
An Optimal Algorithm for On-line Bipartite Matching

Richard M. Karp
University of California at Berkeley &

International Computer Science Institute

Umesh V. Vazirani
University of California at Berkeley

Vijay V. Vazirani
Cornell University

1. Introduction

There has been a great deal of interest recently in
the relative power of on-line and off-line algorithms. An
on-line algorithm receives a sequence of requests and
must respond to each request as soon as it is receiveD. An
off-line algorithm may wait until all requests have been
received before determining its responses. One approach
to evaluating an on-line algorithm is to compare its per-
formance with that of the best possible off-line algorithm
for the same problem. Thus, given a measure of "profit",
the performance of an on-line algorithm can be measured
by the worst-case ratio of its profit to that of the optimal
off-line algorithm. This general approach has been
applied in a number of contexts, including data structures
[SITa], bin packing [CoGaJo], graph coloring [GyLe] and
the k-server problem [MaMcSI]. Here we apply it to
bipartite matching and show that a simple randomized
on-line algorithm achieves the best possible performance.

2. Problem Statement

Let G (U ,V,E) be a bipartite graph on 2n vertices
such that G contains a perfect matching. Let B be an
n xn matrix representing the structure of G (U ,V,E). The
rows of B correspond to vertices in U (the boys) and the
columns to vertices in V (the girls); each edge is
represented by a 1 in the appropriate position. We con-
sider the problem of constructing a large matching in

G (U,V,E) on-line. Assume that the girl vertices arrive
in a preselected order, and that the edges incident to a
vertex are revealed to us only when the vertex arrives.
The task is to decide, as each girl vertex arrives, which
boy vertex to match her to, so that the size of the match-
ing obtained is maximized. Alternatively, we can view
the matching as being constructed while the matrix is
revealed column-by-column. As a convention we will
assume that columns are revealed in the order
n ,n -1 , . . . 1.

The performance of a randomized algorithm A for this
task is denoted by p (A) and is defined to be:

MIN MIN E [size of matching achieved by A]
G order of girl vertic~

where the expectation is taken over the internal coin flips
of A.

R e m a r k : A greedy algorithm which always matches a
girl if possible (to an arbitrarily chosen boy among the
eligible ones), achieves a maximal matching - and there-

n fore a matching of size at least ~-. On the other hand an

adversary can limit any deterministic algorithm to a
n

matching of size ~ : for example, by letting the first ~2

n
columns contain all ones and the last ~ columns contain

ones only in those rows which are matched by the deter-
n

ministic algorithm in the first ~- steps.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

Many of the results in the literature of on-line algorithms
concern the performance of randomized on-line algo-
rithms against an adaptive on-line adversary [BeBoKa-
TaWi]. In the context of the present problem, adaptive-

© 1990 ACM 089791-361-2/90/0005/0352 $1.50 352

http://crossmark.crossref.org/dialog/?doi=10.1145%2F100216.100262&domain=pdf&date_stamp=1990-04-01

ness means that the adversary is permitted to specify the
matrix column-by-column, and to take into account, in
specifying any given column, the decisions that the ran-
domized algorithm has made in response to the arrivals
of earlier columns. The fact that the adversary is on-line
means that the adversary must construct his own perfect
matching column-by-column, choosing the row to be
matched in each column at the same time as he specifies
the column. An adaptive on-line adversary can limit any
randomized on-line algorithm to a matching of expected
size n/2+0 (logn) by choosing the matrix, and his own
perfect matching, as follows: for i--0 to n/2, there is a 1
in position j , n - i if and only if row j does not lie in the
matching constructed so far by the algorithm, and also
does not lie in the matching constructed so far by the
adversary; for his perfect matching, the adversary chooses
a 1 in column n - i at random. For i=n/2+1 to n, there is
a 1 in position j , n - i if and only if row j does not lie in
the matching constructed so far by the adversary; in this
case also, the adversary chooses for his perfect matching
a random 1 in column n - i . To show that no randomized
algorithm can achieve more than n/2+O (logn) on the
average against this adversary, we argue as follows. First,
any non-greedy randomized algorithm can be replaced by
a greedy one that performs at least as well on the average.
Secondly, for any greedy algorithm A, let T(A) be the set
of rows that are matched in columns n, n -1 n/2+l by
both A and the adversary. Then the expected cardinality
of T(A) is O(logn), and the size of the matching pro-
duced by algorithm A does not exceed n/2+ I T(A) I.

The Ranking Algorithm:

We shall analyze the performance of the following
randomized on-line matching algorithm, which we shall
refer to as the RANKING algorithm:

Initialization: Pick a random permutation of the boy ver-
tices - thereby assigning to each boy a random priority or
ranking.

Matching Phase: As each girl arrives, match her to the
eligible boy (if any) of highest rank.

Remark: At first sight it might appear more natural to
analyze the algorithm RANDOM, which picks a boy at
random from among the eligible boys each time a girl
arrives. However, RANDOM performs nearly as poorly
as a deterministic greedy algorithm;

it achieves a matching of expected size only n + o (logn)

on the following matrix: Bii=l if i=j or if ~<j<n and

l ~ < n / 2 , and 0 otherwise. RANDOM performs poorly in
this example because it concentrates too much effort on

n
the dense upper half of the matrix for the first -~ moves,

thereby missing out on the crucial edges in the sparse
lower half of the matrix. RANKING has an implicit self-
correcting mechanism that tends to favor those currendy
eligible boys who have been eligible least often in the
past. It is this feature of RANKING that allows it to per-
form well even on graphs where local density considera-
tions are misleading.

2. Analysis of the Ranking Algorithm

The Duality Principle:

After the initialization phase of RANKING, there is
an ordering on both the boy and girl vertices (the
preselected ordering on girls and the randomly chosen
ordering on the boys). At this point there is a symmetry
between the boy vertices and the girl vertices: the perfor-
mance of RANKING remains unchanged if we inter-
change the roles of the boys and girls by letting the boys
arrive according to their ranking and picking the highest
ranked eligible girl.

Lemma 1: For any fixed orderings of the boy and girl
vertices, the matching picked during the matching phase
of RANKING remains unchanged if the roles of the boy
and girl vertices are interchanged.

Proof: The proof is by induction on the number of boys
and girls. Let b be the highest ranked boy, and g, the
highest ranked girl that b has an edge to. Now, if the
matching is found from the boys' side, b will be matched
to g in the first step. Also, if the matching is found from
the girls' side, the first time that b is eligible to be
matched is when g arrives; clearly, they are matched at
that time. The lemma follows by removing b and g from
the graph, and applying the induction hypothesis to the
remaining graph.

Henceforth we shall regard the columns as ordered
from 1 to n with column n having highest rank and
column 1 lowest, and the rows as arriving in random
order. As each row arrives it is matched to the highest
ranking available eligible column. Viewing rows as

353

arriving in random order gives us a new notion of time
which is crucial to our analysis of the algorithm. Let
6(1) . . • or(n) be an ordering of the rows. By time t we
mean the instant of the t th row arrival, i.e. 6(t).

We next give a technical lemma that will be useful at
several points. Consider a variant of RANKING which, as
each boy arrives, either matches him to the highest rank-
ing eligible girl, or else refuses to match him at all, even
though one or more eligible girls may be available. The
rule that determines whether this algorithm refuses may
be quite arbitrary.

Lemma 2: For any fixed ordering of the boys and ranking
of the girls, the set of girls matched by RANKING is a
superset of the set matched by any refusal algorithm.

Proof: By induction on t. By the induction hypothesis,
the set of girls eligible to be matched at time t+l by the
refusal algorithm forms a superset of those eligible to
RANKING. Now, since both algorithms use the same
ranking on the girls, if the refusal algorithm chooses to
match a girl who is also eligible for RANKING, then
RANKING must match her too. Thus, in all cases, the set
of girls matched by RANKING remains a superset of the
set matched by the refusal algorithm.

Next, we prove that we can assume w.l.o.g, that the adja-
cency matrix B of the graph is upper-triangular.

Lemma 3: The expected size of the matching produced
by RANKING is minimum for some upper-triangular
matrix.

Proof: Let B be any matrix. Renumber the rows of B so
that a perfect matching sits on the main diagonal (i.e.
Bil = 1 for l #_/<n). This renumbering has no effect on the
performance of RANKING, since the rows arrive in a
random order. Let B' be the matrix obtained when all
entries of B below the main diagonal are replaced by 0
(i.e. B'ij = Bij if i <j and 0 if i >j) . Now RANKING on
B" may be viewed as a refusal algorithm on B. Thus, by
lemma 2, the expected size of matching obtained by rank-
ing on B" is at most as large as on B. []

Remark: We conjecture that in fact the expected size of
matching achieved by RANKING is minimized by the
complete upper-triangular matrix. However, we do not
know how to prove this directly. We shall show a perfor-
mance guarantee for RANKING that is matched to within
low order terms by its performance on the complete
upper-triangular matrix, thus proving indirectly that this is

the worst case (to within lower order terms). Proving the
conjecture will yield the stronger result that RANKING
has the best performance guarantee.

Henceforth we will assume that B is upper-
triangular, with diagonal entries 1, corresponding to the
unique perfect matching in the graph. Consider the sym-
metric difference of this perfect matching with the maxi-
mal matching M produced by RANKING. If I M I = n/2,
each connected component of the symmetric difference is
an augmenting path is of length 3, and no diagonal entries
are picked. In this case, for each i, either row i or
column i is matched, but not both. On the other hand,
whenever many diagonal elements are chosen or many
long augmenting paths occur, there will correspondingly
be a large number of indices i such that row i and column
i are both matched. The idea behind our proof is that ,
under a random ordering of the rows, RANKING is likely
to yield a large number of such indices, and hence a large
matching. This last implication is made precise in the fol-
lowing lemma.

Lemma 4: Let B be an n xn upper triangular matrix with
diagonal entries 1. Let M be any matching in the associ-
ated graph such that for each i .either row i or column i is
matched, and let D ={i: row i and column i are both

matched in M}. Then IMI= n+ ID I
2

Proof: For each i , either row i or column i is matched,
i.e. covered by some edge in M. I D I= number of i such
that both row i and column i are covered. Now, the
number of vertices covered by M is n+ I DI and the

n+ lDI
number of edges in M is

2

Corollary: E [IMI] = n / 2 + 1/2E[IDI].

We will lower-bound E [IM I] by lower-bounding

E [I D I] = ~; Pr [column i and row i both get matched],
i=1

where the probability is over random row arrivals.

For the purpose of analyzing the performance of RANK-
ING, it is useful to consider a modification - the algorithm
EARLY - which refuses to match row i if it arrives after
column i has already been matched. Notice that on the
complete upper-triangular matrix algorithm EARLY is
identical to RANKING.

Lemma 5: For every ordering of the rows, RANKING
produces at least as large a matching as that produced by
algorithm EARLY.

354

Proof: This follows from Lemma 2, since EARLY is a
refusal algorithm.

We will lower-bound E [I D I] for algorithm EARLY.
Algorithm EARLY has the property that row i gets
matched if and only if column i is not already matched
when row i arrives. In particular, if in some ordering
column i gets matched at time t and row i arrived at time
<t then row i must also get matched (because, in particu-
lar, column i was available for row i). Index i enters the
set D in precisely this way.

Definition: Let cr be a permutation of the rows, and let
c~ ~) be the sequence obtained by deleting i from its origi-
nal position in ff and moving it to the last position. If
EARLY does not match column i under a, then define
W(c, i) = 0. Otherwise, define W(~,/) to be the time at
which column i gets matched under the permutation ff¢i);
if column i remains unmatched under c~ ¢i) then define
W (or,i) = n. Now, define

w[= Pr [W(~,i) = t] for O~_t<n.

where ff is a random permutation of the rows. Clearly, Pr
n

[column i gets matched] = Z w~. The next lemma shows
t = l

what fraction of this probability corresponds to the favor-
able event that column i and row i both get matched.

Lemma 6: Let W(c, i) = t and t<n. Obtain permutation
o" from c~ ¢i) by moving row i into the jth position. Then,
under o", EARLY will match row i as well as column i
by time t+l , ifj<_t, and will not match row i at all i f j > t .

Proof." I f j > t then column i will get matched under o" at
time t, before row i arrives, so row i will not get
matched. If j<t then the i th column is eligible when row
i arrives; therefore EARLY matches row i. Running
EARLY on ~(z) for t steps can be regarded as a refusal
algorithm on o J run for t+ l steps. So by lemma 2, the
columns matched under o ¢ by time t+ l form a super-set
of the columns matched under a¢i) by time t; hence
column i gets matched under o" by time t+ l .

Lemma 7: Pr[row i and column i both get matched] =

--' w;.
t=l !l

Proof: Firstly, notice that if W~r,/) = n, then row i must
have arrived at or before the ~ e when column i got
matched in a , and hence r o w ~ ' m u s t also have gotten
matched. Consider any time t, l<t<n, and consider the
orderings such that W(c~,/) = t. Say that two such order-

ings ff and rc are equivalent if c~ ¢I) = ~¢i). Clearly, each
equivalence class has n orderings, and row i falls in one
of the first t positions in t of these. The proof follows by
Lemma 6. []

- ~ : t
Letwt=__Zlw ~ . , B y L e m m a 6 , E [I D I] = t=l --W,.n We

will now lower-bound E[ID I] by lower-bounding the
right hand side. We first present an easy bound establish-
ing that the expected size of the matching is at least
(2-~r-2)n.

Lemma 8: If column i gets matched at time t under c~
then under O "(i) column i either remains unmatched, or
gets matched at some time >t -1 .

Proof: The algorithm under a (i) for the first t - 1 steps
can be regarded as a refusal algorithm for our algorithm
run on c~ for t steps. Now the lemma follows by applying
lemma 2.

Definition: Let mt = Pr [some column is matched at
time t].

Corollary: E ws < E ms.
s~t s~t+l

Lemma 9: EARLY produces a matching of size at least
(2--/--2)n on an n ><n upper-triangular matrix.

Proof: Let c~ be the size of matching produced. Then,
by Lemmas 3 and 6,

n I ~ Iwt.
ff.n > ~ + -~n ,=1

Since mt < 1 and ~: wt = c ~ , we see by the corollary to
t= l

n

lemma 7 that Z twt is minimized by setting
t= l

m l = m 2 = - ' ' =man= 1~, Wl=ml+m 2 and wt =mr+l,
t> l . Substituting the resulting bound into the above ine-
quality yields ~ 2-~--2. []

In Lemma 9, we have made the pessimistic assump-
tion that mt = 1 for l<t<_ctn, which would mean that the
first ¢xn rows to arrive all get matched. This is, of course,
not the case, since, even early in the process, a row may
arrive after its column is already matched. Thus the mt 's,
and hence also the wt 's, are spread out in time. Lemma 10
makes this observation more precise.

Lemma 10: For all t, m t = 1 - n s~<'t "

Proof: Let m[= P r [r o w i occurs at time t and gets

355

matched].

Then clearly mt = Z m~. Now, Pr [row i occurs at
i--1

time t and does not get matched] = 1 E w,/. i.e. pick a
II s < t

permutation o such that W (c , i) <t, and move row i into

• i The lemma the t ~ place. Therefore, m[= 1 1 y. w~.
II t l s <t

follows by summing over i . []

Let om be the expected size of matching produced
pl

by EARLY. We need to lower-bound Y. twt subject to:
t= l

(i). ~ wt=an
t=l

(ii). mt= 1- 1 I; ws, and
n s < t

(iii). Z w s < Z ms.
s ~ s~ t+ l

The solution is much simpler if condition (iii) is replaced
by condition (iii)' below:
(iii)' Y. ws -< 2; ms

s.~t sSt

Also, we will drop condition (ii) for t=n (this does not
affect the validity of our bound). Lemma 11 establishes
that replacing (iii) by condition (iii)' does not change the
desired lower-bound by much. Lemma 12 asserts that,

subject to (i), (ii) and (iii)', ~ twt is minimized by pick-
t=l

ing the w i ' s greedily, i.e. by making each
w i ,i=1,2, • • • in turn as large as possible.

Lemma 11: Let ff = (w 1 ,w2, • • • w,) be any solution
to conditions (i), (ii), and (iii). Then there is a solution
x = (xl ,x2, " " x~) to conditions (i), (ii) and (iii)' such
that the L 1 norm of (ff - ~) is at most 2.

Proof: By conditions (ii) and (iii) we have

(iv). Y. ws < t + l - 1 y. (t + l - s) w s .
a~ n a~t

~" is obtained from ~ by moving one unit from the lowest
k

possible indices to wn, Pick k such that ~ wi --- I and
k+l i=I

5". wi > 1. Set xl = 0 for 1~ <__k,
i=1

k

xk+l = wk+l -- (1-- iE1 wi) and x , = w~+l. The remaining

indices of £ are the same as those of ft . Clearly if
satisfies (iv), then ~ satisfies condition (v) stated below,
and the L 1 norm of (ff - x--) is at most 2.

Lemma 12: Subject to conditions (i), (ii) and (iii)' ~; twt
t=l

is minimized by picking wi "s greedily.

Proof: By conditions (ii) and (iii)' we have:

(v) y. w, _< t - ± z (t - s) w,
s.~t I'1 s <t

Suppose for contradiction that the wi "s that minimize
Ft

~: twt are not picked greedily according to conditions (i)
t=l

and (v). Let t be the last time such that wt is not as large
as possible. Let the deficiency in wt be e. Increase wt by
e, decrease wt+ 1 by e(l+l /n) , and increase w, by e/n. The

n

new wi ' s satisfy (i) and (v), and have a smaller Y. twt.
t=l

Contradiction. []

Remark: The greedy solution resulting from condition

(v) is w, = (1 - 1) ,-1
n

Theorem 1: The performance of algorithm EARLY is

n (1 - 1) + o (n)
e

Proof: By Lemma I0 and I 1, it is sufficient to pick wi "s
greedily subject to conditions (i), (ii) and (iii)'. This
yields

w, = (1 - 1) t-I ,for t=l ,2 T
n

T

where T is such that E wt = o~n. Substituting for wt and
t=l

solving for T yields T< -n In(l-c0.

Let (1 - 1) = 0. Then, 0 r = 1-a . Now,
n

T T Z t w, = Y~ tO'-1= (1--(0r)-- TOT (1--0)) >__
t=l t=l (1-0) 2

n 2 (Ot+(1-e01n(1 - a))

Substituting this into our lower-bound of n/2 + E [ID I]
on the size of the matching yields:

n 1 T
~.n >- "-~ + -~n t~=l twt

n n > -~ + ~ (~ + (1-~) In (1-~))

This gives (¢t-1) > (1-o01n(/-¢ 0

Thus c~2 (1 - 1). []
e

Remark: A simple consequence of our proof is that if
RANKING is applied to a n ×n matrix B for which the
size of the maximum matching is m <n, then the expected
size of the matching produced by RANKING is at least

(l-Lira + o(m).
e

356

3. Bounding the Performance of Any
On-Line Algorithm

In this section we will show that RANKING is
optimal, up to lower order terms.

Theorem 2: The performance of any on-line bipartite

matching algorithm is < n (1- e) + o (n).

Let T be the nxn complete upper-triangular
matrix. As before, we assume that the columns of T
arrive in the order n ,n-1 1. By the k *h column arrival
we mean the arrival of column number n-k+l . Consider
the algorithm RANDOM, which matches each column to
a randomly chosen eligible row.

Definition: Let T be the n ×n complete upper-triangular
matrix. With every permutation n on (1, - . . n} associ-
ate a problem instance (T,n), where the adjacency matrix
is obtained by permuting the rows of T under n, and the
columns arrive in the order n , n - I , • • • 1. Let P denote
the uniform probability distribution over these n!
instances.

Lemma 13: Let A be a deterministic on-line algorithm
that is 'greedy' in the sense that it never leaves a column
unmatched if there is an eligible row. Then, the expected
size of matching produced by A when given an instance
(T,~) from P is the same as the expected size of matching
produced by RANDOM on T.

Proof: The lemma follows from the two claims listed
below, which may be proved by a straightforward induc-
tion on time:
1. For algorithm A on (T,r0, as well as for RANDOM on
T, if there are k eligible rows at time t, then they are
equally likely to be any set of k rows from among the first
n - t + l rows of T.
2. For each k, the probability that there are k eligible
rows at time t is the same for RANDOM run on T as it is
for A run on (T,n). []

Lemma 14: The performance of any on-line matching
algorithm is upper bounded by the expected size of
matching produced by the algorithm RANDOM on the
complete upper-triangular matrix.

Proof: Let E [R (T,~)] denote the expected size of
matching produced by the given randomized on-line algo-
rithm, and let E[A(P)] denote the expected size of
matching produced by a deterministic algorithm A when
given an input from distribution P . By Yao's lemma
[Ya],

min{E [R (T,r0]} <_max{E [A(P)]}.
A

where the maximum is over all deterministic algorithms.
W.l.o.g. the best deterministic algorithm is greedy (by
simulating A, and matching the current column to the row
matched by A, if the row is available, and to an arbitrary
eligible row otherwise). The proof follows from Lemma
13. []

Lemma 16: The expected size of matching produced by

algorithm RANDOM on T is n (1 - 1) + o(n).
e

Proof: The proof rests on the following crucial observa-
tion made in Lemma 13: given that there are l rows still
eligible at the k *h arrival column, they are equally likely
to be any set of I rows from among the first n-k+l rows
of T.

Let x (t) and y (t) be random variables representing
the number of columns remaining and the number of rows
still eligible at time t. Let Ax = x (t + l) - x (t) and
Ay = y (t + l) - y (t) . Then Ax = - 1 and Ay is - 2 if the

diagonal entry in the t+l a column was eligible but was
not matched, and -1 otherwise. Using the fact that the set
of eligible rows is randomly chosen from among the first
n - t :

E[Ay] = - 1 - y(t) . y(t)--1 = - 1 - y (t) - I
x(t) y(t) x(t)

Therefore E[Ay] = 1+ y(t) - I
E[Ax] x(t) "

Kurtz's theorem [Ku] says that with probability tending to
1 as n tends to infinity, the solutions of the above stochas-
tic difference equation are closely approximated by the
solution of the differential equation:

dy = 1+Y-1
dx x

Solving this differential equation with the initial condition
x--y =n, we get

(n - 1 y = 1 + x - In x)
n n

So, when only one row is eligible, the number of columns

remaining is n + o (n). Therefore, the expected size of
e

, i

matching produced is n (1 - -~) + o (n).
e

Remark: 1) There is an interesting alternative descrip-
tion of the behavior of algorithm RANDOM on T. In this
description, the algorithm begins by specifying a random
permutation ¢r=(cs(1), ¢s(2) cs(n)) of {1, 2 n}.
Then, as each column n- i arrives, RANDOM matches
that column with row x, where x is the first element of cs
which has not previously been matched and is less than or

357

equal to n-i . It is easy to see that this is a faithful
description of RANDOM, and as a consequence, the fol-
lowing two random variables have the same distribution:
(i) the size of the matching produced by RANDOM on T;
(ii) the length of the longest subsequence of a random
permutation such that, for all k, the k th element of the
subsequence is greater than or equal to k. Thus, as a
byproduct of Lemma 16 we obtain the interesting com-
binatorial result that the expectation of this latter random

variable is n (1---I)+o (n).
, i

e

2). It is easy to show that the expected size of matching
produced by RANDOM and RANKING is the same on
T. So, proving the conjecture that T is the worst matrix
for RANKING together with Lemmas 13 and 14 will
show that RANKING is the best possible on-line bipartite
matching algorithm.

[Ku] T. G. Kurtz, "Solutions of Ordinary Differential
Equations as Limits of Pure Jump Markov Processes',
Journal of Applied Probability, vol. 7, 1970, pp. 49-58.

[MaMcSI] M. Manasse, L.A. McGeoch, D. Sleator,
"Competitive Algorithms for Online Problems', STOC
1988, pp.322-333.

[S1,Ta] D. Sleator, R.E. Tarjan, "Amortized Efficiency of
List Update and Paging Rules', Comm. ACM, vol. 28,
1985, pp. 202-208.

[Ya] A.C. Yao, "Probabilistic Computations: Towards a
Unified Measure of Complexity', FOCS 1977, pp. 222-
227.

4. Open Questions:

1. Is the complete upper-triangular matrix the worst-case
input for RANKING?

2. Is RANKING an optimal on-line matching algorithm in
the non-bipartite case?

Acknowledgements:

We would like to acknowledge helpful discussions with
Rajeev Motwani.

References:

[BeBoKaTaWi] S. Ben-David, A. Borodin, R. Karp, G.
Tardos, A. Wigderson, "On the Power of Randomization
in On-Line Algorithms', STOC 1990.

[CoGaJo] E. G. Coffman, M. R. Garey, D. S. Johnson,
'Dynamic Bin Packing', SIAM J. comput., vol 12, 1983,
pp. 227-258.

[Gy,Le] A. Gyarfas, J. Lehel, 'Online and First Fit Color-
ings of Graphs', J. Graph theory, Vol. 12, No. 2, pp. 217-
227, 1988.

358

