
Spending Constraint Utilities,

with Applications to the Adwords Market

Vijay V. Vazirani∗

Abstract

The notion of a “market” has undergone a paradigm shift with the Internet – totally new
and highly successful markets have been defined and launched by Internet companies, which
already form an important part of today’s economy and are projected to grow considerably in
the future. Another major change is the availability of massive computational power for running
these markets in a centralized or distributed manner.

In view of these new realities, the study of market equilibria, an important, though essentially
non-algorithmic, theory within Mathematical Economics, needs to be revived and rejuvenated
via an inherently algorithmic approach. Such a theory should not only address traditional
market models but also define new models for some of the new markets.

We present a new, natural class of utility functions which allow buyers to explicitly provide
information on their relative preferences as a function of the amount of money spent on each
good. These utility functions offer considerable expressivity, especially in Google’s Adwords
market. In addition, they lend themselves to efficient computation, while still possessing some
of the nice properties of traditional models.

Key words: Market equilibrium, Fisher’s model, linear utilities, adwords market, search engines,
combinatorial algorithms, primal-dual algorithms, weak gross substitutability.

MSC 2000 Classification Codes: 91B24, 91B50.

OR/MS Classification Words: Analysis of Algorithms, Economics.

∗Address: College of Computing, Georgia Institute of Technology, Atlanta, GA 30332–0280, E-mail: vazi-

rani@cc.gatech.edu.

1

1 Introduction

General equilibrium theory, which produced such celebrated works as the Nobel prize winning
Arrow-Debreu theorem and long enjoyed the status of crown jewel within mathematical economics,
suffered from a serious shortcoming – other than a few isolated results, it was a non-algorithmic
theory. With the emergence of new markets on the Internet, which already form an important part
of today’s economy and are projected to grow considerably in the future, and the availability of
massive computational power for running these markets in a distributed or centralized manner, the
need for developing an algorithmic theory of market equilibria is apparent.

Such an algorithmic theory should not only address traditional market models but also define
new models for some of the new markets. The latter task is not easy, since such a model should not
only capture the idiosyncrasies of a new market in a simple manner but also have some of the nice
properties of traditional models, such as existence and uniqueness of equilibria, and at the same
time it should lend itself to efficient computation.

We attempt this task in the current paper. We define the notion of spending constraint utility
functions within Fisher’s market model [2]. We argue that the special case of decreasing step
spending constraint utilities are well suited for expressing advertisers’ desired allocations in the
adwords market, an innovative market which is run by search engine companies such as Google,
Yahoo! and MSN. This multi-billion dollar market is the main source of revenues for Google and
a major source of revenues for Yahoo!. We give a polynomial time algorithm for computing an
equilibrium for this case – this algorithm is made possible because this case satisfies the condition
of weak gross substitutability, i.e., increasing the price of one good cannot result in a decreased
demand of another good. We also show that this case has other properties rivaling the traditional
model, including existence of equilibrium under certain mild conditions, uniqueness of equilibrium
utilities and prices of goods, and the fact that equilibrium prices are rational with polynomial
descriptions if all input parameters are rational.

In the sequel to this paper, [4] continue the study of spending constraint utilities. For the case
that spending constraint functions are continuous and strictly decreasing, [4] establish existence
(using Brauwer’s fixed point theorem) and uniqueness of equilibrium prices, and they show that
this case also satisfies weak gross substitutability. They also use our algorithm as a subroutine to
give an FPTAS for computing equilibrium prices for this case.

[4] also give a natural way of defining spending constraint utilities in the exchange model of
Arrow and Debreu [1]. For the cases of step decreasing functions as well as continuous and strictly
decreasing functions, they build on our algorithm polynomial time algorithm for Fisher’s model
to obtain FPTAS’s. Furthermore, for continuous and strictly decreasing spending constraint func-
tions, they show existence of equilibrium prices using the Kakutani fixed point theorem (Brauwer’s
theorem does not seem to yield the result for this model).

1.1 Comparison with concave and linear utilities

In Fisher’s original model, buyers had strictly concave utility functions for each good. Such utility
functions are considered especially useful in economics because they model the important condition
of decreasing marginal utilities as a function of the amount of good obtained. Algorithmically
though, such utility functions are not easy to deal with – in particular, they do not satisfy weak gross
substitutability. Indeed finding a good algorithm for these utility functions remains an important
open problem in algorithmic game theory; see [6] for an early work giving an algorithm for the case

2

of two traders in the exchange model.
Linear utility functions do satisfy weak gross substitutability and by exploiting this property, [3]

gave the first polynomial time algorithm for computing an equilibrium for these utilities in Fisher’s
model. On the other hand, linear utility functions suffer from a number of serious shortcomings.

Spending constraint utility functions seem to offer a happy compromise between these two
possibilities. They do satisfy weak gross substitutability and are amenable to efficient algorithms.
On the other hand, they do not suffer from some of the more serious deficiencies of linear utility
functions.

It will be convenient to introduce spending constraint step utility functions as a way of rectifying
the following two deficiencies of linear utility functions. First, under linear utility functions each
buyer typically ends up spending her money on a single item; clearly, this is not the case with
concave utility functions. To deal with this issue, let us generalize linear utility functions by
specifying a limit on the amount of money buyer i can spend on good j.

Second, linear utility functions do not capture the important condition of buyers getting satiated
with goods, e.g., as done by concave utility functions. To capture this, we generalize further – buyer
i has several linear utility functions for good j, each with a specified spending limit. W.l.o.g. we
may assume that these functions are sorted in decreasing order, and hence capture the condition
that buyer i derives utility at decreasing rates on getting more and more of good j. As shown
in Section 2, this set of functions can be more succinctly represented via a single decreasing-step
function.

In Section 11 we make a further generalization – we assume that buyers have utility for money.
Normally, in Fisher’s model on does not assume this and as a consequence, at equilibrium all buyers
are required to spend all their money. With the added assumption, the notion of equilibrium
needs to be generalized appropriately. This generalization adds considerably to the expressivity of
spending constraint step utility functions, as illustrated in the example given in Section 3.

1.2 An application to the adwords market

When a user sends a query keyword to a search engine such as Google, he not only gets pages
relevant to his query but also ads relevant to the keyword. These ads are sponsored by businesses
(called advertisers below) who want to reach customers via Google. In the adwords market run
by Google, an advertiser selects keywords relevant to his business together with his bid for each
keyword. Each bid represents the amount he is willing to pay to Google if his ad is shown along
with search results to the corresponding keyword and moreover the user clicks on the ad. The
advertiser also specifies his daily budget – the maximum amount that Google can charge him for
each day – as well as spending limits on subsets of keywords.

It is not inconceivable that in the future, Google will simply be able to compute, in a centralized
manner, prices for advertising on different keywords, instead of holding an elaborate auction. The
question is how should advertisers provide information to Google so their ad gets displayed in the
most effective manner and moreover, equilibrium prices of advertising on different keywords can
also be efficiently computed by Google?

Both, linear and concave utility functions are not suitable for this purpose. With linear utility
functions, on a typical day, a business will end up spending its entire advertising budget on only
one of its desired keywords. On the other hand, although concave utility functions are expressive
enough to capture very complex requirements of an advertiser, equilibrium prices and allocations
for these utility functions is not known to be computable in polynomial time. In Section 3 we show

3

how spending constraint step utility functions can provide businesses with a rich set of possibilities
from which they can choose their desired allocations.

1.3 Overview of algorithmic ideas

Spending constraint step utility functions generalize linear utility functions and our algorithm is
obtained by generalizing the algorithm of [3]. Similar to [3], our algorithm is also based on the
primal-dual schema, with allocations of goods playing the role of primal variables and prices playing
the role of dual variables. As in [3], we start with very low prices on goods, and gradually raise
prices until the equilibrium is reached. This approach is made possible by the property of weak
gross substitutability – on raising the price of one good, the demand of another good cannot go
down, hence the need to decrease the price of the second good does not arise.

Let us outline the main ideas needed, beyond [3], for obtaining our algorithm. In the linear
case, at any given prices, each buyer i has a set of most desirable goods. Any allocations made from
this set of goods makes i equally happy; it is not essential to allocate any particular good from this
set. Indeed, the algorithm of [3] exploits this freedom fully – it does not need to commit to any
allocations as the prices are being raised; allocations are made only at the end, after equilibrium
prices have been computed.

In our setting, at any prices the optimal bundle of buyer i will involve forced allocations, i.e., at
these prices, buyer i necessarily wants to spend a certain amount of her money on certain goods.
However, as prices change, some of the forced allocations may become undesirable to buyer i and
need to be deallocated (it is difficult to imagine an iterative scheme that avoids this possibility
altogether).

The question is how do we arrange the algorithm so this backtracking does not end up taking
exponential time? For this purpose, we give a systematic way of making allocations and dealloca-
tions so that the price of each good can keep increasing throughout. Consequently, the total price
of all goods forms a convenient potential function for measuring progress of the algorithm.

2 Fisher’s model and spending constraint utilities

Fisher’s market model is the following. Let A be a set of divisible goods and B be a set of buyers,
|A| = n, |B| = n′. Assume that the goods are numbered from 1 to n and the buyers are numbered
from 1 to n′. Each buyer i ∈ B comes to the market with a specified amount of money, say
e(i) ∈ Q+ dollars, and we are specified the quantity, bj ∈ Q+ of each good j ∈ A. For each buyer
i and good j we are specified a function hi

j : R+ → R+ which gives the utility that i derives as a
function of the amount of good j that she receives. Her overall utility for any allocation is additive
over the goods. The problem is to find equilibrium prices, i.e., prices of goods such that if each
buyer gets her optimal bundle, relative to these prices, for the money she has, the market clears
exactly – there is no deficiency or surplus of any good.

This model has been studied under several different utility functions for buyers. Under the
linear utility case, hi

j(xij) = uijxij where uij ≥ 0 is a constant. Fisher had originally defined his

model for the case that hi
j is a strictly concave, differentiable function.

An easy way of describing spending constraint step utility functions is by contrasting with the
case of piecewise-linear and concave functions. Suppose hi

j is such a function. Let ri
j be the

derivative of hi
j ; this will be a decreasing step function. Observe that function ri

j specifies the rate

4

at which i derives happiness on obtaining a unit amount of good j as a function of the amount of
good j she has.

Under the spending constraint step function case, a decreasing step function f i
j specifies the

rate at which i derives happiness on obtaining a unit amount of good j as a function of the amount
of money she has spent on good j. Once we know the price of a unit of good j, say pj , we can
obtain a function, gi

j , that gives the utility derived by i as a function of the amount of money she
spends on good j as follows:

gi
j(x) =

∫ x

0

f i
j(y)

pj
dy.

The contrast between the way utility is specified by hi
j and ri

j on the one hand and f i
j and gi

j on
the other is worth understanding before proceeding further.

Next, let us formally define arbitrary spending constraint utility functions in Fisher’s model.
For i ∈ B and j ∈ A, let f i

j : [0, e(i)]→ R+ be the rate function of buyer i for good j; it specifies
the rate at which i derives utility per unit of j received, as a function of the amount of her budget
spent on j. If the price of j is fixed at pj per unit amount of j, then the function f i

j/pj gives the
rate at which i derives utility per dollar spent, as a function of the amount of her budget spent on
j. Define gi

j : [0, e(i)]→ R+ as follows:

gi
j(x) =

∫ x

0

f i
j(y)

pj
dy.

This function gives the utility derived by i on spending x dollars on good j at price pj . This model
satisfies the important property of weak gross substitutability, as shown in [4].

Each buyer also has utility for the part of her money that she does not spend. For i ∈ B, let
f i
0 : [0, e(i)]→ R+ specify the rate at which i derives utility per dollar as a function of the amount

she does not spend. If i returns with x dollars, the utility derived from this unspent money is given
by

gi
0(x) =

∫ x

0
f i
0(y)dy.

By specifying suitable properties for f i
j , the function gi

j can be forced to have desirable prop-

erties. Thus, if f i
j is continuous and monotonically decreasing, gi

j will be strictly concave and
differentiable. It is easy to see that for such functions, at any prices of the goods, there is a unique
allocation that maximizes i’s utility.

In this paper, we will deal with the case that f i
j ’s are decreasing step functions. If so, gi

j will
be a piecewise-linear and concave function. The linear version of Fisher’s problem [2] is the special
case in which each f i

j is the constant function so that gi
j is a linear function (in Fisher’s original

problem gi
j ’s were concave functions), and each f i

0 is the zero function, so each buyer wishes to
spend all her money. Given prices p = (p1, . . . , pn) of all goods, consider baskets of goods that
make i happiest (there could be many such baskets). We will say that p are market clearing prices
if after each i is given an optimal bundle, there is no deficiency or surplus of any good, i.e., the
market clears. Observe that i’s optimal bundle may contain unspent money.

We will call each step of f i
j a segment. The set of segments defined in function f i

j will be denoted

seg(f i
j). Suppose one of these segments, s, has range [a, b] ⊆ [0, e(i)], and f i

j(x) = c, for x ∈ [a, b].
Then, we will define value(s) = b − a, rate(s) = c, and good(s) = j; we will assume that good 0

5

represents money. Let segments(i) denote the set of all segments of buyer i, i.e.,

segments(i) =
n′

⋃

j=0

seg(f i
j).

Let us assume that the given problem instance satisfies the following (mild) conditions:

• For each good, there is a potential buyer, i.e.,

∀j ∈ B ∃i ∈ A ∃s ∈ seg(f i
j) : rate(s) > 0.

• Each buyer has a desire to use all her money (to buy goods or to keep some unspent), i.e.,

∀i ∈ B :
∑

s∈segments(i), rate(s)>0

value(s) ≥ e(i).

Theorem 1 Under the conditions stated above, there exist unique market clearing prices.

The proof of uniqueness is given in Section 4 and existence follows from the algorithm, which
is the subject of the rest of the paper.

The following assumptions can be made w.l.o.g. (by suitable scaling):

• There is a unit amount of each good, i.e., ∀j ∈ A, bj = 1.

• Each e(i) and the value of each segment is integral.

Given nonzero prices p = (p1, . . . , pn), we characterize optimal baskets for each buyer relative
to p. Define the bang per buck relative to prices p for segment s ∈ seg(f i

j), j 6= 0, to be rate(s)/pj .

The bang per buck of segment s ∈ seg(f i
0) is simply rate(s). Sort all segments s ∈ segments(i)

by decreasing bang per buck, and partition by equality into classes: Q1, Q2, For a class Ql,
define value(Ql) to be the sum of the values of segments in it. At prices p, goods corresponding to
segments in Ql make i equally happy, and those in Ql make i strictly happier than those in Ql+1.

Find ki such that
∑

1≤l≤ki−1

value(Ql) < e(i) ≤
∑

1≤l≤ki

value(Ql).

By the conditions of Theorem 1, segments in Qki
have nonzero rate. At prices p, i’s optimal

allocation must contain goods corresponding to all segments in Q1, . . . , Qki−1, and a bundle of
goods worth e(i) − (

∑

1≤l≤ki−1 value(Ql)) corresponding to segments in Qki
. We will say that

for buyer i, at prices p, Q1, . . . , Qki−1 are her forced partitions, Qki
is her flexible partition, and

Qki+1, . . . are her undesirable partitions.

3 The expressivity of spending constraint step utility functions

Typically buyers, whether they are individuals or businesses, have very complicated preferences.
This is particularly true of businesses – their long term profit depends on numerous factors. Since
capturing their exact utility function is not viable, one has to settle for a good approximation. Two
important criteria to be considered in choosing a utility function for a particular application are
expressivity and computational complexity.

6

Let us consider the task outlined in Section 1.2, that of choosing a utility function for advertisers
in Google’s adwords market. As argued in Section 1.2, both linear and concave utility functions
are not suitable for this task. Via an elaborate example, we show below how rich the expressivity
of spending constraint step utility functions is for this market.

Consider a business, B, that sells men’s and women’s clogs and assume for simplicity that it
is only interested in the two keywords “men’s clog” and “women’s clog”. Suppose its advertising
budget on Google is $100 per day. Using past information, B can compute its expected profit per
click for each of these keywords; assume the expected profits are $2 per click for “men’s clog” and
$4 per click for “women’s clog”. Thus the keyword “men’s clog” is profitable only if its price per
click is under $2 and “women’s clog” is profitable only if its price per click is under $4 per click.

Now assume that, depending on the actual prices per click of these two keywords, B’s optimal
allocation is the following:

• If both keywords are profitable

– and if the better keyword is at least twice as profitable as the other, then B
wants to spend its entire budget on the better keyword.

– Otherwise, it wants to spend $60 on the better keyword and $40 on the other keyword.

• If neither keyword is profitable then B wants to spend $20 on the more profitable keyword
and nothing on the other keyword, just to have a presence in the market.

• If only one keyword is profitable

– and if the profit on this keyword is at least $2 per dollar spent on advertising
then B wants to spend its entire budget, i.e., $100, on this keyword.

– Otherwise, it wants to spend $60 on this keyword and nothing on the unprofitable
keyword.

It is easy to see that B can acquire this allocation using spending constraint step utilities defined
via the following segments for the two keywords and for money.

• “men’s clog”: A segment of rate 2 and value $60 and a segment of rate 1 and value $40.

• “women’s clog”: A segment of rate 4 and value $60 and a segment of rate 2 and value $40.

• money: A segment of rate 1 and value $80 and a segment of rate 0 and value $20.

4 Uniqueness of equilibrium prices

In this section we prove uniqueness of equilibrium prices, as claimed in Theorem 1. Suppose there
are two equilibrium prices p and p

′ with p 6= p
′, i.e., ∃j s.t. pj 6= p′j . W.l.o.g. assume there is j

such that p′j < pj . Let

θ = min
j∈A

p′j
pj

.

By assumption, θ < 1. Let S = {j ∈ A | p′j = θpj}; this is the set of goods whose relative
desirability increases the most if we switch from prices p to p

′.

7

Lemma 2 Consider an arbitrary buyer i. Let D and D′ be (any) optimal bundles for i relative
to prices p and p

′. Let M and M ′ denote the amount of money spent on goods in S in these two
bundles, respectively. Then, M ′ ≥M .

Proof : Let Q1 and Q2 denote the set of segments in i’s forced and flexible allocations, respec-
tively, at prices p. Similarly, let Q′

1 and Q′
2 denote the set of segments in i’s forced and flexible

allocations, respectively, at prices p
′.

Since goods in S become more desirable under prices p
′ as compared to prices p, any segment

s ∈ Q1, whose good is in S, must also be in Q′
1. Now there are three cases w.r.t. segments in Q2

and Q′
2. In each case, the reason given below shows that M ′ ≥ M . We will use the following fact

in the last two cases: if segment s corresponds to a good in S and segment s′ to a good in S and
if i prefers s to s′ at prices p then she must prefer s to s′ at prices p

′ as well.

1. No segment of Q2 is in S. In this case, the proof is obvious.

2. All segments of Q2 are in S. Now, by the fact given above, either Q2 ⊂ Q′
1 or Q2 = Q′

2 and
Q′

1 ⊆ Q1. In either case, we are done.

3. In the remaining case, partition Q2 into two sets, P1 and P2, depending on whether the
corresponding good is or is not in S, respectively. Again, by the fact given above, either
P1 ⊂ Q′

1 or P1 = Q′
2.

The lemma follows. 4

By Lemma 2, the buyers spend at least as much on goods in S at prices p
′ as they do at prices

p. Since both these prices are equilibrium prices, the total money spent on any good must equal
its total value under the corresponding prices. Now, by definition of θ, goods in S have strictly less
total value at prices p

′ than at prices p, leading to a contradiction.

5 Basic terminology and Invariants for the algorithm

The algorithm iteratively raises prices until equilibrium prices are reached. On termination, the
algorithm must end with the correct forced allocations for all buyers relative to the equilibrium
prices. In addition, it must ensure that at intermediate points, the unique equilibrium price of any
good is not exceeded. Two Invariants help ensure these two conditions.

We will denote by p the vector of current prices of all goods. At any intermediate point in the
algorithm, certain segments are already allocated. By allocating segment s, s ∈ seg(f i

j), j 6= 0, we
mean allocating value(s) worth of good j to buyer i. The exact quantity of good j allocated will
only be determined at termination, when prices are finalized. In addition, at an intermediate point
in the algorithm, some money would be returned to buyer i. Let returned(s), s ∈ seg(f i

0), denote
the amount of money returned to i, corresponding to segment s, where returned(s) ≤ value(s). If
returned(s) > 0, then all segments s′ ∈ seg(f i

0) having higher rate must be fully returned, i.e., there
is at most one partially returned segment for each buyer.

Let allocated(j) denote the total value of good j, j 6= 0, already allocated and let spent(i) denote
the sum of the amount spent by buyer i on allocated segments and the amount of money already
returned to her. Thus, when segment s is allocated, value(s) is added to allocated(j) and to spent(i),

8

and when returned(s) money is returned to i, corresponding to segment s ∈ seg(f i
0), returned(s) is

added to spent(i). Also, define the money left over with buyer i, m(i) = e(i)− spent(i).
The set of allocated segments for each buyer i must satisfy:

Invariant 1: At current prices p, let Q1, Q2, . . . be the sorted list of partitions of i. There is an
integer ti ≥ 1 such that all segments in partitions Q1, . . . , Qti−1 are fully allocated and in addition,
a (possibly empty) subset of segments in Qti are also fully allocated, and no segments in partitions
Qti+1, Qti+2, . . . are allocated. Furthermore, the total value of all fully allocated segments is ≤ e(i).

We will say that at prices p, Q1, . . . , Qti−1 are i’s allocated partitions and Qti is i’s current
partition. We will denote the latter by Q(i). The exact value of ti depends on the order in which
events happen in the algorithm; however, we will show that when the algorithm terminates, ti = ki.

Define the current bang per buck of buyer i, α(i), to be the bang per buck of partition Q(i).
This is the rate at which i derives utility, per dollar spent, for allocations from Q(i) at current
prices. Next, we define the equality subgraph G = (A, B, E) on bipartition A, B and containing
edges E. Corresponding to each buyer i and each segment s ∈ Q(i), E contains the edge (i, j),
where good(s) = j. The capacity of this edge, cij = value(s).

Denote by a, s and m the current allocations, amounts spent and left over money, i.e.,
(allocated(j), j ∈ A), (spent(i), i ∈ B) and (m(i), i ∈ B), respectively. We will carry over
all these definitions to sets, e.g. for a set S ⊆ A, m(S) will denote

∑

j∈S m(j).

5.1 The network N and tight sets

We next define network N(p, a, s), which is a function of the current prices, allocations and amounts
spent. Direct all edges of the equality subgraph, G, from A to B. Add a source vertex s, and directed
edges (s, j), for each j ∈ A and having capacity pj−allocated(j). Add a sink vertex t, and directed
edges (i, t), for each i ∈ B and having capacity m(i). Throughout the algorithm, we will maintain
the following:

Invariant 2: (s, A ∪B ∪ t) is a min-cut in network N(p, a, s).

For S ⊆ A, define its neighborhood in the equality subgraph to be

Γ(S) = {i ∈ B | ∃j ∈ S with (i, j) ∈ G}.

For A′ ⊆ A and B′ ⊆ B, define c(A′; B′) to be the sum of capacities of all edges from A′ to B′ in
N(p, a, s). For S ⊆ A, define

best(S) = min
T⊆Γ(S)

{m(T) + c(S; Γ(S)− T)},

and define bestT(S) to be a maximal subset of Γ(S) that optimizes the above expression. Observe
that best(S) is the capacity of the min-cut separating t from S in N(p, a, s). Also observe that
if T1 and T2 optimize the above expression, then i ∈ T1 − T2 must satisfy m(i) = c(S; i) (because
otherwise one could find an even better set, T , with T2 ⊂ T ⊂ T1). Hence bestT(S) is unique. We
can now give a characterization of Invariant 2 in terms of cuts in the network.

Lemma 3 Network N(p, a, s) satisfies Invariant 2 iff

∀S ⊆ A : p(S)− a(S) ≤ best(S).

9

Proof : If network N(p, a, s) satisfies Invariant 2, it supports a max-flow of value p(A)− a(A)
that saturates all edges out of s. Since the flow going through set S ⊆ A is p(S) − a(S), the
inequality given above holds.

For the reverse direction, assume Invariant 2 does not hold. Let (s∪A1 ∪B1, A2 ∪B2 ∪ t) be a
min-cut in N(p, a, s), with A1, A2 ⊆ A and B1, B2 ⊆ B. We may assume that B1 ⊆ Γ(A1). Now,
since (s, A ∪B ∪ t) is not a min-cut,

best(A1) ≤m(B1) + c(A1, Γ(A1)−B1) < p(A1)− a(A1).

4

A nonempty set S ⊆ A that satisfies the inequality in Lemma 3 with equality will be called
a tight set. In addition, if there are buyers having zero left over money then we will say that the
empty set is tight. We will define best(∅) = 0 and bestT(∅) to be the set of all buyers with zero
left over money. By the following lemma, if Invariant 2 holds, there is a unique maximal tight set.

Lemma 4 Assume that Invariant 2 holds. If S1 ⊆ A and S2 ⊆ A are two tight sets, then S1 ∪ S2

is also a tight set.

Proof : Corresponding to a set S ⊆ A modify network N(p, a, s) as follows: for each edge
(s, j), j /∈ S, make the capacity of this edge zero, leaving the rest of the edges unchanged. Define
this to be the S-network. Since Invariant 2 holds, (s, A ∪B ∪ t) is a min-cut in this network. It is
easy to see that S is a tight set iff under every max-flow in this network, there is no residual path
from j ∈ S to t.

Consider a max-flow in the S1 ∪ S2-network. If there is a residual path from j ∈ S1 ∪ S2 to t
in this network, it would be possible to construct an S1-network or an S2-network which violates
the residual path assertion stated above, hence contradicting tightness of the corresponding set.
Hence, S1 ∪ S2 is also a tight set. 4

Corollary 5 If Invariant 2 holds, the maximal tight set is unique.

6 Algorithm 1

For ease of exposition and comprehension, we will first present the algorithm assuming that buyers
have no utility for money. In Section 11 we will remove this restriction. In this section, we will
present an algorithm that terminates with equilibrium prices, and we will establish that equilibrium
prices have polynomial sized descriptions. However, we do not know whether this algorithm runs
in polynomial time. In Section 10, we will show that a suitable modification of this algorithm runs
in polynomial time.

Observe that if S is a tight set, market clearing prices have been achieved for these goods –
unless the equality subgraph undergoes change – since the prices of goods in S are just right to
exactly exhaust the money of all buyers interested in these goods. Hence, the algorithm will stop
raising prices of these goods (indeed, raising them will violate Invariant 2).

The algorithm partitions the equality subgraph G = (A, B, E) into two: frozen and active,
consisting of bipartitions (A1, B1) and (A2, B2), respectively (throughout this paper, A1, A2 will be

10

subsets of A and B1, B2 will be subsets of B). A1 is the maximal tight set of G, B1 = Γ(A1), and
the frozen subgraph satisfies p(A1)− a(A1) = m(B1). The active subgraph satisfies

∀S ⊆ A2 : p(S)− a(S) < best(S)

and so prices of goods in A2 can be raised without violating Invariant 2. The crucial job of
partitioning the equality subgraph is performed by subroutine freeze (see Section 7), which also
performs other related functions. As argued in Section 7, the frozen and active subgraphs are
disconnected and hence decoupled.

In order to ensure Invariant 2 at the start of the algorithm, the following steps are executed:

• Fix all prices at 1/n. Since all goods together cost one dollar and all e(i)’s are integral, the
initial prices are low enough that each buyer can afford all the goods. Clearly, each buyer’s
current partition will be her first partition.

• Next, we have to ensure that each good j has an interested buyer, i.e., has an edge incident
at it in the equality subgraph. Compute αi for each buyer i at the prices fixed in the previous
step and compute the equality subgraph. If good j has no edge incident, reduce its price to

pj = max
i∈B

max
s∈seg(f i

j
)

{

rate(s)

αi

}

.

Next, partition the equality subgraph into frozen and active by calling subroutine freeze (see
Section 7). Market clearing prices have not been reached for goods in the active subgraph and their
prices need to be increased. We want to do this in such a way that the equality subgraph remains
unchanged. Observe that if buyer i has equality edges to goods j and j ′ due to segment s ∈ seg(f i

j)

and s′ ∈ seg(f i
j′) then

rate(s)

pj
=

rate(s′)

pj′
, i.e.,

pj

pj′
=

rate(s)

rate(s′)
.

This suggests increasing prices in such a way that the ratio of prices of any two goods is not affected,
which in turn is accomplished as follows: Multiply the current price, pj , of each good j ∈ A2 by x.
Initialize x = 1, and start raising x continuously.

As x is raised, one of the following three events could take place.

• Event 1: As prices increase, a subset of A2 may go tight. If so, subroutine freeze is called
to recompute the frozen and active subgraphs.

• Event 2: For buyers in B2, goods in A1 are becoming more and more desirable (since their
prices are not changing, whereas prices of goods in A2 are increasing). As a result, a segment
s ∈ seg(f i

j), i ∈ B2, j ∈ A1 may enter into the current partition of buyer i, Q(i). When this
happens, edge (i, j) is added to the equality subgraph. As a result, A1 is not tight anymore,
and therefore subroutine freeze is called to recompute the frozen and active subgraphs.

• Event 3: Suppose i ∈ B1 has a segment s ∈ seg(f i
j) allocated to it, where j ∈ A2. Since

the price of j is increasing, at some point the bang per buck of this segment may equal αi,
i.e., segment s enters i’s current partition. When this happens, we will deallocate segment s,
i.e., subtract value(s) from allocated(j) and from spent(i) and add edge (i, j) to the active
subgraph. Since m(i) increases, A1 is not tight anymore, and therefore subroutine freeze is
called to recompute the frozen and active subgraphs.

11

Remark 6 Because of forced allocations, there may be a good j in the frozen subgraph that has no
equality subgraph edges incident at it. If so, by Invariant 2 it must be the case that pj = allocated(j).

When all goods enter the frozen subgraph, the algorithm terminates and outputs the current
prices of goods – these will be equilibrium prices. Computation of equilibrium allocations is now
straightforward an uses the following fact: if the equilibrium price of good j is pj then the amount
of good j corresponding to a segment s is value(s)/pj .

Algorithm 1 is summarized below. It raises variable x continuously; this can be discretized
as follows. Compute the minimum value of x at which each of the three events takes place,
and minimum of these is the event that happens first. For Events 2 and 3, the computation is
straightforward. Let x∗ be the value of x at which Event 1 happens. We give a procedure for
computing x∗ in Section 8.

Initialization:
∀j ∈ A, pj ← 1/n;
∀i ∈ B, αi ← rate(s)/good(s), s ∈ Q(i);
Compute equality subgraph G;

∀j ∈ A if degG(j) = 0 then pj ← maxi∈B maxs∈seg(f i
j
)

{

rate(s)
αi

}

;

Recompute G;
(A1, B1)← (∅, ∅) (The frozen subgraph);
(A2, B2)← (A, B) (The active subgraph);
while A2 6= ∅ do

x← 1;
Define ∀j ∈ A2, price of j to be pjx;
Raise x continuously until one of three events happens:
if S ⊆ A2 goes tight then

Call freeze;

if segment, s, corresponding to i ∈ B2 , j ∈ A1 enters Q(i), then
Add (i, j) to G with cij = value(s);
Call freeze;

if allocated segment, s, corresponding to i ∈ B1 , j ∈ A2 enters Q(i), then
Deallocate s;
Add (i, j) to G with cij = value(s);
Call freeze;

Algorithm 1:

7 Subroutine freeze and forced allocations

All forced allocations of Algorithm 1 are made by subroutine freeze which operates as follows. Via
max-flow, find a min-cut in N(p, a, s) that maximizes the number of vertices in the s side (there is
a unique such maximal min-cut). Let it be (s ∪A1 ∪B1, A2 ∪B2 ∪ t) 1. Clearly, B1 = bestT(A1).

1Throughout this paper, we will assume that A1, A2 ⊆ A and B1, B2 ⊆ B.

12

Corresponding to each edge connecting A1 to Γ(A1)−B1, allocate goods. These are the forced
allocations. Consider good j ∈ A1. Observe that if the total forced allocations of good j that need
to be made exceed pj − allocated(j) then moving j into A2 would result in a better min-cut in N .
Similarly, consider buyer i ∈ B2. Again, if the total forced allocations that need to be made to i
exceed her left over money, m(i), then moving i into B1 would result in a better min-cut in N .
Therefore, we are never in danger of making allocated(j) > pj or exceeding the left over money of
a buyer while making the required forced allocations.

Remark 7 Observe that under the spending constraint step utility functions, a segment s ∈ seg(f i
j)

represents s) worth of good j. The exact amount of good j it represents will become clear only at
the termination of the algorithm, once the equilibrium price of good j is determined. This way
of viewing segments, i.e., as representing a certain value rather than quantity of good, is much
more convenient to deal with via an algorithm that iteratively adjusts prices. Under usual piecewise
linear utility functions, each piece would have represented a certain quantity of good. Making the
corresponding forced allocation would have led to the cumbersome issue of keeping track of its value,
and consequently the left over money of the buyer, as the price of this good changes.

As a result of these allocations, there may be buyers in B2 that do not have any equality edges
incident at them (however, by the fact that B1 = bestT(A1), they must have money left over). For
each such buyer i, compute her partitions relative to current prices and include edges corresponding
to the first unallocated partition. If none of these edges is incident at a good in A1, subroutine
freeze returns to the main algorithm. Otherwise, the following event is triggered.

• Event 4: Since new edges have been introduced between B2 and A1, the current set A1 is
not tight anymore. Therefore, subroutine freeze is called to recompute the frozen and active
subgraphs.

Before returning, subroutine freeze partitions the equality subgraph into two: frozen and
active. The frozen subgraph consists of the bipartition (A1, B1) and the active subgraph consists
of (A2, B2).

Observe that buyers in B1 may desire goods in A2. By Lemma 8, the prices of these goods can
be raised without violating Invariant 2. As soon as this happens, buyers in B1 who have equality
edges to goods in A2 will not be interested in these goods anymore, and such edges can be dropped.
The frozen and active graphs are hence decoupled. After these changes, the following holds:

Lemma 8 The active and frozen subgraphs satisfy Invariant 2. Furthermore, the active subgraph
satisfies:

∀S ⊆ A2 : p(S)− a(S) < best(S),

and the frozen subgraph satisfies:

p(A1)− a(A1) = m(B1).

Proof : The min-cut found by freeze has the same capacity as (s, A ∪ B ∪ t), which is also
a min-cut, since Invariant 2 holds. Therefore, p(A1) − a(A1) = best(A1). Therefore after forced
allocations are made, we have: p(A1)− a(A1) = m(B1).

13

Consider the situation after freeze has made all required forced allocations and is ready to
return. Compute max-flow in network N(p, a, s) at this point. Now, any flow through S ⊆ A1

must leave via B1. Therefore the frozen subgraph satisfies Invariant 2. Any edge from A2 to B1

cannot carry any flow, since this edge goes from the t-side to the s-side of the min-cut. Therefore
any flow through S ⊆ A2 must leave via B2. Hence the active subgraph also satisfies Invariant 2.
Now, if there is a set S ⊆ A2 such that p(S) − a(S) = best(S), then moving it into A1, together
with appropriate changes to B1 and B2, still yields a min-cut. This contradicts maximality of the
min-cut found. Hence, the active subgraph satisfies the above-stated inequality. 4

8 Computing x
∗ via min-cuts in parametric networks

For simplicity of notation, assume that the active subgraph is (A, B). Throughout this section,
p will denote prices at the beginning of the current phase, i.e., at x = 1. We first show how to
compute x∗, the value of x at which Event 2 occurs, i.e., a new set goes tight. Let S∗ ⊆ A denote
the tight set. In N(p, a, s), replace the capacities of edges (s, j), j ∈ A, by pj · x− allocated(j) to
obtain the parametric network N ′(p, a, s). By Invariant 2, at x = 1, (s, A ∪B ∪ t) is a min-cut in
N ′(p, a, s).

Lemma 9 The smallest value of x at which a new min-cut appears in N ′(p, a, s) is given by

x∗ = min
∅6=S⊆A

best(S) + a(S)

p(S)
,

and the unique maximal set minimizing the above expression is S∗.

Proof : Let x = β be the smallest value of x at which a new min-cut appears in N ′(p, a, s), and
suppose it is (s ∪A1 ∪B1, A2 ∪B2 ∪ t). Since (s, A ∪B ∪ t) is also a min-cut in N ′(p, a, s),

p(A1) · β − a(A1) = best(A1).

On the other hand, for any other set S ⊆ A,

p(S) · β − a(S) ≤ best(S), i, e., β ≤
best(S) + a(S)

p(S)
.

The lemma follows. 4

Lemma 10 The following hold:

• If x ≤ x∗, then (s, A ∪B ∪ t) is a min-cut in N ′(p, a, s).

• If x > x∗, then for any min-cut (s ∪A1 ∪B1, A2 ∪B2 ∪ t) in N ′(p, a, s), S∗ ⊆ A1.

Proof : By definition of x∗, if x ≤ x∗, ∀S ⊆ A : p(S) · x − a(S) ≤ best(S). Therefore, by
Lemma 3, Invariant 2 holds and hence (s, A ∪B ∪ t) is a min-cut in N ′(p, a, s).

14

Next, suppose that x > x∗, and consider a min-cut (s∪A1∪B1, A2∪B2∪ t) in N ′(p, a, s). First
observe that S∗ ⊆ A2 contradicts the minimality of this cut: since p(S∗) · x− a(S∗) > best(S∗), a
smaller cut results if S∗ is moved into A1, together with appropriate changes to B1 and B2.

Let S∗ ∩ A1 = S1, S∗ ∩ A2 = S2, and suppose that S2 6= ∅. Observe that if Γ(S1) ∩ Γ(S2) = ∅,
then best(S1) + best(S2) ≤ best(S∗). To achieve a similar effect even if Γ(S1) ∩ Γ(S2) 6= ∅ let us
define:

best′(S2) = min
T⊆Γ(S2)−B1

{m(T) + c(S2, Γ(S2)−B1 − T)}.

Now observe that
best(S1) + best′(S2) ≤ best(S∗).

Hence,
best(S1) + best′(S2) ≤ x∗ · p(S∗)− a(S∗).

If best′(S2) < x ·p(S2)−a(S2), then a smaller cut can be found by moving S2 into A1 (together
with other changes to B1 and B2 according to best′(S2)). Therefore,

best′(S2) ≥ x · p(S2)− a(S2) > x∗ · p(S2)− a(S2).

Combining with the previous inequality, we get

best(S1) < x∗ · p(S1)− a(S1),

which contradicts the definition of x∗. Therefore, S2 = ∅ and hence S∗ ⊆ A1. 4

For i ∈ B, denote the sum of capacities of edges incident at i in N(p, a, s) by c(i). Define
m′(i) = min{m(i), c(i)}, and m

′ to be the vector consisting of m′(i), i ∈ B. Observe that replacing
m by m

′ in N(p, a, s) does not change the min-cut or its capacity. Define N ′′(p, a, s) to be the
network obtained by replacing m by m

′ in N ′(p, a, s). The reason for working with m
′ is that the

cut (s∪A∪B1, B2 ∪ t) has the same capacity as the cut (s∪A∪B, t). This property will be used
critically in the next lemma.

Lemma 11 Set x = (m′(B) + a(A))/p(A) and find the minimal min-cut in N ′′(p, a, s) (i.e., the
unique min-cut minimizing the s side). Let it be (s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t). If A1 = B1 = ∅ then
x = x∗ and S∗ = A. Otherwise, x > x∗ and A1 is a proper subset of A.

Proof : Clearly, x ≥ x∗. If the min-cut is (s, A ∪ B ∪ t) then by Lemma 10, x = x∗. For the
chosen value of x, x · p(A) − a(A) = m

′(B) and by the property stated above, best(A) = m
′(B).

Therefore best(A) = x∗ · p(A)− a(A), and hence S∗ = A.
If (s, A∪B ∪ t) is not a min-cut, then by Lemma 10, x > x∗. Suppose A1 = A and the min-cut

is (s ∪ A ∪ B1, B2 ∪ t). By the property stated above, the capacity of this cut is m
′(B). For the

chosen value of x, the capacity of (s, A∪B∪ t) is also the same, thereby contradicting the fact that
it is not a min-cut. Hence A1 is a proper subset of A. 4

Lemma 12 x∗ and S∗ can be found using n max-flow computations.

Proof : Let x = (m′(B) + a(A))/p(A) and compute a min-cut in N ′′(p, a, s). If (s, A ∪ B ∪ t)
is a min-cut in N ′′(p, a, s) then by Lemma 11, x∗ = x and S∗ = A. Otherwise, x > x∗. Let
(s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t) be a min-cut in N ′′(p, a, s). By Lemmas 10 and 11, S∗ ⊆ A1 ⊂ A.
Therefore, it is sufficient to recurse on the network restricted to (A1, Γ(A1)) (of course m

′ will have
to be recomputed for this restricted network). 4

15

9 Termination with market clearing prices

Observe that despite the return policy, the algorithm monotonically keeps raising prices of goods,
and this provides us with a natural measure of progress – the difference between total money
possessed by buyers (after taking into consideration money returned) and the sum of the prices
of all goods. When this difference becomes zero, all goods must be frozen, and the algorithm
terminates. If Invariants 1 and 2 hold, terminating prices are market clearing.

Let M denote the total amount of money possessed by the buyers, U denote the largest rate of
a segment. Let ∆ = nUn. Let us partition the run of the algorithm into phases – each phase ends
when a new set goes tight, i.e., Event 1 occurs. Partition each phase into iterations – each iteration
ends when Event 2, 3 or 4 occurs.

Lemma 13 Algorithm 1 maintains Invariants 1 and 2 throughout.

Proof : Algorithm 1 maintains Invariant 1 because it responds correctly to changes to Qti , the
current partition of buyer i, for each i. The following is the list of possible changes to Qti , the
current partition of buyer i, assuming that for segment s, good(s) 6= 0, i.e., it does not represent
money. In each case, we argue that Algorithm 1 responds correctly to these changes and hence
maintains Invariant 1.

• If segment s moves from Qti to Qti−1, Algorithm 1 allocates segment s.

• If segment s moves from Qti−1 to Qti , Algorithm 1 deallocates segment s (i must be in the
frozen subgraph and good(s) must be in the active subgraph).

• If segment s moves from Qti to Qti+1, Algorithm 1 removes the edge corresponding to segment
s from the equality subgraph (this happens when i moves to the frozen subgraph but good(s)
remains in the active subgraph).

• If segment s moves from Qti+1 to Qti , Algorithm 1 adds an edge corresponding to segment s
(i must be in the active subgraph and good(s) must be in the frozen subgraph).

• If Qti becomes empty (because all its segments moved or got allocated), Algorithm 1 defines
Qti+1 to be the current partition for i.

Observe that if Invariant 2 holds before Events 2 and 3 then it holds after these events as well:
the addition of edge (i, j), i ∈ B2, j ∈ A1, or the deallocation of a segment can only increase best(S)
for any set S ⊆ A. By Lemma 8, the steps taken in subroutine freeze also maintain Invariant 2.
Finally, Event 1 also cannot affect Invariant 2, since as soon as it is triggered, a set is frozen. 4

The proof of the following lemma is the same as that of Lemma 8 in [3].

Lemma 14 At the termination of a phase, the prices of goods in the tight set are rational numbers
with denominators ≤ ∆.

Lemma 15 A phase consists of at most n iterations.

16

Proof : Observe that within Events 2, 3 and 4, the addition of edge (i, j), i ∈ B2, j ∈ A1, or
the deallocation of a segment can only increase best(S) for any set S ⊆ A, and therefore cannot
result in a new tight set. On the other hand, after each of these steps, p(A1)− a(A1) < best(A1).
Therefore when freeze is called, at least one good gets unfrozen. The lemma follows. 4

Lemma 16 Algorithm 1 executes at most M∆2 phases, where M is the total money of all buyers.

Proof : Consider a freezing due to Event 1, and assume that (S, T), with S ⊆ A2, T ⊆ B2, is
the new subgraph that gets frozen. If T = ∅, then for each good j ∈ S, p(j) − a(j) must equal
the sum of capacities of edges incident at j, which is integral. Therefore p(j) is integral. If T 6= ∅,
then via the argument presented in Lemma 8 in [3], one can show that for each good j ∈ S, the
denominator of the current price of j is ≤ ∆.

Now, using the argument presented in Lemma 11 in [3], one can show that k phases must lead
to an increase in the total price of all goods by at least k/∆2. The lemma follows. 4

Each iteration requires a computation of x∗, which requires n max-flow computations by Lemma
12. Using Lemmas 15 and 16 we get:

Theorem 17 Algorithm 1 terminates with equilibrium prices and allocations, and executes at most
O(M∆2n2) max-flow computations.

10 Establishing polynomial running time

Algorithm 1 makes steady progress toward finding the equilibrium – it never lowers the price of
any good and therefore the flow from s to t increases monotonically. However, we have not been
able to show that it terminates in polynomial time. In this section we will modify Algorithm 1
appropriately to give an algorithm for which we can establish polynomial time termination. For this
purpose, we will extend the notion of balanced flows from [3] to our more involved setting which is
caused by the fact that in our network N the edges between A and B have finite capacities. Our
generalization turns out to be a natural one.

In Algorithm 1 we were measuring progress by the flow from s to t, or equivalently, the total
surplus money of all buyers. In the new algorithm we will measure progress using the l2 norm of
the vector of surplus money of the buyers. This potential function enables us to record progress
not only when the total surplus decreases but also when the surplus readjusts itself into a more
favorable configuration that leads to a decrease in the total surplus in subsequent iterations.

Denote the current network, N(p, a, s) by simply N . We will assume that network N satisfies
Invariant 2, i.e., ({s}, A∪B ∪{t}) is a min-cut in N . Given a feasible flow f in N , let R(f) denote
the residual graph w.r.t. f . Define the surplus of buyer i, γi(N, f), to be the residual capacity
of the edge (i, t) with respect to flow f in network N , i.e., mi minus the flow sent through the
edge (i, t). The surplus vector is defined to be γ(N, f) := (γ1(N, f), γ2(N, f), . . . , γn(N, f)). Let
‖v‖ denote the l2 norm of vector v. A balanced flow in network N(p, a, s) is a flow that minimizes
‖γ(N, f)‖. It is easy to see that a balanced flow must be a max-flow in N . Furthermore, using the
same proof as Lemma 14 in [3], one can see that all balanced flows in N have the same surplus
vector, which we will denote by γ(N). In addition, using the same proof as Theorem 15 in [3], one
can show that a maximum flow f in N is balanced iff it satisfies:

Property 1: If γj(N, f) < γi(N, f) then there is no path from node j to node i in R(p, a, s, f)−
{s, t}.

17

10.1 Finding a balanced flow

We will show that the following algorithm, which uses a divide and conquer strategy, finds a
balanced flow in the given network N on vertex set {s}∪A∪B∪{t} in polynomial time. As stated
above, we will assume that this network satisfies Invariant 2, i.e., ({s}, A∪B ∪ {t}) is a min-cut in
N .

Continuously reduce the capacities of all edges that go from B to t, other than those edges
whose capacity becomes zero, until the capacity of the cut ({s} ∪A∪B, {t}) becomes the same as
the capacity of the cut ({s}, A∪B∪{t}). Let the resulting network be N ′ and let f ′ be a max-flow
in N ′. Find a maximal s− t min-cut in N ′, say (S, T), with s ∈ S and t ∈ T .

Case 1: If T = {t} then find a max-flow in N ′ and output it – this will be a balanced flow in
N .

Case 2: Otherwise, let N1 and N2 be the subnetworks of N induced by S ∪ {t} and T ∪ {s},
respectively. Let A1 and B1 be the subsets of A and B, respectively, induced by N1. Similarly, let
A2 and B2 be the subsets of A and B, respectively, induced by N2. Let F be the set of edges that
go from A1 to B2 – these edges are in the min-cut found. Send flow, say h, from s to t saturating
all edges of F – clearly such a flow is unique. As a result of this flow, the capacities of some edges
from s to A1 and B2 to t will be used up. Update the capacities of the corresponding edges in N1

and N2 to obtain networks M1 and M2, respectively. Recursively find balanced flows, f1 and f2, in
M1 and M2, respectively. Output the flow f = h ∪ f1 ∪ f2 – this will be a balanced flow in N .

Remark 18 Some of the edges saturated by h will lead to forced allocations in Algorithm 2.

Lemma 19 f is a max-flow in N .

Proof : In the first case, i.e., T = {t} in the min-cut in N ′, the algorithm outputs a max-flow in
N ′. This flow must saturate the cut ({s} ∪ A ∪ B, {t}). However, since the capacity of this cut in
N ′ is the same as the capacity of the cut ({s}, A ∪B ∪ {t}), by Invariant 2, this is also a max-flow
in N .

Next let us consider the second case. Because of the way M1 and M2 are defined, the union of
the three flows, f = h∪ f1 ∪ f2, will be a feasible flow in N . By Invariant 2, a max-flow in N must
saturate all edges from s to A. Let us show that f accomplishes this.

Since edges F are in the min-cut in N ′, they must be saturated in f ′. Therefore, there must be
a max-flow in N , say g, that saturates all edges in F . Now observe that restricting g to M1 is a
max-flow in M1 that saturates all edges from s to A1 in M1. Hence f1 also does so. Next restrict
f ′ to M2. This must be a feasible flow in M2 and it must also be a max-flow since it saturates all
edges from s to A2. Hence f2 also must do so. 4

Lemma 20 f is a balanced flow in network N .

Proof : We first show, by induction on the depth of recursion, that the max-flow output by the
algorithm is a balanced flow in N . If the algorithm terminates in the first case, i.e., T = {t}, the
surplus vector is precisely the amounts subtracted from capacities of edges running from B to t
in going from N to N ′. Clearly, this surplus vector makes components as equal as possible, thus
minimizing its l2 norm.

18

Next assume that the algorithm terminates in the second case. By Lemma 19, f is a max-
flow; we will show that it satisfies Property 1 and is therefore a balanced flow. By the induction
hypothesis, f1 and f2 are balanced flows in M1 and M2, respectively, and therefore Property 1
cannot be violated in these two networks.

Let R be the residual graph of N w.r.t. flow f ; we only need to show that paths in R that go
from one part to the other do not violate Property 1. Since f saturates all edges of F , there are
no edges from A1 to B2 in R, and therefore there are no paths from j ∈ B1 to i ∈ B2. There may
however be paths going from j ∈ B2 to i ∈ B1 in R. Let γi(f) denote the surplus of edge (i, t)
w.r.t. flow f . We will show that for any two nodes i ∈ B1 and j ∈ B2, γi(f) < γj(f), thereby
establishing Property 1.

First observe that by the maximality of the min-cut found in N ′, all nodes in B2 have surplus
capacity > 0 w.r.t. flow f ′ in N ′ (all nodes having surplus zero must be in B1). Therefore, the same
amount, say X, was subtracted from the capacity of each edge (i, t), i ∈ B2, in going from network
N to N ′. We will show that γi(f) > X for each i ∈ B2. A similar proof shows that γi(f) < X for
each i ∈ B1, thereby establishing Property 1.

Let L be the set of vertices in B2 having minimum surplus w.r.t. f . Let K be the set of vertices
in A2 that are reachable via an edge from L in R. Let F ′ be the set of edges from K to B2 − L in
network N . If edge of F ′ is not saturated in flow f2 then there will be a residual path from i ∈ L
to j ∈ B2 − L, thereby violating Property 1. Hence all edges of F ′ are saturated in f2 and hence
in f .

Let c(K) denote the sum of capacities of all edges from s to vertices of K. Observe that all
these edges are saturated in f ′. Of this flow, at most c(F ′) flow can use edges of F ′ and the rest,
i.e., at least c(K)− c(F ′) flow must go via vertices of L. Let EL denote the set of edges going from
L to t. Let c(L) and c′(L) denote the sum of capacities of all edges in EL in networks N and N ′,
respectively. By the argument given above,

c′(L) > c(K)− c(F ′).

Since X is subtracted from all edges in EL in going from network N to N ′,

c(L) = c′(L) + |L|X.

The total surplus of the edges in EL w.r.t. flow f is

c(L)− (c(K)− c(F ′)) = c′(L) + |L|X − (c(K)− c(F ′)) > |L|X.

Now, since all L edges in EL have the same surplus, each has surplus > X. The lemma follows. 4

Theorem 21 The above-stated algorithm computes a balanced flow in network N using at most n
max-flow computations.

Proof : Clearly, the number of goods in the biggest piece drops by at least one in each iteration.
Therefore, the depth of recursion is at most n. Next, observe that M1 and M2 are vertex disjoint,
other than s and t, and therefore, the time needed to compute max-flows in them is bounded by the
time needed to compute a max-flow in N . Hence, the total computational overhead is n max-flow
computations. Finally, as shown in Lemma 20, the flow output by the algorithm is a balanced flow
in N . 4

19

Let F ′ ⊆ F and let NF ′ be the network obtained from N by sending flow saturating all edges
of F ′ and decreasing capacities of all edges accordingly. The following lemma will be used for
justifying the manner in which forced allocations are made by Algorithm 2.

Lemma 22 The surplus vectors of balanced flows in N and NF ′ are the same, i.e., γ(N) = γ(NF ′).

Proof : The lemma follows from the fact that by Lemma 20 f is a balanced flow in N in which
all edges of F ′ are saturated. 4

10.2 The modified algorithm

In this section we will give the modified algorithm, Algorithm 2, which uses balanced flows to
compute the equilibrium. The initialization step, which ensures that Invariant 2 is satisfied, is
identical to that in Algorithm 1. The run of the algorithm is again partitioned into phases, each
phase ends with a new set going tight. Each phase is partitioned into iterations which are defined
below.

A phase starts with computation of a balanced flow, say f , in the current network, N(p, a, s).
If the algorithm of Section 10.1 for finding a balanced flow terminates in Case 1, then the current
prices and allocations are equilibrium prices and allocations and the algorithm halts. Otherwise,
let δ be the maximum surplus of buyers w.r.t. f . Initialize I to be the set of buyers having surplus
δ. Go to step **.

Step ** : Compute a balanced flow, say f , in the current network, N(p, a, s). Let R be the
corresponding residual graph. Determine the set of all buyers that have residual paths to buyers
in the current set I (clearly, this set will contain all buyers in I). Update the new set I to be this
set. Let P be the set of buyers having zero surplus w.r.t. flow f and let Q be the set of goods that
can be reached from P using residual edges. Let J ′ be the set of goods that are have edges to I in
N and let J = J ′ −Q. Corresponding to each edge in N(p, a, s) which goes from Q to I, allocate
goods; these are the forced allocations. Observe that because of Property 1, these edges must be
saturated in f . If as a result of these forced allocations there are buyers i ∈ I that have no more
edges incident at them, go to Event 4.

The network induced by I ∪ J is the active subgraph and that induced by P ∪ Q is the tight
subgraph. Multiply the current prices of all goods in J by variable x, initialize x to 1 and raise x
continuously until one of the following three events happens. Observe that as soon as x > 1, buyers
in B− I are no longer interested in goods in J and all such edges can be dropped from the equality
subgraph and N .

• Event 1: If a subset S ⊆ J goes tight, the current phase terminates an the algorithm starts
with the next phase.

• Event 2: If an edge (i, j), with i ∈ I and j ∈ A − J enters the equality subgraph, add
directed edge (j, i) to network N and go to Step **.

• Event 3: A segment s enters buyer i’s current partition, where i ∈ B − I, s ∈ seg(f i
j) for

j ∈ J , and s is already allocated to i, i.e., the bang per buck of allocated segment s becomes
equal to αi. In this case, deallocate segment s, i.e., subtract value(s) from allocated(j) and
spent(i) and add directed edge (j, i) to network N . Go to Step **.

20

• Event 4: W.r.t. current prices, compute the current partition for each buyer i ∈ I having
no equality subgraph edges. Add all corresponding edges to N and go to Step **.

Within a phase, we will call each occurrence of Events 1, 2, 3 and 4 an iteration. Let Z denote
the total number of segments in all specified utility functions.

Lemma 23 The total number of iterations in a phase is bounded by Z + n.

Proof : After an iteration due to Event 2, at least one new buyer must move into the active
subgraph. Since there is at least one buyer in the active subgraph at the start of a phase, the total
number of iterations in a phase due to Event 2 i at most n− 1.

Observe that once a buyer enters the active subgraph, she must remain in it for the rest of the
phase, and the same is true of goods as well. Suppose buyer i is not in the active subgraph. Then,
any goods due to which it is deallocated segments must be in the active subgraph (their price must
be increasing). Once i enters the active subgraph, these segments will be inferior to segments in
her current partition, and since the price of these goods is increasing, these segments will not enter
into her current partition in the present phase and hence will not be allocated. Therefore, the total
number of times a segment is allocated and deallocated in a phase is at most once, leading to a
bound of Z on the total number of iterations due to Events 3 and 4. Finally, the last iteration in
each phase is due to Event 1. The lemma follows. 4

Let N0 denote the network at the beginning of a phase. Assume that the phase consists of k
iterations, and that Nt denotes the network at the end of iteration t. Let ft be a balanced flow in
Nt, 0 ≤ t ≤ k.

Lemma 24 ft is a feasible flow in Nt+1, for 0 ≤ t < k.

Proof : First observe that by Lemma 22, the forced allocations made do not change the surplus
vector. Each of the following actions can only lead to a network that supports an augmented
max-flow, hence giving the proof.

• Raising the prices of goods in J .

• Adding an edge, as required in Event 2.

• Deallocating a segment, as required in Event 3.

• Adding edges corresponding to current partitions of buyers in I, as required in Event 4.

4

Corollary 25 ‖γ(Nt)‖ is monotonically decreasing with t.

Let δt denote the minimum surplus of a buyer in the active subgraph in network Nt, for 0 ≤
t < k; clearly, δ0 = δ.

Lemma 26 If δt+1 < δt then ‖γ(Nt)‖
2 − ‖γ(Nt+1)‖

2 ≥ (δt − δt+1)
2, for 0 ≤ t < k.

21

Proof : By the same proof as that of Lemma 19 in [3], if δt+1 < δt then there is a buyer i whose
surplus drops by δt − δt+1 in going from ft to ft+1. The statement of Lemma 17 in [3] holds for
our setting as well; moreover the proof is the same. Now, since ft is a feasible flow in Nt+1, we get
the desired conclusion. 4

Lemma 27

‖γ(N0)‖
2 − ‖γ(Nk)‖

2 ≥
δ2

(Z + n)
.

Proof : The left hand side can be written as a telescoping sum in which each term is of the form
‖γ(Nt)‖

2 − ‖γ(Nt+1)‖
2. By Corollary 25, each of these terms is positive.

Consider only those terms in which the difference δt − δt+1 > 0. Their sum is minimized when
all these differences are equal. Now using Lemma 26 and the fact that δ0 = δ and δk = 0, we get
that

‖γ(N0)‖
2 − ‖γ(Nk)‖

2 ≥
δ2

k
.

By Lemma 23, k ≤ Z + n. The lemma follows. 4

Lemma 28 In a phase, the square of the l2 norm of the surplus vector drops by a factor of
(

1−
1

n(Z + n)

)

.

‖γ(N0)‖
2 − ‖γ(Nk)‖

2 ≥
δ2

(Z + n)
.

Proof : Lemma 27 and the fact that ‖γ(N0)‖
2 ≤ nδ2 gives us

‖γ(Nk)‖
2 ≤ ‖γ(N0)‖

2
(

1−
1

n(Z + n)

)

.

The lemma follows. 4

Theorem 29 Algorithm 2 finds equilibrium prices and allocations for spending constraint step
utility functions in Fisher’s model using

O
(

n2(n + Z)2(log n + n log U + log M)
)

max-flow computations.

Proof : By Lemma 28, the square of the surplus vector drops by a factor of half after O(n(Z+n))
phases. At the start of the algorithm, the square of the surplus vector is at most M 2. Once its
value drops below 1/∆4, the algorithm requires only one more phase to compute equilibrium prices.
This follows from Lemma 14 (which is identical to Lemma 8 in [3]) and Lemma 10 of [3] which
applies to Algorithm 2 as well. Therefore the number of phases is

O(n(Z + n) log(∆4M2) = O(n(Z + n)(log n + n log U + log M)).

Since each phase By Lemma 23 each phase consists of Z + n iterations and by Lemma 12 each
iteration requires n max-flow computations. The theorem follows. 4

22

11 Buyers have utility for money

Finally, we will assume that buyers have utility for money, given by step utility function f i
0 for

buyer i. We show how to modify Algorithm 2 to incorporate this; the changes needed to Algorithm
1 are similar.

We will say that buyer i has a partially returned segment s ∈ seg(f i
0) if 0 < returned(s) <

value(s). This happens if i moves to the frozen subgraph before value(s) money corresponding to
segment s could be fully returned. If so, when i returns to the active subgraph, the algorithm
attempts to return the rest of value(s) to i. The following event is executed as the first event in
each iteration.

Event 0: This event happens if I contains buyer i with rate(s) = αi for s ∈ seg(f i
0), where

returned(s) < value(s). (This event happens in one of two ways: First, buyer i with a partially
returned segment moved to I as a result of updating I. Second, as prices increase, the bang per
buck of i decreased to the point where she is equally happy leaving with money corresponding to
segment s unspent. In either case, the algorithm must return money corresponding to s before it
can raise prices of goods.) The algorithm starts raising returned(s) continuously until one of two
events happens:

• Event 0(a): Observe that for a set S ⊆ A2 such that i ∈ bestT(S), best(S) is decreasing as
returned(s) is raised (since m(i) is decreasing). As a result such a set may go tight. When
this happens, go to Step **.

• Event 0(b): returned(s) = value(s). In this case, money corresponding to segment s has
been fully returned. Go back to raising the prices of goods in J .

In case of Event 0(a), let y∗ be the value of returned(s) at which Event 0(a) occurs. Next,
we show in case of Event 0 how to determine whether Event 0(a) or Event 0(b) occurs, and in
the former case, how to compute y∗. Compute prices of all goods for the current value of x, and
let them be denoted by p

′. Let a denote all forced allocations made so far. Compute the money
returned to buyers; for i, assume that segment s is fully returned. Let s

′ denote the vector of
money spent. Construct network N(p′, a, s′) and find a maximal min-cut in it. If (s, A ∪ B ∪ t)
is the only min-cut in it, then Event 0(b) occurs, i.e., the entire money corresponding to segment
s can be returned to i without a set going tight. Next assume that the maximal min-cut in the
network is (s∪A1 ∪B1, A2 ∪B2 ∪ t), with A1 6= ∅. If so, Event 0(a) occurs. Clearly, the procedure
stated above uses one max-flow computation.

Lemma 30 If Event 0(a) occurs,

y∗ = value(s)− (p′(A1)− a(A1)− (m(B1) + c(A1; Γ(A1)−B1)).

Proof : Call the above-stated situation, with the entire money corresponding to segment s
returned to i, as Situation 1. Next, assume that the money returned to i, corresponding to segment
s, is precisely y∗. Call this Situation 2, and let C be the maximal min-cut in this situation. Observe
that i will be on the s-side of this cut. Therefore the capacity of C in Situation 1 will be smaller
by exactly value(s) − y∗. On the other hand, the difference in capacity of any other cut in the
two situations is at most value(s) − y∗. Therefore, C is a min-cut in Situation 1 as well, and the
maximal min-cut computed in Situation 1 is precisely C.

23

Since Invariant 2 holds, (s, A ∪B ∪ t) will also be a min-cut in Situation 2. Therefore the drop
in the capacity of (s ∪ A1 ∪ B1, A2 ∪ B2 ∪ t) in the two situations is precisely p

′(A1) − a(A1) −
(m(B1) + c(A1; Γ(A1)−B1)). This justifies the expression given above for computing y∗. 4

We prove below a lemma that is analogous to Lemma 14 for the enhanced model.

Lemma 31 If Event 0(a) occurs, returned(s) is a rational number with denominator ≤ ∆.

Proof : Let (S, T), with S ⊆ I and T ⊆ J , be the new subgraph that gets frozen as a result
of Event 0(a). Then, i ∈ T and p(S) − a(S) = m(T) = best(S), where m(T) is computed
assuming returned(s) money corresponding to segment s is returned. In (S, T) pick the connected
component containing i. Let this be (S ′, T ′). Now, p(S ′)−a(S′) = m(T ′) because otherwise some
other connected component of (S, T) will violate Invariant 2. Pick a spanning tree, τ , in (S ′, T ′).

Observe that the bang per buck of segment s is the same as the bang per buck of goods that i
has edges to. Therefore, if (i, j) ∈ τ ,

pj =
rate(i, j)

rate(s)
,

where, by a slight abuse of notation, we are using rate(i, j) to denote the rate of the segment
represented by the edge connecting i to j. Similarly, if j ′ is reached via the path i, j, i′, j′, then

pj′ =
rate(i, j) · rate(i′, j′)

rate(s) · rate(i′, j)
.

Observe that the denominators involve rates of at most n segments. Therefore the denominator
of p(S′) is bounded by ∆. Also, because of the order in which events are executed, at most one
buyer can have a segment that is not fully returned. Therefore the money left over with all buyers,
other than i, in T ′ is integral. Also, a(S ′) integral. Hence, returned(s) is a rational number with
denominator ≤ ∆. 4

Observe that if Event 0(b) occurs while returning money corresponding to segment s, then this
segment will never be considered again. Hence the number of occurrences of Event 0(b) is bounded
by the number of segments in functions f i

0, for all i, which in turn is bounded by Z. Now, it is
easy to see that the running time bound established in Theorem 29 holds for the enhanced model
as well, as long as Z is taken to be the total number of segments in all specified utility functions,
including those for money.

12 Open Problems

The remarkable convex program given by Eisenberg and Gale [5] captures, as its optimal solution,
equilibrium allocations for Fisher’s linear model. Some of the basic properties of Fisher’s linear
case can be established in a simple manner via this program. These include existence of equilibrium
under certain mild conditions, uniqueness of equilibrium utilities and prices of goods, and the fact
that equilibrium prices are rational, if all input parameters are rational, and have polynomially
bounded descriptions.

In this paper, we have established the above-stated properties for spending constraint step
utility functions in Fisher’s model; uniqueness is shown in Section 4 and the other properties follow

24

from our algorithm. It is natural, therefore, to ask if there is a convex program that captures
equilibrium allocations for these utility functions.

We believe that the answer to this question should be “yes”. In our experience, non-trivial
polynomial time algorithms for problems are rare and happen for a good reason – a deep mathe-
matical structure intimately connected to the problem. Observe that a convex program with the
same structure as the Eisenberg-Gale program is not the right answer to this question, since in our
model utilities of buyers are not only a function of allocations but also prices of goods, whereas in
the Eisenberg-Gale program, prices are Lagrangian variables corresponding to packing constraints
occurring in the program.

The fact that in our model, utilities of buyers are not only a function of allocations but also
prices of goods can be considered a shortcoming of the model. In particular, the same bundle of
goods may give a buyer a different utility by changing the relative prices of goods. One way to
resolve this is to assume that buyers have a notion of “fair prices” of goods, and their utility is
maximized not only when they get a desirable bundle of goods but also when the relative prices of
goods is “fair”.

An important open question regarding Fisher’s linear case, which applies to spending constraint
step utilities as well, is whether there is a strongly polynomial algorithm for computing the equi-
librium. In particular, if such an algorithm is found for the former question, it will be interesting
to check if it generalizes to settling the latter question as well.

An important step toward handling concave utility functions may be obtaining a polynomial
time algorithm for the case of piecewise-linear, concave utilities. Such utility functions do not
satisfy weak gross substitutability. Our algorithm for spending constraint step utility functions
may help finesse this difficulty via the following scheme given in [4]. Let fij be the piecewise-linear,
concave utility function of buyer i for good j; fij is a function of xij , the allocation of good j to
buyer i. Let gij be the derivative of fij ; clearly, gij is a decreasing step function. Suppose the price
of good j (not necessarily equilibrium price) is fixed at pj . Define

hij(yij) = g(
yij

pij
),

where yij denotes the amount of money spent by i on good j. Observe that function hij gives the
rate at which i derives utility per unit of j received as a function of the amount of money spent on
j. Hence hij is precisely a spending constraint step utility function.

Suppose we knew equilibrium prices for the given piecewise-linear utility functions. Using this
information, let us obtain the corresponding spending constraint step utility functions and run the
algorithm of this paper on this instance. Then, it is easy to see that the prices computed by the
algorithm will be the same as the starting prices. Also, if the starting prices were not equilibrium
prices for the given piecewise-linear instance, the computed prices will not be the same as the
starting prices.

Now consider the following procedure. Start with an initial price vector so that the sum of
prices of all goods adds up to the total money possessed by buyers. Using these prices, convert the
given piecewise-linear utility functions into spending constraint step utility functions and run the
algorithm of the current paper on this instance to obtain a new price vector. Repeat until the price
vector does not change, i.e., a fixed point is obtained. The question is does this procedure converge
to a fixed point and if so how fast.

25

13 Acknowledgements

I wish to thank David Gale, Herve Moulin, Christos Papadimitriou, Eva Tardos and Pete Veinott
for valuable discussions and comments, with special thanks to Nikhil Devanur, Aranyak Mehta and
the anonymous Referee 1.

References

[1] K. Arrow and G. Debreu. Existence of an equilibrium for a competitive economy. Econometrica,
22:265–290, 1954.

[2] W. C. Brainard and H. E. Scarf. How to compute equilibrium prices in 1891. Cowles Foundation
Discussion Paper, (1270), 2000.

[3] N. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani. Market equilibrium
via a primal-dual-type algorithm. Submitted to JACM, 2004. Available at: http://www-
static.cc.gatech.edu/fac/Vijay.Vazirani/.

[4] N. Devanur and V. V. Vazirani. Extensions of the spending constraint model: Existence and
uniqueness of equilibria. In preparation.

[5] E. Eisenberg and D. Gale. Consensus of subjective probabilities: The pari-mutuel method.
Annals Of Mathematical Statistics, 30:165–168, 1959.

[6] D. Gale. Piecewise linear exchange equilibrium. Journal of Mathematical Economics, 4:81–86,
1977.

26

