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From Boo ean 
A 9ebra to 
Unified Algebra 

oolean algebra is simpler than number algebra, with applications in pro- 

gramming, circuit design, law, specifications, mathematical proof, and rea- 

soning in any domain. So why is number algebra taught in primary school 

and used routinely by scientists, engineers, economists, and the general 

public, while boolean algebra is not taught until university, and not routinely used by anyone? A large part  of the 
answer may be in the terminology and symbols used, and in the explanations of boolean algebra found in text- 
books. This paper  points out some of the problems delaying the acceptance and use of boolean algebra, and sug- 
gests some solutions. 

In t roduct ion  
This paper  is about the symbols and notations of boolean algebra, and about the way the subject is explained. 
It is about education, and about putting boolean algebra into general use and practice. To make the scope clear, 
by "boolean algebra" I mean the algebra whose expressions are of type boolean. I mean to include the expres- 
sions of propositional calculus and predicate calculus. I shall say "boolean algebra" or "boolean calculus" inter- 
changeably, and call the expressions of this algebra "boolean expressions". Analogously, I say "number algebra" 
or "number calculus" interchangeably, and call the expressions of that algebra "number expressions". 

Boolean algebra is the basic algebra for much of computer science. Other applications include digital circuit de- 
sign, law, reasoning about any subject, and any kind of specifications, as well as providing a foundation for all of 
mathematics. Boolean algebra is inherently simpler than number algebra. There are only two boolean values and 
a few boolean operators, and they can be explained by a small table. There are infinitely many number values and 
number operators, and even the simplest, counting, is inductively defined. So why is number algebra taught in pri- 
mary school, and boolean algebra in university? Why isn't boolean algebra better known, better accepted, and bet- 
ter used? 

One reason may be that, although boolean algebra is just as useful as number algebra, it isn't as necessary. 
Informal methods of reckoning quantity became intolerable several thousand years ago, but we still get along 
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with informal methods of specification, design, and reasoning. Another reason may be just an accident of edu- 
cational history, and still another may be our continuing mistreatment of boolean algebra. 

Historical Perspective 
To start to answer these questions, I'm going to look briefly at the history of number algebra. Long after the in- 
vention of numbers and arithmetic, quantitative reasoning was still a matter of trial and error, and still conducted 
in natural language. If a man died leaving his 3 goats and 20 chickens to be divided equally between his 2 sons, 
and it was agreed that a goat is worth 8 chickens, the solution was determined by iterative approximations, prob- 
ably using the goats and chickens themselves in the calculation. The arithmetic needed for verification was well 
understood long before the algebra needed to find a solution. 

The advent of algebra provided a more effective way of finding solutions to such problems, but it was a dif- 
ficult step up in abstraction. The step from constants to variables is as large as the step from chickens to num- 
bers. In English 500 years ago, constants were called "nombers denominate" [concrete numbers], and variables 
were called "nombers abstracte". One of the simplest, most general laws, sometimes called "substitution of equals 
for equals", 

x=y~fx=fy 

seems to have been discovered a little at a time. Here is one special case [20]: 

In the firste there appeareth 2 nombers, that is 14x+15y equalle to one nomber, whiche is 71y. But if you 
marke them well, you male see one denomination, on bothe sides of the equation, which never ought to stand. 
Wherfore abating [subtracting] the lesser, that is 15y out of bothe the nombers, there will remain 14x=56y 
that is, by reduction, lx=4y. Scholar: I see, you abate 15y from them bothe. And then are thei equalle still, 
seyng thei wer equalle before. According to the thirde common sentence, in the patthewale: If you abate even 
[equal] portions, from thynges that bee equalle, the partes that remain shall be equaU also. Master: You doe 
well remember the firste grounds of this arte. 

And then, a paragraph later, another special case: 

If you adde equalle portions, to thynges that bee equalle, what so amounteth of them shall be equalle. 

Each step in an abstract calculation was accompanied by a concrete justification. For example, we have the 
Commutative Law [0]: 

When the chekyns of two gentle menne are counted, we may count first the chekyns of the gentylman hav- 
ing fewer chekyns, and after the chekyns of the gentylman having the greater portion. If the nomber of the 
greater portion be counted first, and then that of the lesser portion, the denomination so determined shall be 
the same. 

This version of the Commutative Law includes an unnecessary case analysis, and it has missed a case: when the two 
gentlemen have the same number of chickens, it does not say whether the order matters. The Associative Law [0]: 

When thynges to be counted are divided in two partes, and lately are found moare thynges to be counted in 
the same generall quantitie, it matters not whether the thynges lately added be counted together with the 
lesser parte or with the greater parte, or that there are severalle partes and the thynges lately added be counted 
together with any one of them. 

As you can imagine, the distance from 2x+3=3x+2  to x = l  was likely to be several pages. The reason for all 
the discussion in between formulas was that algebra was not yet fully trusted. Algebra replaces meaning with 
symbol manipulation; the loss of meaning is not easy to accept. The author constantly had to reassure those 
readers who had not yet freed themselves from thinking about the objects represented by numbers and vari- 
ables. Those who were skilled in the art of informal reasoning about quantity were convinced that thinking about 
the objects helps to calculate correctly, because that is how they did it. As with any technological advance, those 
who are most skilled in the old way are the most reluctant to see it replaced by the new. 

Today, of course, we expect a quantitative calculation to be conducted entirely in algebra, without reference 
to thynges. Although we justify each step in a calculation by reference to an algebraic law, we do not have to 
keep justifying the laws. We can go farther, faster, more succinctly, and with much greater certainty. In a typi- 
cal modern proof we see lines like 
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Ara r= ( b a b -  1)r=barb- l = a  r 

b r=  Arb r= (Ab) r=  ( a -  l b a ) r = a  - lb'ra 

( a l - l b 1 ) 2 = a 1  l b l a l - l b l = a l - l ( b l a l - 1 ) b l = a l - l ( i z a l - l b l ) b l = k t a  I 2b12 
( a l - l b l ) r = t f l + 2 + . . .  +(r 1 )a l - rb l r= l~ l+2+. . .  +(r-1)=lf f (r-1) /2  

These l ines were  taken  from a p roo f  of  Wedderburu ' s  Theorem (a finite division ring is a commuta t ive  field) in 
[15] (the text  used  when I s tudied  algebra).  Before we s tar t  to feel p leased  with ourse lves  at  the  improvement ,  
let  me point  out  that  there  is ano ther  kind of  calculat ion,  a boo lean  calculat ion,  occurr ing  in the  English tex t  be- 

tween  the formulas.  In the  example  p roo f  [15] we find the words  "consequently",  "implying", "there is/are", "how- 
ever", "thus", "hence", "since", "forces", " i f . . .  then", "in consequence  of  which", "from which we  get", "whence",  
"would imply", "contrary  to", "so that", "contradicting"; all these  words  suggest  boo lean  opera tors .  We also f ind 

bookkeep ing  sen tences  like "We first r e m a r k . . .  ", "We mus t  now rule out  the  c a s e . . .  "; these  suggest  the  struc- 

ture of  a boolean  expression.  It will be quite a large express ion,  pe rhaps  taking an ent ire  page. If wr i t ten  in the  

usual  unformat ted  fashion of  proofs  in cur ren t  a lgebra  texts,  it will be quite unreadable .  The same p rob lem oc- 

curs  with compute r  programs,  which can be  thousands  of  pages  long; to make  them readable  they  mus t  be  care-  
fully formatted,  with indenta t ion  to indicate  s tructure.  We will have to do l ikewise  with proofs.  

A formal  p roo f  is a boolean  calculat ion using boo lean  algebra;  when we learn  to use it well, it  will enable  us  

to go farther,  faster,  more  succinctly,  and with much greater  certainty.  But there  is a great  res i s tance  in the  math-  

emat ica l  communi ty  to formal  proof,  especia l ly  from those  who are  mos t  exper t  at informal  proof.  They com- 
plain that  formal  p roo f  loses  meaning, replac ing it with symbol  manipulat ion.  The current  s ta te  of  boo lean  al- 
gebra,  not  as  an objec t  of  s tudy but  as  a tool  for use, is very much  the same as  number  a lgebra  was  five centur ies  
ago. 

Boolean Calculation 
Given an express ion,  it is often useful to find an equivalent  but  s impler  express ion.  Fo r  example ,  in number  al- 

gebra  

x x ( z + l )  - y x ( z - 1 )  - z X ( x - y )  dis t r ibute  
= ( x x z  + x •  - ( y •  - y X l )  - ( z •  - z x y )  unity and double  negat ion 

= x x z  + x - y x z  + y - z X x  + z x y  symmet ry  and associa t iv i ty  
= x + y + ( x •  - x x z )  + ( y x z  - y •  zero and ident i ty  

= x + y  

We might somet imes  want  to find an equivalent  express ion  that  isn ' t  simpler;  to remove  the d i rec t ional i ty  I'll say  
"calculation" ra ther  than "simplification". We can use opera to r s  o ther  than = down the left s ide of  the  calcula-  
tion; we can even use a mixture  of  opera tors ,  as long as there  is transitivity.  Fo r  example ,  the calcula t ion (for 
real  x)  

x x ( x  + 2) 
= x2 + 2 x x  

= x 2 + 2 x x +  1 -  1 
= (x + 1) 2 - 1 

----- - 1  

tel ls  us 

x X ( x  + 2 ) - > - 1  

dis t r ibute  

add and sub t rac t  1 
factor  
a square is nonnegat ive  

Boolean calculat ion is similar. Fo r  example ,  

( a ~ b )  V ( b ~ a )  

= ~ a V b V ~ b V a  

=- a V ~ a V b V ~ b  

=- t r u e  V t r u e  

-~ t r u e  

And so ( a ~ b )  V ( b ~ a )  

3 n .  n + n 2 = n 3 

0 + 0 2 = 0 a 

=- t r u e  

replace  impl ica t ions  
V is symmet r ic  
exc luded  middle,  twice  

V is idempoten t  

has been simplified to t rue  , which is to say it has been proven. Here is another  example.  

ins tance 
ar i thmet ic  

And so (3n .  n + n 2 = n a) ~ t r u e  , and so 3n .  n + n 2 -- n 3 is proven.  
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Solving simultaneous equations can also be done as a boolean calculation. For example, 

x + x x y  + y = 5 A x - x X y  + y = 1 subtract and add 2 x x x y  in first equation 
-~ x - x •  + y + 2 x x •  = 5 A x - x x y  + y = 1 use second equation to simplify first 
=- 1 + 2 x x x y  = 5  A x - x X y  + y = 1 

-= 2XxXy = 4  A x - x x y  + y = 1 

=- x x y  = 2 A x - x x y  + y = 1 use first equation to simplify second 
=- x X y = 2  A x - 2 + y = l  

=- x x y = 2  A x + y = 3  

=- x = l  A y = 2  V x = 2  A y = l  

x = l  A y = 2  

These examples show that simplifying, proving, and solving are all the same: they are all just calculation. 
When an expression is too long to fit on one line, it must be nicely formatted for easy reading, and when a 

hint is too long to fit on the remainder of a line, it can be written on as many lines as it takes, but we do not 
consider formatting further here. One point worth mentioning is that subcalculations (if boolean, they are called 
subproofs or lemmas) can save copying unchanged parts of a calculation through many lines. These subcalcu- 
lations can be done in another place and referenced, or they can be done in-place, nicely formatted, to provide 
a structured calculation (structured proof). By far the best way to handle subcalculations is provided by win- 
dow inference systems [21],[2], which open a new window for each subcalculation, keep track of its sense (di- 
rection), and make its context available. For example, in solving the simultaneous equations, we used the sec- 
ond equation to simplify the first, and then the first to simplify the second. 

In this brief introduction to boolean calculation, I have not taken the time to present all the rules. For a com- 
plete presentation, the reader is referred to [14]. A research monograph that uses calculational proof is [7]. A 
textbook on discrete math that uses calculational proof is [10]. For further discussion of calculational proofs 
see [9],[17]. 

Traditional Terminology 
Formal logic has developed a complicated terminology that its students are forced to learn. There are terms 
which are said to have values. There are formulas, also known as propositions or sentences, which are said not 
to have values, but instead to be true or false. Operators ( + , - )  join terms, while connectives (A, V) join for- 
mulas. Some terms are boolean, and they have the value t r u e  or f a l s e  , but that's different from being true or 
false. It is difficult to find a definition of predicate, but it seems that a boolean term like x = y  stops being a 
boolean term and mysteriously starts being a predicate when we admit the possibility of using quantifiers (3, Y). 
Does x + y  stop being a number term if we admit the possibility of using summation and product (Z, II)? There 
are at least three different equal signs: = for terms, and r and =- for formulas and predicates, with one of 
them carrying an implicit universal quantification. We can even find a peculiar mixture in some textbooks, such 
as the following: 

a + b  = a V a + b  = b 

Here, a and b are boolean variables, + is a boolean operator (disjunction), a + b  is a boolean term (having 
value t r u e  or f a l s e  ), a + b  = a a n d  a + b  = b a r e  formulas (so they are true or false), and finally V is a 
logical connective. 

Fortunately, in the past few decades there has been a noticeable shift toward erasing the distinction between 
being true or false and having the value t r u e  or f a l s e  . It is a shift toward the calculational style of proof. But 
we have a long way to go yet, as I find whenever I ask my beginning students to prove something of the form 
a ~ b  where ~ is pronounced "exclusive or". They cannot even start, because they expect something that looks 
grammatically like a sentence. If I change it to either of the equivalent forms ( a ~ b ) = - t r u e  or a ~ b  , they are 
happy because they can read it as a sentence with a verb. But ( a ~ b ) : - t r u e  confuses them again because it 
seems to have too many verbs. If I ask them to prove something of the form a V b  , they take an unwittingly con- 
structivist interpretation, and suppose that I want them to prove a or prove b , because that is what "do a 
or b "means in English. The same lack of understanding can be found in many introductory programming texts, 
where boolean expressions are not taught in their generality but as comparisons because comparisons have 
verbs. We find 

while f l a g =  t r u e  do s o m e t h i n g  

but not the equivalent, simpler, more efficient 

while f l a g  do s o m e t h i n g  
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because  f l ag  isn ' t  the  right par t  of  speech  to fol low w h i l e  . Our dependence  on natura l  language for the  un- 

ders tanding  of  boo lean  express ions  is a ser ious  impediment .  

Traditional Notations 
Ari thmet ic  nota t ions  are  reasonab ly  s t andard  throughout  the  world.  The express ion  

738 + 45 = 783 

is recognized  and under s tood  by  schoolch i ldren  a lmost  everywhere.  But there  are no s t andard  boo lean  nota-  
t ions.  Even the two boo lean  cons tan ts  have no s t andard  symbols.  Symbols  in use include 

t rue  t t t  T 1 0 1 = 1 

f a l s e  f ff F 0 1 1=2 

Quite often the  boo lean  cons tants  are  wr i t ten  as  1 and 0 , with + for disjunction,  jux tapos i t ion  for conjunc-  
tion, and pe rhaps  - for  negation. With this  notat ion,  here  are some laws. 

x ( y + z )  = x y  + x z  

x + y z  = ( x + y ) ( x + z )  

x + - x = l  

X(- -X)  = 0 

The first law above  coinc ides  with number  algebra,  but  the  next  three  c lash with number  algebra. The near-uni-  

versa l  reac t ion  of  a lgebrais ts  to nota t ional  cr i t ic isms is: it doesn ' t  ma t te r  which  symbols  are used; jus t  in t roduce  
them, and get  on with it. But to apply  an algebra,  one must  recognize the  pat terns ,  matching laws to the  ex- 
p ress ion  at hand. The laws have to be familiar.  It t akes  an ex t ra  momen t  to think which  a lgebra  I am using as  I 
apply  a law. The logician R. L. Goods te in  [8] chose  to use 0 and 1 the  o ther  way  around,  which  s lows me 
down a little more.  A big change, like using + as a var iable  and x as an opera tor ,  would  s low me down a lot. 

I th ink it ma t te r s  even to algebraists ,  because  they  too have to recognize pat terns .  To a larger  public,  the reuse  
of  a r i thmet ic  symbols  with different  meanings  is an insurmountab le  obstacle.  And when  we mix ar i thmet ic  and  

boo lean  opera to r s  in one expression,  as  we often do, it is imposs ib le  to disambiguate .  
The mos t  c o m m o n  nota t ions  for the two boo lean  cons tan ts  found in p rogramming  languages  and in pro-  

g ramming t ex tbooks  seem to be t rue  and f a l s e  . I have two objec t ions  to these  symbols.  The first  is tha t  they  
are  Engl ish-based and clumsy. Number  a lgebra  could  never  have advanced  to its p resen t  s ta te  if we had  to wri te  
out  words  for numbers .  

seven  three e ight  + f o u r  f i v e  = seven  e ight  three 

is jus t  too  clumsy, and so is 

t rue  A f a l s e  V t rue  =- t rue  

Clumsiness  may  seem minor, but  it can be the  difference be tween  success  and failure in a calculus. 

My second,  and more  serious, object ion is that  the words  t rue  and f a l s e  confuse the a lgebra  with an appli- 

cation. One of the pr imary  appl icat ions  of  boolean  a lgebra  is to formalize reasoning,  to determine  the truth or  fal- 
sity of  some s ta tements  from the truth or  falsity of  others.  In that  application,  we use one of  the boo lean  con- 
s tants  to represen t  truth, and the o ther  to represen t  falsity. So for that  applicat ion,  it seems  reasonable  to call 
them t rue  and f a l s e  . The a lgebra  arose  from that  application,  and it is so much identif ied with it that  many 
people  cannot  separa te  them; they think the boolean  values really are t rue  and fa l se  . But of  course  boolean  
express ions  are useful for descr ibing anything that  comes  in two kinds. We apply  boolean  a lgebra  to circuits  in 
which  there  are two voltages. We somet imes  say that  there  are 0s and l s  in a computer ' s  memory,  or  that  there  
are trues  and falses .  Of course  that ' s  nonsense;  there  are nei ther  0s and l s  nor  t rues  and fa l s e s  in there; 
there  are  low and high voltages. We need  symbols  that  can represent  t ruth values  and vol tages equally well. 

Boolean  express ions  have o ther  appl icat ions,  and the nota t ions  we choose  should  be  equally appropr ia t e  for  

all of  them. Compute r  p rograms  are  wr i t ten  to make  compute r s  work  in some  des i red  way. Before wri t ing a pro-  

gram, a p rog rammer  should  know which  ways  are des i rable  and which  are not. That divides compute r  behav ior  

into two kinds, and we can use boo lean  express ions  to represen t  them. A boo lean  express ion  used  this way  is 
cal led a spec i f i ca t ion .  We can specify  anything, not  jus t  compute r  behavior ,  using boo lean  express ions .  Fo r  ex- 
ample,  if you would  like to buy a table,  then tables  are of  two kinds: those  you find des i rable  and are  willing to 
buy, and those  you find undes i rable  and are not  willing to buy. So you can use a boolean  express ion  as  a table  

specif icat ion.  Acceptab le  and unaccep tab le  human  behavior  is specif ied by  laws, and boolean  express ions  have 
been  p r o p o s e d  as a be t t e r  way than  legal language for wri t ing laws [1]. They can be used  to calcula te  the at- 
t rac t ions  and repuls ions  among a set  of magnets .  
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For symbols that are independent of the application, I propose the lattice symbols T and 2 , pronounced 
"top" and "bottom". Since boolean algebra is the mother of all lattices, I think it is appropriate, not a misuse of 
those symbols. They can equally well be used for true and false statements, for high and low voltages (power 
and ground), for satisfactory and unsatisfactory tables, for innocent and guilty behavior, or any other opposites. 

For disjunction, the symbol V is fairly standard, coming from the Latin word "vel" for "or". For conjunction, 
the symbol is less standard, the two most common choices being & and A . We are even less settled on a sym- 
bol for implication. Symbols in use include 

----> ~ . ' .  

The usual explanation says it means "if then", followed by a discussion about the meaning of "if then". Appar- 
ently, people find it difficult to understand an implication whose antecedent is false ; for example, "If my mother 
had been a man, I'd be the king of France." [19]. Such an implication is called "counter-factual". Some people 
are uneasy with the idea that false implies anything, so some researchers in Artificial Intelligence have pro- 
posed a new defmition of implication. The following truth table shows both the old and new definitions. 

a b 

old n e w  

a ~ b  a ~ b  

true true true true 

true false false false 

false true true unknown 

false false true unknown 

where unknown is a third boolean value. When the antecedent is false , the result of the new kind of impli- 
cation is unknown . This is argued to be more intuitive. I believe this proposal betrays a serious misunder- 
standing of logic. When people make statements, they are saying that each statement is true. Even if the state- 
ment is "if a then b " and a is known to be false, nonetheless we are being told that "if a then b " is true. 
It is the consequent b that is unknown. And that is represented perfectly by the old implication: there are two rows 
in which a is false and a ~ b  is true ;on  one of these rows, b is true , and on the other b is false . 

Debate about implication has been going on for a long time; 22 centuries ago, Callimachus, the librarian at 
Alexandria, said, "Even the crows on the roof croak about what implications are sound."[3],[18]. In case you 
think that confusion is past, or just for beginners, consider the explanation of implication in Contemporary Logic 

Design, 1994 [16]: 

As an example, let's look at the following logic statement: 
IF the garage door is open 
AND the car is running 
THEN the car can be backed out of the garage 

It states that the conditions--the garage is open and the car is running--must be true before the car can be 
backed out. If either or both are false, then the car cannot be backed out. 

Even a Berkeley computer science and electrical engineering professor can get implication wrong. 
Implication is best presented as an ordering. If we are calling the boolean values "top" and "bottom", we can say 

"lower than or equal to" for implication. It is easy, even for primary school students, to accept that • is lower 
than or equal to T , and that • is lower than or equal to • . With this new pronunciation and explanation, three 
other neglected boolean operators become familiar and usable; they are "higher than or equal to", "lower than", 
and "higher than". For lack of a name and symbol, the last two operators have been treated like shameful secrets, 
and shunned. If we are still calling the boolean values "true" and "false", then we shall have to call implication 
"falser than or equal to". As we get into boolean expressions that use other types, ordering remains a good expla- 
nation: x<4  is falser than or equal to x<6  , as a sampling of evaluations illustrates (try x=3, 5, 7). I have tried 
using the standard words "stronger" and "weaker", saying x<4 is stronger than x<6  ; but I find that some of my 
students have an ethical fixation that prevents them from accepting that falsity is stronger than truth. 

That implication is the boolean ordering, with Y and • at the extremes, is not appreciated by all who use 
boolean algebra. In the specification language Z [24], boolean expressions are used as specifications. Specifica- 
tion A refines specification B if all behavior satisfying A also satisfies B . Although increasing satisfaction 
is exactly the implication ordering, the designers of Z defined a different ordering for refinement where T is 
not satisfied by all computations, only by terminating computations, and _k is satisfied by some computations, 
namely nonterminating computations. They chose to embed a new lattice within boolean algebra, rather than to 
use the lattice that it provides. 
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Impl icat ion has  often been  def ined as  a "secondary" ope ra to r  in te rms of  the "primary" ope ra to r s  negat ion 

and disjunction: 

(a~b)-~aVb 

Proofs  about  impl icat ions  p roceed  by  gett ing rid of  them in favor  of  the more  famil iar  negat ion and disjunction,  

as we did ear l ier  in an example .  This avoids  the  informal  explanat ion,  but  it  makes  an unsuppor tab le  dis t inct ion 
be tween  "primary" and "secondary" opera tors ,  and hides  the fact  that  it is an ordering.  When we learn  that  im- 
p l ica t ion  is an ordering,  p roofs  about  impl ica t ions  become  shor te r  and easier.  

If we p resen t  impl ica t ion  as  an ordering,  as  I prefer,  then we face the p rob lem of  how to use  this  order ing in 
the  formal izat ion of  natural- language reasoning.  To what  ex ten t  does  the a lgebra ic  ope ra to r  " lower than or  equal 
to" co r re spond  to the  English word  "implication"? Phi losophers  and l inguists  can help, or  indeed domina te  in 

this  difficult  and impor tan t  area. But we shouldn ' t  let  the complexi t ies  of  this  appl ica t ion  of  boo lean  a lgebra  
compl ica te  the algebra,  any more  than we let  the complexi t ies  of  the banking  indus t ry  compl ica te  the  defini t ion 
of  ari thmetic.  

Symmetry and Duality 
In choos ing  infix symbols ,  there  is a s imple  pr inciple  that  real ly enhances  our  abil i ty to calculate:  we should  

choose  symmet r ic  symbols  for symmetr ic  opera tors ,  and asymmet r i c  symbols  for  asymmetr ic  opera tors ,  and  
choose  the reverse  of  an asymmetr ic  symbol  for  the reverse  operator .  The benef i t  is that  a lot of  laws become  

visual: we can wri te  an express ion  b a c k w a r d s  and get an equivalent  express ion.  Fo r  example ,  x + y < z is 
equivalent  to z > y + x . By this principle,  the  ar i thmet ic  symbols  + x < > = are  well  chosen  but  - and 

are  not. The boo lean  symbols  A V ~ ~ ----- 0) are  well  chosen,  but  ~ is not. 

Duali ty can be put  to use, jus t  l ike symmetry ,  if we use ver t ical ly  symmetr ic  symbols  for  self-dual opera tors ,  
and ver t ica l ly  asymmet r i c  symbols  for non-self-dual  ope ra to r s  with the ver t ical  reverse  for thei r  duals.  The vi- 
sual  laws are: to negate  an express ion,  turn  it ups ide  down. Fo r  example ,  (T A - & )  V Z is the  negat ion of  

( •  V -  T)  A T if you al low me to use the ver t ica l ly  symmet r ic  symbol  - for negation,  which is self-dual. There  
are two points  that  require at tention when using this nile. One is that parentheses  may need to be added  to main- 

tain the precedence;  but  if we give dual opera tors  the same precedence,  there 's  no problem. The other  point  is that  
variables cannot  be flipped, so we negate them instead (since flipping is equivalent to negation). The well-known ex- 

ample  is deMorgan's law: to negate a V b , turn it upside down and negate the variables to get - a  A - b  . By this 

pr inciple ,  the symbols  T • - A V are  well  chosen,  but  ~ ~ ~- ~ �9 are not. By choosing be t t e r  symbols  we 
can l e t  the symbols  do some of  the  work  of  calculat ion,  moving it to the  level of  visual  processing.  

From Booleans to Numbers 
Some boo lean  express ions  are  laws: they  have value T no mat te r  wha t  values  are  ass igned to the  variables.  

Some boo lean  express ions  are unsat isf iable:  they  have value L no mat te r  wha t  values  are ass igned to the  vari- 
ables.  The remaining boolean  express ions  are  in between,  and "solving" means  finding an ass ignment  of  values  

for the  var iables  for  which  the boolean  express ion  has  value T . (Solving is not  jus t  for equat ions  but  for  any 
kind of  boo lean  express ion. )  A lot of  ma themat i c s  is conce rned  with solving. And in part icular ,  number  a lgebra  

has  deve loped  by the desire  to solve. To car ica ture  the development ,  we choose  an unsat isf iable  boo lean  ex- 
p ress ion  and say, "What a pi ty that  it  has  no solutions.  Let 's  give it one.". This has  resul ted  in an increas ing se- 
quence of  domains,  f rom natura ls  to integers  to ra t ionals  to reals  to complex  numbers .  The boo lean  express ion  
x +  1 = 0 is unsat isf iable  in the  natura l  numbers ,  but  we give it a solut ion and the reby  invent the  integers.  Sim- 
i larly we choose  to give solut ions  to x x 2  = 1 , ~2 = 2 , x 2 = - 1  , and the reby  progress  to larger  domains .  
This p rogress ion  is both  his tor ical  and pedagogical .  At the same t ime as  we gain solutions,  we lose laws, s ince 
the  laws and unsat isf iable express ions  are each other ' s  negations.  For  example,  when we gain a solut ion to x 2 = 
2 , we lose the  law x 2 r  . 

As the domain  of  an opera t ion  or  funct ion grows, we do not  change its symbol;  addi t ion is still deno ted  + 
as  we go from natura ls  to complex  numbers .  I will not  argue whe the r  the na tura ls  are  a subse t  of  the  complex  

numbers  or  jus t  i somorphic  to a subset;  for me the quest ion has  no meaning. But I do argue that  it  is impor tan t  
to  use  the  same nota t ion  for natura l  1 and complex  1 because  they  behave  the same way, and for  natura l  + 

and complex  § because  they  behave  the same way  on thei r  c o m m o n  domain.  To be more  precise ,  all boo lean  

express ions  over  the natura ls  re ta in  the same solut ions  over  the complex  numbers ,  and all laws of  complex  arith- 

met ic  that  can be in te rpre ted  over  the  na tura ls  are  laws of  natura l  ar i thmetic.  The reason  we mus t  use the same 
symbols  is so that  we do not  have to re learn  all the solu t ions  and laws as we enlarge or  shr ink the domain.  And 
indeed,  it is s t andard  mathemat ica l  p rac t ice  to use the  same  symbols.  

Fo r  exact ly  the  same good reasons  that  we have a unified t r ea tment  of  number  algebras,  we mus t  now unify 
boo lean  and number  algebras.  The quest ion whe ther  boo lean  is a different  type f rom number  is no more  rele- 
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vant than the question whether natural and integer are different types. What's important is that solutions and 
laws are learned once, in a unified system, not twice in conflicting systems. And that matters both to primary 
school students who must struggle to learn what will be useful to them, and to professional mathematicians who 
must solve and apply laws. 

Historically, number algebra did not grow from boolean algebra; but pedagogically it can do so. As already 
argued, the use of 0 1 + • for • T V A doesn't work. To find an association between booleans and num- 
bers that works for unification, we must use a number system extended with an infinite number. Such a system 
is useful for many purposes; for example, it is used in [13] to prove things about the execution time of programs 
(some execution times are infinite). For a list of axioms of this arithmetic, please see [13],[14]. The association 
that works is as follows. 

boo lean  n u m b e r  

top q- ~o infinity 

bottom • - =  minus infinity 

negation -m - negation 

conjunction A ~, minimum 

disjunction V I" maximum 

implication ~ -< order 

equivalence --- = equality 

exclusive or ~) r inequality 

With this association, all number laws employing only these operators correspond to boolean laws. For example, 

boo lean  l aw  n u m b e r  l a w  

T ~ - ' - 1 •  oc = - - o o  

8 ~ - - 1 - - 1 8  x = - - x  

a V T - - - - - - T  xtoo = oo 

a A J_ =- • x~, -~o = -~o 

a V J_ =- a x1` -oo = x 

a A  T = - a  x,J, c o = x  

a ~ T  x -  <oo 

•  - o ~ _ < x  

a V (b A c) =- (aVb) A (aVc) x l '  (y~z)  = ( x t y )  ~, ( x l z )  

a A (b V c )  -= (aAb) V (aAc) x J . ( Y t Z )  = (x,J.y) t (x,J,z) 

a V b =- 7 ( ~ a A - T b )  x t Y = - ( - x  $ - y )  

a A b  =- -m(-TaV-mb)  x,[y = - ( - x  1" - y )  

There are boolean laws that do not correspond to number laws, just as there are integer laws that are not real 
laws. That's another way of saying that there are unsatisfiable boolean expressions that correspond to satisfi- 
able number expressions. We will use this for our unified development. 

Unified Algebra 
Here is my proposal for the symbols of a unified algebra. 

uni f ied  

top �9 infinity 

bottom • minus infinity 

negation - negation 

conjunction A minimum 

disjunction V maximum 

"nand" A negation of minimum 

"nor" V negation of maximum 

implication -< order 

reverse implication -> reverse order 

strict implication < strict order 

strict reverse implication > strict reverse order 

equivalence = equality 

exclusive or =!= inequality 
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The symbols - < > < > = are world-wide standards,  used by school children in all countries,  so I dare not  

suggest any change to them. The symbol  r for inequality is the next  best  known, but  I have dared to s tand up 

the slash so that all symmetric  operators have symmetric symbols  and all asymmetric  operators have asymmet-  

ric symbols. (Although it was not  a consideration,  # also looks more like @ .) The "nand" symbol is a com- 

binat ion of the "not" and "and" symbols, and similarly for "nor". But I am worried that A and V are poor  

choices because they point  the wrong way to be min imum and maximum; it might be bet ter  to use $ and 1' 

for conjunct ion  and disjunction, and ~: and { for "nand" and "nor". One suggestion: note that V is wide at 

the top, and A is narrow at the top. Another  suggestion: note that V holds water, and A doesn't .  

Duality has been  sacrificed to standards;  the pair  -< < are duals, so they ought to be vertical reflections of 

each other; similarly the pair  _> > , and also = # ; addit ion and subtract ion are self-dual, and happily + 

and - are vertically symmetric; mult iplication is not  self-dual, but  x is unfor tunately  vertically symmetric.  

Having unified the symbols, I suppose we should also unify the terminology. I vote for the number  terminol-  

ogy in the right column, except that I prefer to call T and & "top" and "bottom". 

The associat ion be tween  booleans  and numbers  suggested here allows the greatest number  of boolean laws 

to be generalized to all numbers .  For  example, if a , b , and c are boolean, it is usual  to define i f  a then b 

else  c as follows: 

( i f a  then b else  c) = (a A b) V ( - a  A c) 

If a remains  boolean but  b and c are numbers ,  the if-expression on the left is still sensible (the Algol if), and 

furthermore it is still equal to the expression on the right. This generalization requires the part icular  associat ion 

be tween  booleans  and numbers  suggested here. 

The next  examples, writ ten in boolean notations,  are the laws 

(a A b ~ c) -= (a ~ c) V (b ~ c) 

( a V b ~ c ) ~ - ( a ~ c ) A ( b ~ c )  

A common  error is to use conjunct ion  twice, or dis junct ion twice. The boolean reading " a and b implies c 

if and only if a implies c or b implies c " sounds  no more reasonable than " a and b implies c if and 

only if a implies c and b implies c ". In unified notation, 

(a A b <- c) = (a<-c) V (b<-c) 

(a V b <- c) = (a<-c) A (b<_c) 

it is more obvious that the min imum of a and b is less than or equal to c when  at least one of a or b is 

less than or equal to c , and the max imum of a and b is less than or equal to c when both a and b are 

less than or equal to c . They are laws for all numbers ,  not  jus t  the booleans.  

The ari thmetic expression x - y varies directly with x and inversely with y . Thus if we increase x , we 

increase x - y , and if we decrease y we increase x - y . We calculate: 

x - y increase x to x +  1 and so increase the whole expression 

<- (x+  1) - y decrease y to y - 1  and so increase the whole expression 

-< ( x + l ) -  ( y - l )  

Similarly the boolean expression x --> y varies directly with x and inversely with y (no matter  whether  x 

and y are numbers  and -> is number  comparison,  or x and y are boolean and -> is reverse implication, or 

x and y are a mixture of number  and boolean).  We calculate as follows: 

x ----- y increase x to x + l  and so increase the whole expression 
-- (x+  1) -> y decrease y to y - 1  and so increase the whole expression 

-< ( x + l )  -> ( y - l )  

It is exactly the same calculation. By unifying number  algebra with boolean algebra we carry our  ability to cal- 

culate over from numbers  to booleans.  

Unified Development 
Suppose we start with boolean algebra in the unified notation, with the terminology "top", "bottom", "minimum", 

"maximum", "less than", and so on. Now we say: what  a pity that x =  - x  has no solution; let 's give it one. The 

new solut ion is denoted 0 . While gaining a solution to some boolean expressions, we lose some laws such as 

the law of the excluded middle x V - x  . 

Now we have an algebra of three values: T, & , 0 . In one application they can be used to represent  "yes", 
"no", and "maybe"; in another  they can be used to represent  "large", "small", and "medium". This algebra has 27 

one-operand operators, one of which is - ,  defined as 
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X T 0 I 

- X  3- 0 T 

In has  19683 two-operand  opera tors ,  four  of  which  are: 

xy TT TO T /  0T 00 01  L T  10 Z_L 

x = y  T • I I T I I I T 

x < y  1 I T T I T T T 

x<<y 0 J_ T 0 0 0 0 0 

x@y T 0 T 0 3- 0 I T 

Whether  - or  << or  another  ope ra to r  r epresen t s  impl ica t ion  in the p resence  of  uncer ta in ty  can be debated,  

but  the  a lgebra  is not  af fec ted  by  the debate.  The ope ra to r  @ is modula r  (or  c i rcular)  addit ion,  and the o ther  
opera to r s  of  modu la r  a r i thmet ic  can be  given similarly. 

We might  cont inue our  deve lopment  with a four-valued a lgebra  and five-valued algebra,  but  at  this  poin t  I rec- 

o m m e n d  filling in the space  be tween  T and 0 , and be tween  0 and _L , with all the  integers.  And then on 
to the  rat ionals ,  the  reals,  and the complex  numbers  as usual.  

The argument  in favor of  this unification of  boolean algebra and number  a lgebra  is jus t  as s trong as  the argument 
in favor of  using the same notat ions for the different number  algebras. But the lat ter  is familiar, and so it seems right, 
while the former is unfamiliar, and for that  reason alone it may seem wrong. Ultimately, the benefits  will outweigh 
the unfamiliarity. For  example,  the da ta  structure known as AND-OR trees and the algori thm that  uses them become 
the same as the da ta  structure and algorithm known as minimax methods; they should not  have to be learned twice. 

A different  unif icat ion of  boolean  a lgebra  and number  a lgebra  that  aims at  the  same  goal (using the same cal- 
cula t ions  for boo leans  and numbers) ,  but  emphas izes  t radi t ional  modu la r  a r i thmet ic  a long the way, can be found 
in [5], a provoca t ive  work  of  grand scope.  

From Intormal to  Formal 
Many mathemat ica l  no ta t ions  began thei r  l ives as  abbrevia t ions  for some words.  Fo r  example ,  = was  intro- 
duced  in [20] to mean  "is equal to": 

And to avoide  the ted iouse  repet i t ion of  these  w oorde s  "is equalle to" I will let te  as  I doe  of ten in woorke  bse, 
a pai re  of  para l le les  or  Gemowe  [twin] l ines of  one lengthe, thus: = , because  noe  2 thynges,  can be  moare  
equalle. 

Later, = became  assoc ia t ed  with some  a lgebra ic  proper t ies ,  namely  reflexivity, symmetry ,  transit ivity,  and sub- 
stitutivity. Today, it  is def ined by those  proper t ies ,  not  as  an abbrevia t ion  for  some  words.  Someone  might  say 

that  Mice  and Bob are  equal tennis  p layers  because  they  have p layed  each o ther  10 t imes,  and  each  has  won 5 
matches .  They might  s imilar ly say that  Bob and Carol  are  equal tennis  p layers  because  they  too  have p layed  each 
o ther  10 t imes,  and each  has  won 5 matches .  But this kind of  equali ty is not  transit ive.  As it happens ,  Mice  and 
Carol are  unequal  tennis  players:  they  have p layed  each  o ther  10 t imes, and Mice  has  won  8 matches .  Because  
of  the lack  of  transit ivity,  no mathemat ic ian  today  would  use = for tennis  equality. 

In the  no ta t ion  commonly  used  for  small  sets,  such as  { 1, 3, 7} , the  c o m m a  was  in t roduced  as  jus t  punctu-  
ation, not  as  a ma themat ica l  operator .  As soon  as  the  no ta t ion  is in t roduced,  we mus t  say  tha t  the  o rde r  in which 
e lements  are  wr i t ten  is i r re levant  so that  {1, 2}={2, 1} ; the  way  to say that  formal ly  is A,B=B,A ( comma  is 
commutat ive) .  We mus t  also say that  repe t i t ions  of  e lements  are  i r re levant  so that  {3, 3}={3} ; the way  to say 

that  formally is A,A=A ( comma  is idempotent ) .  And we should  say  that  c o m m a  is associa t ive  A,(B,C)=(A,B),C 
so that  pa ren theses  are  unnecessary .  Evident ly  the c o m m a  can be seen  as  a mathemat ica l  ope ra to r  with alge- 
bra ic  p roper t i e s  that  aggregates  e lements  into a s t ruc ture  that  is s impler,  more  primitive,  than sets; let  us call 

them bunches .  Even the curly b races  can be  seen as an ope ra to r  that  appl ies  to a bunch  and makes  a set; its in- 
verse  - appl ies  to a set  and makes  a bunch: - {  1,2}= 1,2 . 

When a child first  learns  about  sets, there  is often an initial hurdle: that  a se t  with one e lement  is not  the  same 

as the  element.  It would  be eas ier  to p resen t  a se t  as  packaging:  a package  with an apple  in it is obviously  not  
the  same as the  apple.  Jus t  as  {1} and 1 differ, so {1,2} and 1,2 differ. Bunch theory  tel ls  us about  aggrega- 
tion; se t  theory  tells  us abou t  packaging.  The two are  independent .  

Apar t  f rom being cute, are  bunches  useful? The subjec t  of  funct ional  p rogramming  has  suffered from an in- 
abi l i ty  to express  nonde te rmin i sm conveniently.  To say  something  about  a value,  but  not  pin  it down completely,  
one can express  the  set  of  poss ib le  values.  Unfortunately,  sets  do not  reduce  p rope r ly  to the  determinis t ic  case; 
in this  con tex t  it is again a p rob lem that  a se t  conta ining one e lement  is not  equal to the element.  What  is wan ted  
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is bunches. One can always regard a bunch as a "nondeterministic value". Bunches can also be used as a "type 
theory" with the advantage that it is unnecessary to duplicate the operators of the value space at the type level 
because the two are unified. And finally, the easiest way to present sets is via bunches. For details see [13],[14]. 
Formalization of the lowly comma leads to a beautiful and useful algebra. 

We have just seen two examples of formalization, one from the past and one from the future. Now here's an 
example of a formalization gone astray: functions defined as sets of ordered pairs. This way of defining func- 
tions is part of the very interesting demonstration that all of mathematics can be based on sets. The demon- 
stration requires us to make a set-model of functions, and numbers, and everything else. For example, the nat- 
ural numbers can be equated to sets, with no inconsistency, as follows: 

0 = O (the empty set) 
n + l  = nU{n} 

So, for example, 3 = {O, {O}, {O, {0}}} . Few people would say that 3 really is the set {0, {0}, {0, {0]}} ; the 
set-model of natural numbers was constructed by John von Neumann just to serve this one demonstration. Num- 
bers are best formalized, not by building a set-model, but by an algebra showing how they participate in arith- 
metic operations. Similarly, functions are best formalized by showing the laws of application and function com- 
position (in general, set union and intersection are not useful ways of combining functions). But the set-model 
of functions has somehow taken root in the current mathematical culture; many people (and textbooks) say that 
a function really is a set of ordered pairs. A useful formalization is not one that answers the question "what is 
it?", but one that answers the question "how do we use it?". 

I write a function, or local scope, according to the following example: 

{n: nat  --~ n+t}  

This is essentially a "lambda-expression" [6], although Church did not use angle brackets and arrows. He borrowed 
a "hat" notation from Whitehead and Russell, but moved the hat down in front; the most similar available character 
in the typesetter's tray was h ; thus the lambda calculus was born [22]. Following van de Snepscheut [23], I use an- 
gle brackets to delimit the scope of the variable. I use an arrow to facilitate the unification of functions with func- 
tion spaces, which I do not discuss in this paper (see [14]). Next, I want to get rid of the idea that all possible vari- 
ables (infinitely many of them) already "exist", and that the ftmction notation "binds" a variable, and any variable 
that is not bound remains "free". I prefer the programmer's terminology of"local" and "nonlocal" variables. Variables 
do not automatically "exist"; they are introduced (rather than bound) with a limited scope by the function notation. 

Two notations that have not yet made the transition from informal beginning to formal, calculational tool are 
the quantifiers V and 3 . For most mathematicians today they remain abbreviations for the words "for all" and 
"there exists", and their meaning is just whatever can be understood from those words. The word "all" sounds 
clear and unambiguous, but there is debate as to whether so-called "undefined" range elements, or other "non- 
standard" elements, are included. Existence is even more contentious, as can be seen from the debate between 
classical and constructive mathematicians. Only a formal definition, equivalent to an automated theorem prover, 
is clear and unambiguous. Only a formal definition gives us calculation. 

Quantifiers 
There are several notations that introduce a local (bound, dummy) variable. For example, 

~ f x  f x  dx  Vx: D. Px  { f x  I xED} 
.~:=O 

The introduction of the local variable and its domain are exactly the job of the function notation, so all expres- 
sions requiring a local variable can be uniformly expressed as an operator applied to a function. If the body of 
a function is a number expression, then we can apply + to obtain the sum of the function results. For example, 

+(n: nat  ---* 1/2") 

There is no syntactic ambiguity caused by this use of + , so no need to employ another symbol Z for addi- 
tion. We can apply any associative symmetric operator, such as 

X{n: nat  ~ 1/2 ~*} 
A{n: nat  ---, n>5} 
V(n: nat  ---) n>5) 

The minimum operator A replaces "for all", and the maximum operator V replaces "there exists". By apply- 
ing = and ee to functions we obtain the two independent parity operators. Set comprehension and integrals 
can be treated this same way. 
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If function f has domain D , then f = ( x :  D - - - , fx )  , so quantifications traditionally written 

f x  VX: D" P x  
x:D 

which we have just learned to write as 

+(x: D ---) f x )  A(x: D ~ Px) 

can be written even more succinctly as 

+f AP 

Using juxtaposition for composition, deMorgan's laws 

-~(Vx: D. Px)  =- (3x: D. ~ P x )  ~(3x:  D. Px)  =- (Vx: D. ~ P x )  

become 

- A P  = V - P  - V P  = A - P  

or even more succinctly 

( - A )  = ( V - )  ( - V )  = ( A - )  

The Specialization and Generalization laws say that if y is an element of D , 

(Vx: D. Px)  ~ Py  Py  ~ (3x: D. Px) 

They now become 

A p  <_ p y  Py  <- VP  

which say that the minimum item is less than or equal to any item, and any item is less than or equal to the max- 
imum item. These laws hold for all numbers, not just for the booleans. 

Given function f , all function values f x  are at least y if and only if the minimum function value f x  is at 
least y . Traditionally, that's a universal quantification equated to a minimum. In unified algebra, it is just fac- 
toring. Leaving the non-null domain of f implicit, we write 

A(x ---->fx >-- y) factor out ->y 
= A ( x . - , f x ) > _ y  

= A f > _ y  

If we go in the other direction, "unfactoring" is called "distribution". And it works whether f x  and y are num- 
bers and -> is the number ordering, or f x  and y are booleans and -> is reverse implication. It's no differ- 
ent from the factoring/distribution law that says the minimum value of ( f x  - y)  equals (the minimum value of 

( f x )  - y . 

A(x -->fx - y) factor out - y  
= A ( x - - ) f x ) - y  

= A f -  y 

If we factor from the other side of the - sign, we have to change minimum to maximum: 

A(x ---) y - f x )  factor out y -  
= y - V ( x - - > f x )  

= y - V f  

And similarly 

A(x ---* y >--fx) factor out y>- 

= y -> V(x --)fx) 
= y > - V f  

Once again, it works for numbers and booleans equally well. Unified algebra gives us many other factoring/ 
distribution laws just like these (see [14]). 

The goal is to create an algebra that's easy to learn and easy to use. That goal is not always consistent with 
traditional mathematical terminology and symbology. Readers are cautioned against matching the algebra di- 
rectly with their own familiar terms and symbols. Although I have been using the words "minimum" and "maxi- 
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mum" for A and V , the words  "greatest lower bound" and "least upper bound", or  "infimum" and "supremum", 
may be more traditional in some contexts. For  example, 

A(n: nat  ----> 1/n) = 0 

Even more  caution must  be used with the words  "all" and "exists". Intuition about  existence in mathematics  (like 
intuition about  anything else) depends on what  you have learned. We tend to believe that what  we have learned 
is true. But mathematical  truth is constructed,  and we must  be open to the possibility of  construct ing it differ- 
ently. Unlearning can be more difficult than learning. 

Quantifier Examples 
Is ( 3 x . P x )  ~ (Yy .Qy )  equivalent to Vx. Yy. (Px ~ Qy) ? Even experienced logicians don ' t  find it obvious. 
To see whether  they are equivalent, those who reason informally say things like "suppose some x has proper ty  
P ", and "suppose all y have property Q ". They are led into case analyses by treating V and 3 as abbrevi- 
ations for "for all" and "there exists" (as they originally were). Of the very few who reason formally, most  don ' t  
know many laws; perhaps they start by getting rid of  the implications in favor of  negation and disjunction, then 
use deMorgan's  laws. Let me rewrite the questionable equivalences in the new notations. 

(VP  -< AQ) = A(x --) A(y --) P x  <- Qy}) 

We might read the left side as saying that the maximum P is less than or equal to the minimum Q , and we 
might read the right side as saying that all P are less than or equal to all Q . Informal readings can be mis- 
leading, and we should never attach our  understanding to an informal reading, but sometimes we can get inspi- 
ration from it. In this case, the reading sounds reasonable enough to suggest we might prove it, and not  just  for 
booleans, but for all numbers. Leaving the non-null domains implicit, here 's  the proof: 

A{x ~ A{y ---> P x  <- Qy}} factor  out P x  < - 

= A(x ---> P x  <- AQ} factor out -<AQ 
= V P -  < AQ 

Let L be a nonempty  list (a function whose  domain is an initial segment of  the naturals). +L  is its sum, and 
VL is its maximum; let #L be its length. We can say that the average item in the list is less than or equal to 
the maximum item as follows. 

+L/#L <- V L  now apply > 1 to both sides of  the inequality 
<- (+L/#L > 1) -< (VL > 1) multiply by #L ; distribute >1 
= (+L  > #L) <- V{i  ----> L i  > 1} 

leaving the domain implicit. The bot tom line is the "pigeon-hole principle"; it says that if the total number  of  
things is greater than the number  of  places to put them, then some place has more than one thing in it. Notice 
what  has happened: we read V as "maximum" on the top line, and as "some" on the bot tom line; we read - 
as "less than or equal to" on the top line, and as "if then" on the bot tom line. 

Here is a further illustration of  the benefits of  unified algebra. Let f be a function from the naturals to the 
reals. If f is nondecreasing, then f 0  is its minimum. Traditionally, this might be written (leaving the domain 
implicit) as 

( V n . f n  <: f ( n + l ) )  ~ (fO = M I N { f n l O < - n < ~ } )  

Rewriting this in the new notation, and weakening it to say that fO is less than or equal to the minimum, we 
get 

A{n - - ) f n  -< f ( n + l ) }  -< ( f0  -< AJ) 

Now we apply the portat ion law, which says that for boolean a and any b and c , 

(a <- (b <- c)) = ( a A b  <_ c) 

to obtain 

fO A A{n ---~ f n  -< f ( n + l ) }  <- A f  

If f happens to have a boolean range, this is induction, more  traditionally written 

fO A (Vn . fn  ~ f ( n + l ) )  ~ (Vn. f n )  

Thus we see induction as a special case of  a more general law saying that the first item in a nondecreasing se- 
quence is its minimum. 
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Probability 
The seminal  work  [4] by  Boole on boo lean  a lgebra  refers  to bo th  logic and probabil i ty .  The s t andard  theory  of  
probabi l i ty  ass igns  0 to an event  that  cannot  happen,  1/2 to an event  that  is equally l ikely to happen  or  not  hap- 
pen, and 1 to an event  that  is certain to happen.  In a set  of  events  in which exact ly  one event  must  happen,  the 

probabi l i t ies  sum to 1 . The integral of  a probabi l i ty  distr ibution must  be 1 . 

Pe rhaps  there  is another  way  to develop  probabi l i ty  theory  based  on unif ied algebra.  Perhaps  an event  that  
cannot  happen  has  probabi l i ty  I , an event  tha t  is equally l ikely to happen  or  not  happen  has  probabi l i ty  0 , 
and an event  that  is cer ta in  to happen  has  probabi l i ty  T . In a set  of  events  in which  exact ly  one event  must  

happen,  the  average probabi l i ty  is 0 . The integral  of  a probabi l i ty  d is t r ibut ion mus t  be 0 . Pe rhaps  the new 
probabi l i ty  space  is re la ted  to the  logar i thm of  the  old  space;  essential ly,  p robabi l i t i es  are  rep laced  by  informa- 
t ion content .  My hope  is that  the  compl ica ted  formulas  for  d is t r ibut ions  in the  s t andard  theory  can be  s implif ied 
by t ransforming the space  of  probabi l i t ies .  

Metalogic 
In the  s tudy  of  logic, at  or  near  the beginning, logicians p resen t  the  symbol  I- to r ep re sen t  theoremhood .  I ask  

you to pu t  yourse l f  in the  p lace  of  a beginning student .  This symbol  is appl ied  to a boo lean  express ion  jus t  like 
the boo lean  opera tors ;  but  we know all the  boo lean  opera to r s  and  this isn ' t  one of  them. It somet imes  has  a left 

ope rand  as  well  as  a right operand,  and  then the explana t ion  makes  it s eem jus t  l ike implication.  To say  that  it  

is a "meta-opera tor"  ju s t  labels  it, and doesn ' t  expla in  it. Saying that  it  appl ies  to the form, ra ther  than  the mean-  
ing, is confusing too, s ince  the entire po in t  of  the a lgebra  is to enable  us to work  with the  form and ignore the  
meaning.  The dis t inct ion be tween  me tano ta t ions  and the objec t  nota t ions  is not  easi ly seen. 

To make  things worse,  there  are  different  levels of  meta-opera tors .  Proof  rules  are  somet imes  p resen ted  us- 
ing a hor izonta l  bar,  which  is yet  ano ther  level of  implication.  Consider,  for  example ,  the  Modus  Ponens  p roof  
rule, which  uses  all th ree  kinds of  implication:  

A k x, B k x ~ y  
A , B  ky 

Rewrit ing c o m m a  as  conjunct ion,  and turnst i le  and  ba r  as  implication,  we get  a tautology:  

(A~x )  A ( B ~  (x~y) )  ~ (AAB ~ y) 

Rewrit ing any p r o o f  rule this  way  gives a tau to logy (if k has  nothing to i ts left, use  T ). Rewrit ing any tau- 
to logy whose  main  coimect ive  is impl ica t ion  gives a val id p roo f  rule. It is hard  to see  the  difference be tween  the 

me ta -opera to r s  and  the object- level  operatoTs because  there  is no formal  difference! The p r o o f  rules  are used  to 
expla in  how to use the  boo lean  express ions;  na tura l  language is used  to expla in  how to use  the  p roo f  rules. For  
beginners  (and o thers )  it  would  be  be t t e r  to skip  the  meta-nota t ions  a l together  and jus t  use  natura l  language to 

expla in  how to use  the  boo lean  express ions .  
At a more  advanced  level, when we want  a formal ism to s tudy formalisms,  we will need  an ope ra to r  that  ap- 

pl ies to the form of  an express ion.  For  that  purpose ,  we do not  need  any new kind or  level of  operator .  Rather, 
we need  to do exac t ly  wha t  G6del  did when he encoded  express ions ,  but  we can use  a be t t e r  encoding.  We need 
to do exact ly  wha t  p rog rammers  do: dis t inguish p rogram from data. One pe r son ' s  p rog ram may  be a compi ler  
wri ter ' s  data, but  when  it is data, it is a cha rac te r  string. The cha rac te r  str ing "a V - a "  can be used  as  a code 
for the  express ion  a V - a  . We apply  k to cha rac te r  s tr ings so that  Fs is a t heo rem when  the boolean  ex- 
press ion  r ep resen ted  by  string s is a theorem.  

We have a name,  "theorem", for a boo lean  express ion  that  can be s implif ied to T , and an opera tor ,  k , 
whose  pu rpose  is to identify theorems.  Strangely, logicians have not  in t roduced  a name,  say "anti theorem", for 
a boo lean  express ion  that  can be s implif ied to L , and no ope ra to r  such as  4 , whose  pu rpose  is to identify 
ant i theorems.  Pe rhaps  tha t ' s  because  "ant i theorem" jus t  means  "negation of  a theorem" in those  logics having 

negat ion and an appropr i a t e  p roo f  rule. But we bo the r  to name both  booleans ,  even though one is jus t  the  nega- 

t ion of  the  other. 
I p ropose  that  logicians can improve  meta logic  by taking ano ther  lesson from programming.  Ins tead  of  k and 

4 , we  need  only one ope ra to r  to serve  bo th  purposes .  It is cal led an interpreter .  I wan t  T s  to be  a theorem if 

and  only if s r ep resen t s  a theorem,  and an an t i theorem if and only if s r ep resen t s  an ant i theorem.  It is re la ted  

to ~- and  4 by  the two impl ica t ions  

ks -< I s  --< - - I s  

In fact, if we have def ined k and -I , those  impl ica t ions  define I . But I want  T to rep lace  I- and -I , so 
I shall  ins tead  define it by  showing how it appl ies  to every form of  boo lean  express ion.  Here is the beginning of  
its definition. 
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I " T "  = T 

I " •  = • 

I ( " - " s )  = - I s  
I ( s " A " t )  = Zs  A Zt  

ili(s"V"t) = I s  V I t  

And so on. In a vague sense  Z acts  as  the  inverse of  quotat ion marks;  it "unquotes" its operand.  That  is wha t  
an in te rpre te r  does:  it turns  pass ive  da ta  into active program.  It is a famil iar  fact  to p rog rammers  that  we can 
wri te  an in te rpre te r  for  a language in that  s ame  language, and that  is jus t  wha t  we are doing here. In terpret ing 

(unquoting) is exac t ly  wha t  logicians call  Tarskian semantics .  In summary,  an in te rpre te r  is a be t t e r  vers ion  of  
F , and str ings make  metalevel  ope ra to r s  unnecessary .  

Using T , the  famous  GSdel incomple teness  p roo f  is jus t  3 lines. Suppose  that  every boolean  express ion  is 
e i ther  a t heo rem or  an an t i theorem (a comple te  logic), and define Q by 

Q = " - T Q "  

Then 

TQ rep lace  Q with its equal 
= T " - T Q "  �9 unquotes  
= - Z Q  

which  proves  a boo lean  express ion  equal to its negation,  showing the logic to be inconsistent .  A logic in which  

we can define an interpreter ,  and in which  we can rep lace  an express ion  with its equal, mus t  be incons is ten t  or  

incomplete .  We choose  consis tency,  and we choose  to al low the rep lacement  of  an express ion  with its equal, so 
we are  forced to give up the abil i ty to define a comple te  interpreter ;  in par t icular ,  I cannot  unquote  " - IQ" .  Fo r  
fur ther  detai ls  of  this vers ion of  GSdel ' s  incomple teness  theorem,  see [12],[23]. 

You cannot  learn  a p rogramming  language by reading an in te rpre te r  for it wr i t ten  in that  same language. And 
you cannot  learn logic, or  a logic, by reading an in te rpre te r  for it wr i t ten  in logic. Not only is it inscru table  to a 

novice, but  also it may  be subjec t  to more  than one interpretat ion.  Logic is be t te r  p re sen ted  as a lgebra  [11]. We 
don ' t  p resen t  number  a lgebra  with the aid of  a me t a ope ra to r  that  appl ies  to number  express ions  and resul ts  in 
thei r  values,  and we should  not  p resen t  boo lean  a lgebra  that  way. I th ink boolean  a lgebra  should  be p re sen ted  
with a little natura l  language and a lot of  laws, because  laws don ' t  use any metanota t ions .  

T e r m s  of  H o n o r  
My final comment  concerns  mathemat ica l  t e rminology  in tended  to honor  mathemat ic ians .  In some par t s  of  math- 

emat ics  it is s tandard:  Lie algebra,  Stone algebra,  Car tes ian product ,  Jo rdan  decomposi t ion ,  Cayley t ransform,  

Hilbert  space,  Banach space,  Hausdorf f  space,  Borel  measure ,  Lebesgue integration,  F redho lm index, Wedder-  
burn ' s  Theorem, and so on. It is well  known that  the pe r son  so honored  is somet imes  the wrong  person;  of ten 
it is only one of  many who equally deserve  to have their  names  a t tached  to the  idea. I suspec t  that  somet imes  
the in tent ion is not  so much to honor  a pe r son  as to use the  pe r son ' s  pres t ige  to lend respectabi l i ty  to an idea. 
Even when the in tent ion is to honor,  the effect is to obscure  and make  the ma themat ics  forbidding and inac- 
cessible.  It may  be argued that  this is good, keeping the unini t ia ted from thinking they unders tand  when  they  
don't ,  bu t  I re jec t  that  a rgument  as elitist. I know what  nand and nor  are, but  I forget  which  is the Scheffer  s t roke  
and which the Peirce arrow. To say  that  an ope ra to r  is symmetr ic  or  commuta t ive  is much more  descr ipt ive  and 
unders tandab le  than calling it Abelian. DeMorgan 's  laws would  be be t t e r  named  duali ty laws. We who are  used  
to the te rms  forget  wha t  a bar r ie r  they pose  to beginners.  

The te rm "boolean algebra" honors  George Boole. (It is popula r ly  thought  that  the word  "algebra" honors  
someone,  but  it comes  from an arabic  word  meaning "the re in tegra t ion  and reunion of  b roken  parts". In any case, 
the word  is now s tandard,  known by peop le  everywhere . )  The bes t  way  to honor  George Boole is to make  the 
a lgebra  that  he c rea ted  [4] a well  known and well  used  tool, and to do that  we might  have to remove  his name 
from it, and give it a more  descr ipt ive  and access ib le  name, like "binary algebra". 

Conclusions 
Logic has  been  well  s tudied  and is now well  unders tood,  but  it is not  well  used. P rogrammers  learn  that  logic is 
a foundat ion  of  programming,  but  they don ' t  of ten use it to program.  Mathemat ic ians  s tudy about  logic, but  they  
don ' t  of ten use it in thei r  proofs.  Logic is a tool, l ike a knife. People  have looked  at it f rom every angle; they 've  

desc r ibed  how it works  at  great  length; now it 's  t ime to p ick  it up and use it. To use logic well, one mus t  learn  
it early, and prac t ice  a lot. Fancy  vers ions  of logic, such as  modal  logic and metalogic,  can be  left to univers i ty  
study, but  there  is a s imple bas ic  a lgebra  that  can be taught  early and used widely. 
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Number algebra is used by scientists and engineers everywhere. It is used by economists and architects. It is 
taught first to 6-year-olds, without a metanotation, very concretely as addition and subtraction of numbers. Then 
variables and equations are introduced, and always the applications are emphasized. As a result of that early and 
long education, scientists and engineers and mathematicians are comfortable with it. Boolean algebra can be 
equally useful if it is taught the same way. At present, it is not in a good state for presentation to a wide audi- 
ence. We need to simplify the terminology, get rid of the metanotations, adopt the view that proof is calculation, 
choose some good symbols, detach it from its dominant application in which the boolean values represent true 
and false statements, and explain it as algebra. 

There is a small advantage to choosing uniquely boolean symbols: we can give them a precedence after the 
arithmetic operators, which reduces the need for parentheses. On the other hand, there is a large advantage to 
uniting boolean and number symbols in the way I have suggested: the laws and solutions are familiar and can 
be interpreted either as booleans or numbers. In addition, by placing booleans in the same context as numbers, 
we move quickly away from debates about the meanings of operators. The fact that the booleans can be em- 
bedded in the extended integers just as smoothly as the integers are embedded in the rationals seems a com- 
pelling reason to do so. 

Quantifiers can be simplified, made uniform, and generalized by treating them as operators on functions. We 
should stop speaking about "existence", and speak instead about the maximum of a function. Similarly, we should 
stop speaking about "all", and speak instead about the minimum of a function. We should stop trying to say what 
functions and other mathematical ideas are, and say instead how to write them and use them. 

An interpreter serves the same purpose as the metalevel theoremhood operator with the added advantage that 
it gives antitheoremhood as well as theoremhood. And by applying it to strings, we avoid having to introduce a 
separate metalevel of operators. Metalogic is an advanced topic, not a good introduction to boolean algebra for 
those who are new to the subject. 

This paper has not presented a detailed proposal for a change to our primary and secondary mathematics cur- 
riculum, but it has presented the case for making a change, and several suggestions. The main suggestion is to 
unify boolean algebra with number algebra so that we can begin with the simplest algebra and move smoothly 
to the more complicated algebras, all using the same notations and in the same calculational framework. 
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