof: Let E [R (T,~)] denote the expected size of 
matching produced by the given randomized on-line algo- 
rithm, and let E[A(P)] denote the expected size of 
matching produced by a deterministic algorithm A when 
given an input from distribution P .  By Yao's lemma 
[Ya], 

min{E [R (T,r0]} <_max{E [A(P)]}. 
A 

where the maximum is over all deterministic algorithms. 
W.l.o.g. the best deterministic algorithm is greedy (by 
simulating A, and matching the current column to the row 
matched by A, if the row is available, and to an arbitrary 
eligible row otherwise). The proof follows from Lemma 
13. [] 

Lemma 16: The expected size of matching produced by 

algorithm RANDOM on T is n ( 1 - 1 )  + o(n). 
e 

Proof: The proof rests on the following crucial observa- 
tion made in Lemma 13: given that there are l rows still 
eligible at the k *h arrival column, they are equally likely 
to be any set of I rows from among the first n-k+l  rows 
of T. 

Let x (t) and y (t) be random variables representing 
the number of columns remaining and the number of rows 
still eligible at time t. Let Ax = x ( t + l ) - x ( t )  and 
Ay = y ( t + l ) - y ( t ) .  Then Ax = - 1  and Ay is - 2  if the 

diagonal entry in the t+l  a column was eligible but was 
not matched, and -1 otherwise. Using the fact that the set 
of eligible rows is randomly chosen from among the first 
n - t :  

E[Ay] = - 1 -  y(t) . y(t)--1 = - 1 -  y ( t ) - I  
x(t)  y(t)  x(t) 

Therefore E[Ay] = 1+ y( t ) - I  
E[Ax] x(t) " 

Kurtz's theorem [Ku] says that with probability tending to 
1 as n tends to infinity, the solutions of the above stochas- 
tic difference equation are closely approximated by the 
solution of the differential equation: 

dy = 1+Y-1 
dx x 

Solving this differential equation with the initial condition 
x--y =n,  we get 

( n - 1  y = 1 + x - In x )  
n n 

So, when only one row is eligible, the number of columns 

remaining is n + o (n). Therefore, the expected size of 
e 

, i  

matching produced is n (1 - -~  ) + o (n). 
e 

Remark: 1) There is an interesting alternative descrip- 
tion of the behavior of algorithm RANDOM on T. In this 
description, the algorithm begins by specifying a random 
permutation ¢r=(cs(1), ¢s(2) ..... cs(n)) of {1, 2 ..... n}. 
Then, as each column n- i  arrives, RANDOM matches 
that column with row x, where x is the first element of cs 
which has not previously been matched and is less than or 
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equal to n-i .  It is easy to see that this is a faithful 
description of RANDOM, and as a consequence, the fol- 
lowing two random variables have the same distribution: 
(i) the size of the matching produced by RANDOM on T; 
(ii) the length of the longest subsequence of a random 
permutation such that, for all k, the k th element of the 
subsequence is greater than or equal to k. Thus, as a 
byproduct of Lemma 16 we obtain the interesting com- 
binatorial result that the expectation of this latter random 

variable is n (1---I)+o (n). 
, i  

e 

2). It is easy to show that the expected size of matching 
produced by RANDOM and RANKING is the same on 
T. So, proving the conjecture that T is the worst matrix 
for RANKING together with Lemmas 13 and 14 will 
show that RANKING is the best possible on-line bipartite 
matching algorithm. 
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4. Open Questions: 

1. Is the complete upper-triangular matrix the worst-case 
input for RANKING? 

2. Is RANKING an optimal on-line matching algorithm in 
the non-bipartite case? 
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