
ERIC C. R. HEHNER

From Boo ean
A 9ebra to
Unified Algebra

oolean algebra is simpler than number algebra, with applications in pro-

gramming, circuit design, law, specifications, mathematical proof, and rea-

soning in any domain. So why is number algebra taught in primary school

and used routinely by scientists, engineers, economists, and the general

public, while boolean algebra is not taught until university, and not routinely used by anyone? A large part of the
answer may be in the terminology and symbols used, and in the explanations of boolean algebra found in text-
books. This paper points out some of the problems delaying the acceptance and use of boolean algebra, and sug-
gests some solutions.

In t roduct ion
This paper is about the symbols and notations of boolean algebra, and about the way the subject is explained.
It is about education, and about putting boolean algebra into general use and practice. To make the scope clear,
by "boolean algebra" I mean the algebra whose expressions are of type boolean. I mean to include the expres-
sions of propositional calculus and predicate calculus. I shall say "boolean algebra" or "boolean calculus" inter-
changeably, and call the expressions of this algebra "boolean expressions". Analogously, I say "number algebra"
or "number calculus" interchangeably, and call the expressions of that algebra "number expressions".

Boolean algebra is the basic algebra for much of computer science. Other applications include digital circuit de-
sign, law, reasoning about any subject, and any kind of specifications, as well as providing a foundation for all of
mathematics. Boolean algebra is inherently simpler than number algebra. There are only two boolean values and
a few boolean operators, and they can be explained by a small table. There are infinitely many number values and
number operators, and even the simplest, counting, is inductively defined. So why is number algebra taught in pri-
mary school, and boolean algebra in university? Why isn't boolean algebra better known, better accepted, and bet-
ter used?

One reason may be that, although boolean algebra is just as useful as number algebra, it isn't as necessary.
Informal methods of reckoning quantity became intolerable several thousand years ago, but we still get along

�9 2004 SPRqNGER-VERLAG NEW YORK, LLC, VOLUME 26, NUMBER 2, 2004 3

wayne
Rectangle

wayne
Rectangle

with informal methods of specification, design, and reasoning. Another reason may be just an accident of edu-
cational history, and still another may be our continuing mistreatment of boolean algebra.

Historical Perspective
To start to answer these questions, I'm going to look briefly at the history of number algebra. Long after the in-
vention of numbers and arithmetic, quantitative reasoning was still a matter of trial and error, and still conducted
in natural language. If a man died leaving his 3 goats and 20 chickens to be divided equally between his 2 sons,
and it was agreed that a goat is worth 8 chickens, the solution was determined by iterative approximations, prob-
ably using the goats and chickens themselves in the calculation. The arithmetic needed for verification was well
understood long before the algebra needed to find a solution.

The advent of algebra provided a more effective way of finding solutions to such problems, but it was a dif-
ficult step up in abstraction. The step from constants to variables is as large as the step from chickens to num-
bers. In English 500 years ago, constants were called "nombers denominate" [concrete numbers], and variables
were called "nombers abstracte". One of the simplest, most general laws, sometimes called "substitution of equals
for equals",

x=y~fx=fy

seems to have been discovered a little at a time. Here is one special case [20]:

In the firste there appeareth 2 nombers, that is 14x+15y equalle to one nomber, whiche is 71y. But if you
marke them well, you male see one denomination, on bothe sides of the equation, which never ought to stand.
Wherfore abating [subtracting] the lesser, that is 15y out of bothe the nombers, there will remain 14x=56y
that is, by reduction, lx=4y. Scholar: I see, you abate 15y from them bothe. And then are thei equalle still,
seyng thei wer equalle before. According to the thirde common sentence, in the patthewale: If you abate even
[equal] portions, from thynges that bee equalle, the partes that remain shall be equaU also. Master: You doe
well remember the firste grounds of this arte.

And then, a paragraph later, another special case:

If you adde equalle portions, to thynges that bee equalle, what so amounteth of them shall be equalle.

Each step in an abstract calculation was accompanied by a concrete justification. For example, we have the
Commutative Law [0]:

When the chekyns of two gentle menne are counted, we may count first the chekyns of the gentylman hav-
ing fewer chekyns, and after the chekyns of the gentylman having the greater portion. If the nomber of the
greater portion be counted first, and then that of the lesser portion, the denomination so determined shall be
the same.

This version of the Commutative Law includes an unnecessary case analysis, and it has missed a case: when the two
gentlemen have the same number of chickens, it does not say whether the order matters. The Associative Law [0]:

When thynges to be counted are divided in two partes, and lately are found moare thynges to be counted in
the same generall quantitie, it matters not whether the thynges lately added be counted together with the
lesser parte or with the greater parte, or that there are severalle partes and the thynges lately added be counted
together with any one of them.

As you can imagine, the distance from 2x+3=3x+2 to x = l was likely to be several pages. The reason for all
the discussion in between formulas was that algebra was not yet fully trusted. Algebra replaces meaning with
symbol manipulation; the loss of meaning is not easy to accept. The author constantly had to reassure those
readers who had not yet freed themselves from thinking about the objects represented by numbers and vari-
ables. Those who were skilled in the art of informal reasoning about quantity were convinced that thinking about
the objects helps to calculate correctly, because that is how they did it. As with any technological advance, those
who are most skilled in the old way are the most reluctant to see it replaced by the new.

Today, of course, we expect a quantitative calculation to be conducted entirely in algebra, without reference
to thynges. Although we justify each step in a calculation by reference to an algebraic law, we do not have to
keep justifying the laws. We can go farther, faster, more succinctly, and with much greater certainty. In a typi-
cal modern proof we see lines like

4 THE MATHEMATICAL INTELLIGENCER

wayne
Rectangle

wayne
Rectangle

Ara r= (b a b - 1)r=barb- l = a r

b r= Arb r= (Ab) r= (a - l b a) r = a - lb'ra

(a l - l b 1) 2 = a 1 l b l a l - l b l = a l - l (b l a l - 1) b l = a l - l (i z a l - l b l) b l = k t a I 2b12
(a l - l b l) r = t f l + 2 + . . . +(r 1)a l - rb l r= l~ l+2+. . . +(r-1)=lf f (r-1) /2

These l ines were taken from a p roo f of Wedderburu ' s Theorem (a finite division ring is a commuta t ive field) in
[15] (the text used when I s tudied algebra). Before we s tar t to feel p leased with ourse lves at the improvement ,
let me point out that there is ano ther kind of calculat ion, a boo lean calculat ion, occurr ing in the English tex t be-

tween the formulas. In the example p roo f [15] we find the words "consequently", "implying", "there is/are", "how-
ever", "thus", "hence", "since", "forces", " i f . . . then", "in consequence of which", "from which we get", "whence",
"would imply", "contrary to", "so that", "contradicting"; all these words suggest boo lean opera tors . We also f ind

bookkeep ing sen tences like "We first r e m a r k . . . ", "We mus t now rule out the c a s e . . . "; these suggest the struc-

ture of a boolean expression. It will be quite a large express ion, pe rhaps taking an ent ire page. If wr i t ten in the

usual unformat ted fashion of proofs in cur ren t a lgebra texts, it will be quite unreadable . The same p rob lem oc-

curs with compute r programs, which can be thousands of pages long; to make them readable they mus t be care-
fully formatted, with indenta t ion to indicate s tructure. We will have to do l ikewise with proofs.

A formal p roo f is a boolean calculat ion using boo lean algebra; when we learn to use it well, it will enable us

to go farther, faster, more succinctly, and with much greater certainty. But there is a great res i s tance in the math-

emat ica l communi ty to formal proof, especia l ly from those who are mos t exper t at informal proof. They com-
plain that formal p roo f loses meaning, replac ing it with symbol manipulat ion. The current s ta te of boo lean al-
gebra, not as an objec t of s tudy but as a tool for use, is very much the same as number a lgebra was five centur ies
ago.

Boolean Calculation
Given an express ion, it is often useful to find an equivalent but s impler express ion. Fo r example , in number al-

gebra

x x (z + l) - y x (z - 1) - z X (x - y) dis t r ibute
= (x x z + x • - (y • - y X l) - (z • - z x y) unity and double negat ion

= x x z + x - y x z + y - z X x + z x y symmet ry and associa t iv i ty
= x + y + (x • - x x z) + (y x z - y • zero and ident i ty

= x + y

We might somet imes want to find an equivalent express ion that isn ' t simpler; to remove the d i rec t ional i ty I'll say
"calculation" ra ther than "simplification". We can use opera to r s o ther than = down the left s ide of the calcula-
tion; we can even use a mixture of opera tors , as long as there is transitivity. Fo r example , the calcula t ion (for
real x)

x x (x + 2)
= x2 + 2 x x

= x 2 + 2 x x + 1 - 1
= (x + 1) 2 - 1

----- - 1

tel ls us

x X (x + 2) - > - 1

dis t r ibute

add and sub t rac t 1
factor
a square is nonnegat ive

Boolean calculat ion is similar. Fo r example ,

(a ~ b) V (b ~ a)

= ~ a V b V ~ b V a

=- a V ~ a V b V ~ b

=- t r u e V t r u e

-~ t r u e

And so (a ~ b) V (b ~ a)

3 n . n + n 2 = n 3

0 + 0 2 = 0 a

=- t r u e

replace impl ica t ions
V is symmet r ic
exc luded middle, twice

V is idempoten t

has been simplified to t rue , which is to say it has been proven. Here is another example.

ins tance
ar i thmet ic

And so (3n . n + n 2 = n a) ~ t r u e , and so 3n . n + n 2 -- n 3 is proven.

VOLUME 26, NUMBER 2, 2004 5

wayne
Rectangle

wayne
Rectangle

Solving simultaneous equations can also be done as a boolean calculation. For example,

x + x x y + y = 5 A x - x X y + y = 1 subtract and add 2 x x x y in first equation
-~ x - x • + y + 2 x x • = 5 A x - x x y + y = 1 use second equation to simplify first
=- 1 + 2 x x x y = 5 A x - x X y + y = 1

-= 2XxXy = 4 A x - x x y + y = 1

=- x x y = 2 A x - x x y + y = 1 use first equation to simplify second
=- x X y = 2 A x - 2 + y = l

=- x x y = 2 A x + y = 3

=- x = l A y = 2 V x = 2 A y = l

x = l A y = 2

These examples show that simplifying, proving, and solving are all the same: they are all just calculation.
When an expression is too long to fit on one line, it must be nicely formatted for easy reading, and when a

hint is too long to fit on the remainder of a line, it can be written on as many lines as it takes, but we do not
consider formatting further here. One point worth mentioning is that subcalculations (if boolean, they are called
subproofs or lemmas) can save copying unchanged parts of a calculation through many lines. These subcalcu-
lations can be done in another place and referenced, or they can be done in-place, nicely formatted, to provide
a structured calculation (structured proof). By far the best way to handle subcalculations is provided by win-
dow inference systems [21],[2], which open a new window for each subcalculation, keep track of its sense (di-
rection), and make its context available. For example, in solving the simultaneous equations, we used the sec-
ond equation to simplify the first, and then the first to simplify the second.

In this brief introduction to boolean calculation, I have not taken the time to present all the rules. For a com-
plete presentation, the reader is referred to [14]. A research monograph that uses calculational proof is [7]. A
textbook on discrete math that uses calculational proof is [10]. For further discussion of calculational proofs
see [9],[17].

Traditional Terminology
Formal logic has developed a complicated terminology that its students are forced to learn. There are terms
which are said to have values. There are formulas, also known as propositions or sentences, which are said not
to have values, but instead to be true or false. Operators (+ , -) join terms, while connectives (A, V) join for-
mulas. Some terms are boolean, and they have the value t r u e or f a l s e , but that's different from being true or
false. It is difficult to find a definition of predicate, but it seems that a boolean term like x = y stops being a
boolean term and mysteriously starts being a predicate when we admit the possibility of using quantifiers (3, Y).
Does x + y stop being a number term if we admit the possibility of using summation and product (Z, II)? There
are at least three different equal signs: = for terms, and r and =- for formulas and predicates, with one of
them carrying an implicit universal quantification. We can even find a peculiar mixture in some textbooks, such
as the following:

a + b = a V a + b = b

Here, a and b are boolean variables, + is a boolean operator (disjunction), a + b is a boolean term (having
value t r u e or f a l s e), a + b = a a n d a + b = b a r e formulas (so they are true or false), and finally V is a
logical connective.

Fortunately, in the past few decades there has been a noticeable shift toward erasing the distinction between
being true or false and having the value t r u e or f a l s e . It is a shift toward the calculational style of proof. But
we have a long way to go yet, as I find whenever I ask my beginning students to prove something of the form
a ~ b where ~ is pronounced "exclusive or". They cannot even start, because they expect something that looks
grammatically like a sentence. If I change it to either of the equivalent forms (a ~ b) = - t r u e or a ~ b , they are
happy because they can read it as a sentence with a verb. But (a ~ b) : - t r u e confuses them again because it
seems to have too many verbs. If I ask them to prove something of the form a V b , they take an unwittingly con-
structivist interpretation, and suppose that I want them to prove a or prove b , because that is what "do a
or b "means in English. The same lack of understanding can be found in many introductory programming texts,
where boolean expressions are not taught in their generality but as comparisons because comparisons have
verbs. We find

while f l a g = t r u e do s o m e t h i n g

but not the equivalent, simpler, more efficient

while f l a g do s o m e t h i n g

6 THE MATHEMATICAL INTELLIGENCER

because f l ag isn ' t the right par t of speech to fol low w h i l e . Our dependence on natura l language for the un-

ders tanding of boo lean express ions is a ser ious impediment .

Traditional Notations
Ari thmet ic nota t ions are reasonab ly s t andard throughout the world. The express ion

738 + 45 = 783

is recognized and under s tood by schoolch i ldren a lmost everywhere. But there are no s t andard boo lean nota-
t ions. Even the two boo lean cons tan ts have no s t andard symbols. Symbols in use include

t rue t t t T 1 0 1 = 1

f a l s e f ff F 0 1 1=2

Quite often the boo lean cons tants are wr i t ten as 1 and 0 , with + for disjunction, jux tapos i t ion for conjunc-
tion, and pe rhaps - for negation. With this notat ion, here are some laws.

x (y + z) = x y + x z

x + y z = (x + y) (x + z)

x + - x = l

X(- -X) = 0

The first law above coinc ides with number algebra, but the next three c lash with number algebra. The near-uni-

versa l reac t ion of a lgebrais ts to nota t ional cr i t ic isms is: it doesn ' t ma t te r which symbols are used; jus t in t roduce
them, and get on with it. But to apply an algebra, one must recognize the pat terns , matching laws to the ex-
p ress ion at hand. The laws have to be familiar. It t akes an ex t ra momen t to think which a lgebra I am using as I
apply a law. The logician R. L. Goods te in [8] chose to use 0 and 1 the o ther way around, which s lows me
down a little more. A big change, like using + as a var iable and x as an opera tor , would s low me down a lot.

I th ink it ma t te r s even to algebraists , because they too have to recognize pat terns . To a larger public, the reuse
of a r i thmet ic symbols with different meanings is an insurmountab le obstacle. And when we mix ar i thmet ic and

boo lean opera to r s in one expression, as we often do, it is imposs ib le to disambiguate .
The mos t c o m m o n nota t ions for the two boo lean cons tan ts found in p rogramming languages and in pro-

g ramming t ex tbooks seem to be t rue and f a l s e . I have two objec t ions to these symbols. The first is tha t they
are Engl ish-based and clumsy. Number a lgebra could never have advanced to its p resen t s ta te if we had to wri te
out words for numbers .

seven three e ight + f o u r f i v e = seven e ight three

is jus t too clumsy, and so is

t rue A f a l s e V t rue =- t rue

Clumsiness may seem minor, but it can be the difference be tween success and failure in a calculus.

My second, and more serious, object ion is that the words t rue and f a l s e confuse the a lgebra with an appli-

cation. One of the pr imary appl icat ions of boolean a lgebra is to formalize reasoning, to determine the truth or fal-
sity of some s ta tements from the truth or falsity of others. In that application, we use one of the boo lean con-
s tants to represen t truth, and the o ther to represen t falsity. So for that applicat ion, it seems reasonable to call
them t rue and f a l s e . The a lgebra arose from that application, and it is so much identif ied with it that many
people cannot separa te them; they think the boolean values really are t rue and fa l se . But of course boolean
express ions are useful for descr ibing anything that comes in two kinds. We apply boolean a lgebra to circuits in
which there are two voltages. We somet imes say that there are 0s and l s in a computer ' s memory, or that there
are trues and falses . Of course that ' s nonsense; there are nei ther 0s and l s nor t rues and fa l s e s in there;
there are low and high voltages. We need symbols that can represent t ruth values and vol tages equally well.

Boolean express ions have o ther appl icat ions, and the nota t ions we choose should be equally appropr ia t e for

all of them. Compute r p rograms are wr i t ten to make compute r s work in some des i red way. Before wri t ing a pro-

gram, a p rog rammer should know which ways are des i rable and which are not. That divides compute r behav ior

into two kinds, and we can use boo lean express ions to represen t them. A boo lean express ion used this way is
cal led a spec i f i ca t ion . We can specify anything, not jus t compute r behavior , using boo lean express ions . Fo r ex-
ample, if you would like to buy a table, then tables are of two kinds: those you find des i rable and are willing to
buy, and those you find undes i rable and are not willing to buy. So you can use a boolean express ion as a table

specif icat ion. Acceptab le and unaccep tab le human behavior is specif ied by laws, and boolean express ions have
been p r o p o s e d as a be t t e r way than legal language for wri t ing laws [1]. They can be used to calcula te the at-
t rac t ions and repuls ions among a set of magnets .

VOLUME 26, NUMBER 2, 2004 7

For symbols that are independent of the application, I propose the lattice symbols T and 2 , pronounced
"top" and "bottom". Since boolean algebra is the mother of all lattices, I think it is appropriate, not a misuse of
those symbols. They can equally well be used for true and false statements, for high and low voltages (power
and ground), for satisfactory and unsatisfactory tables, for innocent and guilty behavior, or any other opposites.

For disjunction, the symbol V is fairly standard, coming from the Latin word "vel" for "or". For conjunction,
the symbol is less standard, the two most common choices being & and A . We are even less settled on a sym-
bol for implication. Symbols in use include

----> ~ . ' .

The usual explanation says it means "if then", followed by a discussion about the meaning of "if then". Appar-
ently, people find it difficult to understand an implication whose antecedent is false ; for example, "If my mother
had been a man, I'd be the king of France." [19]. Such an implication is called "counter-factual". Some people
are uneasy with the idea that false implies anything, so some researchers in Artificial Intelligence have pro-
posed a new defmition of implication. The following truth table shows both the old and new definitions.

a b

old n e w

a ~ b a ~ b

true true true true

true false false false

false true true unknown

false false true unknown

where unknown is a third boolean value. When the antecedent is false , the result of the new kind of impli-
cation is unknown . This is argued to be more intuitive. I believe this proposal betrays a serious misunder-
standing of logic. When people make statements, they are saying that each statement is true. Even if the state-
ment is "if a then b " and a is known to be false, nonetheless we are being told that "if a then b " is true.
It is the consequent b that is unknown. And that is represented perfectly by the old implication: there are two rows
in which a is false and a ~ b is true ;on one of these rows, b is true , and on the other b is false .

Debate about implication has been going on for a long time; 22 centuries ago, Callimachus, the librarian at
Alexandria, said, "Even the crows on the roof croak about what implications are sound."[3],[18]. In case you
think that confusion is past, or just for beginners, consider the explanation of implication in Contemporary Logic

Design, 1994 [16]:

As an example, let's look at the following logic statement:
IF the garage door is open
AND the car is running
THEN the car can be backed out of the garage

It states that the conditions--the garage is open and the car is running--must be true before the car can be
backed out. If either or both are false, then the car cannot be backed out.

Even a Berkeley computer science and electrical engineering professor can get implication wrong.
Implication is best presented as an ordering. If we are calling the boolean values "top" and "bottom", we can say

"lower than or equal to" for implication. It is easy, even for primary school students, to accept that • is lower
than or equal to T , and that • is lower than or equal to • . With this new pronunciation and explanation, three
other neglected boolean operators become familiar and usable; they are "higher than or equal to", "lower than",
and "higher than". For lack of a name and symbol, the last two operators have been treated like shameful secrets,
and shunned. If we are still calling the boolean values "true" and "false", then we shall have to call implication
"falser than or equal to". As we get into boolean expressions that use other types, ordering remains a good expla-
nation: x<4 is falser than or equal to x<6 , as a sampling of evaluations illustrates (try x=3, 5, 7). I have tried
using the standard words "stronger" and "weaker", saying x<4 is stronger than x<6 ; but I find that some of my
students have an ethical fixation that prevents them from accepting that falsity is stronger than truth.

That implication is the boolean ordering, with Y and • at the extremes, is not appreciated by all who use
boolean algebra. In the specification language Z [24], boolean expressions are used as specifications. Specifica-
tion A refines specification B if all behavior satisfying A also satisfies B . Although increasing satisfaction
is exactly the implication ordering, the designers of Z defined a different ordering for refinement where T is
not satisfied by all computations, only by terminating computations, and _k is satisfied by some computations,
namely nonterminating computations. They chose to embed a new lattice within boolean algebra, rather than to
use the lattice that it provides.

8 THE MATHEMATICAL INTELLIGENCER

Impl icat ion has often been def ined as a "secondary" ope ra to r in te rms of the "primary" ope ra to r s negat ion

and disjunction:

(a~b)-~aVb

Proofs about impl icat ions p roceed by gett ing rid of them in favor of the more famil iar negat ion and disjunction,

as we did ear l ier in an example . This avoids the informal explanat ion, but it makes an unsuppor tab le dis t inct ion
be tween "primary" and "secondary" opera tors , and hides the fact that it is an ordering. When we learn that im-
p l ica t ion is an ordering, p roofs about impl ica t ions become shor te r and easier.

If we p resen t impl ica t ion as an ordering, as I prefer, then we face the p rob lem of how to use this order ing in
the formal izat ion of natural- language reasoning. To what ex ten t does the a lgebra ic ope ra to r " lower than or equal
to" co r re spond to the English word "implication"? Phi losophers and l inguists can help, or indeed domina te in

this difficult and impor tan t area. But we shouldn ' t let the complexi t ies of this appl ica t ion of boo lean a lgebra
compl ica te the algebra, any more than we let the complexi t ies of the banking indus t ry compl ica te the defini t ion
of ari thmetic.

Symmetry and Duality
In choos ing infix symbols , there is a s imple pr inciple that real ly enhances our abil i ty to calculate: we should

choose symmet r ic symbols for symmetr ic opera tors , and asymmet r i c symbols for asymmetr ic opera tors , and
choose the reverse of an asymmetr ic symbol for the reverse operator . The benef i t is that a lot of laws become

visual: we can wri te an express ion b a c k w a r d s and get an equivalent express ion. Fo r example , x + y < z is
equivalent to z > y + x . By this principle, the ar i thmet ic symbols + x < > = are well chosen but - and

are not. The boo lean symbols A V ~ ~ ----- 0) are well chosen, but ~ is not.

Duali ty can be put to use, jus t l ike symmetry , if we use ver t ical ly symmetr ic symbols for self-dual opera tors ,
and ver t ica l ly asymmet r i c symbols for non-self-dual ope ra to r s with the ver t ical reverse for thei r duals. The vi-
sual laws are: to negate an express ion, turn it ups ide down. Fo r example , (T A - &) V Z is the negat ion of

(• V - T) A T if you al low me to use the ver t ica l ly symmet r ic symbol - for negation, which is self-dual. There
are two points that require at tention when using this nile. One is that parentheses may need to be added to main-

tain the precedence; but if we give dual opera tors the same precedence, there 's no problem. The other point is that
variables cannot be flipped, so we negate them instead (since flipping is equivalent to negation). The well-known ex-

ample is deMorgan's law: to negate a V b , turn it upside down and negate the variables to get - a A - b . By this

pr inciple , the symbols T • - A V are well chosen, but ~ ~ ~- ~ �9 are not. By choosing be t t e r symbols we
can l e t the symbols do some of the work of calculat ion, moving it to the level of visual processing.

From Booleans to Numbers
Some boo lean express ions are laws: they have value T no mat te r wha t values are ass igned to the variables.

Some boo lean express ions are unsat isf iable: they have value L no mat te r wha t values are ass igned to the vari-
ables. The remaining boolean express ions are in between, and "solving" means finding an ass ignment of values

for the var iables for which the boolean express ion has value T . (Solving is not jus t for equat ions but for any
kind of boo lean express ion.) A lot of ma themat i c s is conce rned with solving. And in part icular , number a lgebra

has deve loped by the desire to solve. To car ica ture the development , we choose an unsat isf iable boo lean ex-
p ress ion and say, "What a pi ty that it has no solutions. Let 's give it one.". This has resul ted in an increas ing se-
quence of domains, f rom natura ls to integers to ra t ionals to reals to complex numbers . The boo lean express ion
x + 1 = 0 is unsat isf iable in the natura l numbers , but we give it a solut ion and the reby invent the integers. Sim-
i larly we choose to give solut ions to x x 2 = 1 , ~2 = 2 , x 2 = - 1 , and the reby progress to larger domains .
This p rogress ion is both his tor ical and pedagogical . At the same t ime as we gain solutions, we lose laws, s ince
the laws and unsat isf iable express ions are each other ' s negations. For example, when we gain a solut ion to x 2 =
2 , we lose the law x 2 r .

As the domain of an opera t ion or funct ion grows, we do not change its symbol; addi t ion is still deno ted +
as we go from natura ls to complex numbers . I will not argue whe the r the na tura ls are a subse t of the complex

numbers or jus t i somorphic to a subset; for me the quest ion has no meaning. But I do argue that it is impor tan t
to use the same nota t ion for natura l 1 and complex 1 because they behave the same way, and for natura l +

and complex § because they behave the same way on thei r c o m m o n domain. To be more precise , all boo lean

express ions over the natura ls re ta in the same solut ions over the complex numbers , and all laws of complex arith-

met ic that can be in te rpre ted over the na tura ls are laws of natura l ar i thmetic. The reason we mus t use the same
symbols is so that we do not have to re learn all the solu t ions and laws as we enlarge or shr ink the domain. And
indeed, it is s t andard mathemat ica l p rac t ice to use the same symbols.

Fo r exact ly the same good reasons that we have a unified t r ea tment of number algebras, we mus t now unify
boo lean and number algebras. The quest ion whe ther boo lean is a different type f rom number is no more rele-

VOLUME 26, NUMBER 2, 2004 9

vant than the question whether natural and integer are different types. What's important is that solutions and
laws are learned once, in a unified system, not twice in conflicting systems. And that matters both to primary
school students who must struggle to learn what will be useful to them, and to professional mathematicians who
must solve and apply laws.

Historically, number algebra did not grow from boolean algebra; but pedagogically it can do so. As already
argued, the use of 0 1 + • for • T V A doesn't work. To find an association between booleans and num-
bers that works for unification, we must use a number system extended with an infinite number. Such a system
is useful for many purposes; for example, it is used in [13] to prove things about the execution time of programs
(some execution times are infinite). For a list of axioms of this arithmetic, please see [13],[14]. The association
that works is as follows.

boo lean n u m b e r

top q- ~o infinity

bottom • - = minus infinity

negation -m - negation

conjunction A ~, minimum

disjunction V I" maximum

implication ~ -< order

equivalence --- = equality

exclusive or ~) r inequality

With this association, all number laws employing only these operators correspond to boolean laws. For example,

boo lean l aw n u m b e r l a w

T ~ - ' - 1 • oc = - - o o

8 ~ - - 1 - - 1 8 x = - - x

a V T - - - - - - T xtoo = oo

a A J_ =- • x~, -~o = -~o

a V J_ =- a x1` -oo = x

a A T = - a x,J, c o = x

a ~ T x - <oo

• - o ~ _ < x

a V (b A c) =- (aVb) A (aVc) x l ' (y~z) = (x t y) ~, (x l z)

a A (b V c) -= (aAb) V (aAc) x J . (Y t Z) = (x,J.y) t (x,J,z)

a V b =- 7 (~ a A - T b) x t Y = - (- x $ - y)

a A b =- -m(-TaV-mb) x,[y = - (- x 1" - y)

There are boolean laws that do not correspond to number laws, just as there are integer laws that are not real
laws. That's another way of saying that there are unsatisfiable boolean expressions that correspond to satisfi-
able number expressions. We will use this for our unified development.

Unified Algebra
Here is my proposal for the symbols of a unified algebra.

uni f ied

top �9 infinity

bottom • minus infinity

negation - negation

conjunction A minimum

disjunction V maximum

"nand" A negation of minimum

"nor" V negation of maximum

implication -< order

reverse implication -> reverse order

strict implication < strict order

strict reverse implication > strict reverse order

equivalence = equality

exclusive or =!= inequality

1 0 THE MATHEMATICAL INTELLIGENCER

The symbols - < > < > = are world-wide standards, used by school children in all countries, so I dare not

suggest any change to them. The symbol r for inequality is the next best known, but I have dared to s tand up

the slash so that all symmetric operators have symmetric symbols and all asymmetric operators have asymmet-

ric symbols. (Although it was not a consideration, # also looks more like @ .) The "nand" symbol is a com-

binat ion of the "not" and "and" symbols, and similarly for "nor". But I am worried that A and V are poor

choices because they point the wrong way to be min imum and maximum; it might be bet ter to use $ and 1'

for conjunct ion and disjunction, and ~: and { for "nand" and "nor". One suggestion: note that V is wide at

the top, and A is narrow at the top. Another suggestion: note that V holds water, and A doesn't .

Duality has been sacrificed to standards; the pair -< < are duals, so they ought to be vertical reflections of

each other; similarly the pair _> > , and also = # ; addit ion and subtract ion are self-dual, and happily +

and - are vertically symmetric; mult iplication is not self-dual, but x is unfor tunately vertically symmetric.

Having unified the symbols, I suppose we should also unify the terminology. I vote for the number terminol-

ogy in the right column, except that I prefer to call T and & "top" and "bottom".

The associat ion be tween booleans and numbers suggested here allows the greatest number of boolean laws

to be generalized to all numbers . For example, if a , b , and c are boolean, it is usual to define i f a then b

else c as follows:

(i f a then b else c) = (a A b) V (- a A c)

If a remains boolean but b and c are numbers , the if-expression on the left is still sensible (the Algol if), and

furthermore it is still equal to the expression on the right. This generalization requires the part icular associat ion

be tween booleans and numbers suggested here.

The next examples, writ ten in boolean notations, are the laws

(a A b ~ c) -= (a ~ c) V (b ~ c)

(a V b ~ c) ~ - (a ~ c) A (b ~ c)

A common error is to use conjunct ion twice, or dis junct ion twice. The boolean reading " a and b implies c

if and only if a implies c or b implies c " sounds no more reasonable than " a and b implies c if and

only if a implies c and b implies c ". In unified notation,

(a A b <- c) = (a<-c) V (b<-c)

(a V b <- c) = (a<-c) A (b<_c)

it is more obvious that the min imum of a and b is less than or equal to c when at least one of a or b is

less than or equal to c , and the max imum of a and b is less than or equal to c when both a and b are

less than or equal to c . They are laws for all numbers , not jus t the booleans.

The ari thmetic expression x - y varies directly with x and inversely with y . Thus if we increase x , we

increase x - y , and if we decrease y we increase x - y . We calculate:

x - y increase x to x + 1 and so increase the whole expression

<- (x+ 1) - y decrease y to y - 1 and so increase the whole expression

-< (x + l) - (y - l)

Similarly the boolean expression x --> y varies directly with x and inversely with y (no matter whether x

and y are numbers and -> is number comparison, or x and y are boolean and -> is reverse implication, or

x and y are a mixture of number and boolean). We calculate as follows:

x ----- y increase x to x + l and so increase the whole expression
-- (x+ 1) -> y decrease y to y - 1 and so increase the whole expression

-< (x + l) -> (y - l)

It is exactly the same calculation. By unifying number algebra with boolean algebra we carry our ability to cal-

culate over from numbers to booleans.

Unified Development
Suppose we start with boolean algebra in the unified notation, with the terminology "top", "bottom", "minimum",

"maximum", "less than", and so on. Now we say: what a pity that x = - x has no solution; let 's give it one. The

new solut ion is denoted 0 . While gaining a solution to some boolean expressions, we lose some laws such as

the law of the excluded middle x V - x .

Now we have an algebra of three values: T, & , 0 . In one application they can be used to represent "yes",
"no", and "maybe"; in another they can be used to represent "large", "small", and "medium". This algebra has 27

one-operand operators, one of which is - , defined as

VOLUME 26, NUMBER 2, 2004 1 1

X T 0 I

- X 3- 0 T

In has 19683 two-operand opera tors , four of which are:

xy TT TO T / 0T 00 01 L T 10 Z_L

x = y T • I I T I I I T

x < y 1 I T T I T T T

x<<y 0 J_ T 0 0 0 0 0

x@y T 0 T 0 3- 0 I T

Whether - or << or another ope ra to r r epresen t s impl ica t ion in the p resence of uncer ta in ty can be debated,

but the a lgebra is not af fec ted by the debate. The ope ra to r @ is modula r (or c i rcular) addit ion, and the o ther
opera to r s of modu la r a r i thmet ic can be given similarly.

We might cont inue our deve lopment with a four-valued a lgebra and five-valued algebra, but at this poin t I rec-

o m m e n d filling in the space be tween T and 0 , and be tween 0 and _L , with all the integers. And then on
to the rat ionals , the reals, and the complex numbers as usual.

The argument in favor of this unification of boolean algebra and number a lgebra is jus t as s trong as the argument
in favor of using the same notat ions for the different number algebras. But the lat ter is familiar, and so it seems right,
while the former is unfamiliar, and for that reason alone it may seem wrong. Ultimately, the benefits will outweigh
the unfamiliarity. For example, the da ta structure known as AND-OR trees and the algori thm that uses them become
the same as the da ta structure and algorithm known as minimax methods; they should not have to be learned twice.

A different unif icat ion of boolean a lgebra and number a lgebra that aims at the same goal (using the same cal-
cula t ions for boo leans and numbers) , but emphas izes t radi t ional modu la r a r i thmet ic a long the way, can be found
in [5], a provoca t ive work of grand scope.

From Intormal to Formal
Many mathemat ica l no ta t ions began thei r l ives as abbrevia t ions for some words. Fo r example , = was intro-
duced in [20] to mean "is equal to":

And to avoide the ted iouse repet i t ion of these w oorde s "is equalle to" I will let te as I doe of ten in woorke bse,
a pai re of para l le les or Gemowe [twin] l ines of one lengthe, thus: = , because noe 2 thynges, can be moare
equalle.

Later, = became assoc ia t ed with some a lgebra ic proper t ies , namely reflexivity, symmetry , transit ivity, and sub-
stitutivity. Today, it is def ined by those proper t ies , not as an abbrevia t ion for some words. Someone might say

that Mice and Bob are equal tennis p layers because they have p layed each o ther 10 t imes, and each has won 5
matches . They might s imilar ly say that Bob and Carol are equal tennis p layers because they too have p layed each
o ther 10 t imes, and each has won 5 matches . But this kind of equali ty is not transit ive. As it happens , Mice and
Carol are unequal tennis players: they have p layed each o ther 10 t imes, and Mice has won 8 matches . Because
of the lack of transit ivity, no mathemat ic ian today would use = for tennis equality.

In the no ta t ion commonly used for small sets, such as { 1, 3, 7} , the c o m m a was in t roduced as jus t punctu-
ation, not as a ma themat ica l operator . As soon as the no ta t ion is in t roduced, we mus t say tha t the o rde r in which
e lements are wr i t ten is i r re levant so that {1, 2}={2, 1} ; the way to say that formal ly is A,B=B,A (comma is
commutat ive) . We mus t also say that repe t i t ions of e lements are i r re levant so that {3, 3}={3} ; the way to say

that formally is A,A=A (comma is idempotent) . And we should say that c o m m a is associa t ive A,(B,C)=(A,B),C
so that pa ren theses are unnecessary . Evident ly the c o m m a can be seen as a mathemat ica l ope ra to r with alge-
bra ic p roper t i e s that aggregates e lements into a s t ruc ture that is s impler, more primitive, than sets; let us call

them bunches . Even the curly b races can be seen as an ope ra to r that appl ies to a bunch and makes a set; its in-
verse - appl ies to a set and makes a bunch: - { 1,2}= 1,2 .

When a child first learns about sets, there is often an initial hurdle: that a se t with one e lement is not the same

as the element. It would be eas ier to p resen t a se t as packaging: a package with an apple in it is obviously not
the same as the apple. Jus t as {1} and 1 differ, so {1,2} and 1,2 differ. Bunch theory tel ls us about aggrega-
tion; se t theory tells us abou t packaging. The two are independent .

Apar t f rom being cute, are bunches useful? The subjec t of funct ional p rogramming has suffered from an in-
abi l i ty to express nonde te rmin i sm conveniently. To say something about a value, but not pin it down completely,
one can express the set of poss ib le values. Unfortunately, sets do not reduce p rope r ly to the determinis t ic case;
in this con tex t it is again a p rob lem that a se t conta ining one e lement is not equal to the element. What is wan ted

12 THE MATHEMATICAL INTELLIGENCER

is bunches. One can always regard a bunch as a "nondeterministic value". Bunches can also be used as a "type
theory" with the advantage that it is unnecessary to duplicate the operators of the value space at the type level
because the two are unified. And finally, the easiest way to present sets is via bunches. For details see [13],[14].
Formalization of the lowly comma leads to a beautiful and useful algebra.

We have just seen two examples of formalization, one from the past and one from the future. Now here's an
example of a formalization gone astray: functions defined as sets of ordered pairs. This way of defining func-
tions is part of the very interesting demonstration that all of mathematics can be based on sets. The demon-
stration requires us to make a set-model of functions, and numbers, and everything else. For example, the nat-
ural numbers can be equated to sets, with no inconsistency, as follows:

0 = O (the empty set)
n + l = nU{n}

So, for example, 3 = {O, {O}, {O, {0}}} . Few people would say that 3 really is the set {0, {0}, {0, {0]}} ; the
set-model of natural numbers was constructed by John von Neumann just to serve this one demonstration. Num-
bers are best formalized, not by building a set-model, but by an algebra showing how they participate in arith-
metic operations. Similarly, functions are best formalized by showing the laws of application and function com-
position (in general, set union and intersection are not useful ways of combining functions). But the set-model
of functions has somehow taken root in the current mathematical culture; many people (and textbooks) say that
a function really is a set of ordered pairs. A useful formalization is not one that answers the question "what is
it?", but one that answers the question "how do we use it?".

I write a function, or local scope, according to the following example:

{n: nat --~ n+t}

This is essentially a "lambda-expression" [6], although Church did not use angle brackets and arrows. He borrowed
a "hat" notation from Whitehead and Russell, but moved the hat down in front; the most similar available character
in the typesetter's tray was h ; thus the lambda calculus was born [22]. Following van de Snepscheut [23], I use an-
gle brackets to delimit the scope of the variable. I use an arrow to facilitate the unification of functions with func-
tion spaces, which I do not discuss in this paper (see [14]). Next, I want to get rid of the idea that all possible vari-
ables (infinitely many of them) already "exist", and that the ftmction notation "binds" a variable, and any variable
that is not bound remains "free". I prefer the programmer's terminology of"local" and "nonlocal" variables. Variables
do not automatically "exist"; they are introduced (rather than bound) with a limited scope by the function notation.

Two notations that have not yet made the transition from informal beginning to formal, calculational tool are
the quantifiers V and 3 . For most mathematicians today they remain abbreviations for the words "for all" and
"there exists", and their meaning is just whatever can be understood from those words. The word "all" sounds
clear and unambiguous, but there is debate as to whether so-called "undefined" range elements, or other "non-
standard" elements, are included. Existence is even more contentious, as can be seen from the debate between
classical and constructive mathematicians. Only a formal definition, equivalent to an automated theorem prover,
is clear and unambiguous. Only a formal definition gives us calculation.

Quantifiers
There are several notations that introduce a local (bound, dummy) variable. For example,

~ f x f x dx Vx: D. Px { f x I xED}
.~:=O

The introduction of the local variable and its domain are exactly the job of the function notation, so all expres-
sions requiring a local variable can be uniformly expressed as an operator applied to a function. If the body of
a function is a number expression, then we can apply + to obtain the sum of the function results. For example,

+(n: nat ---* 1/2")

There is no syntactic ambiguity caused by this use of + , so no need to employ another symbol Z for addi-
tion. We can apply any associative symmetric operator, such as

X{n: nat ~ 1/2 ~*}
A{n: nat ---, n>5}
V(n: nat ---) n>5)

The minimum operator A replaces "for all", and the maximum operator V replaces "there exists". By apply-
ing = and ee to functions we obtain the two independent parity operators. Set comprehension and integrals
can be treated this same way.

VOLUME 26, NUMBER 2, 2004 1:3

If function f has domain D , then f = (x : D - - - , fx) , so quantifications traditionally written

f x VX: D" P x
x:D

which we have just learned to write as

+(x: D ---) f x) A(x: D ~ Px)

can be written even more succinctly as

+f AP

Using juxtaposition for composition, deMorgan's laws

-~(Vx: D. Px) =- (3x: D. ~ P x) ~(3x: D. Px) =- (Vx: D. ~ P x)

become

- A P = V - P - V P = A - P

or even more succinctly

(- A) = (V -) (- V) = (A -)

The Specialization and Generalization laws say that if y is an element of D ,

(Vx: D. Px) ~ Py Py ~ (3x: D. Px)

They now become

A p <_ p y Py <- VP

which say that the minimum item is less than or equal to any item, and any item is less than or equal to the max-
imum item. These laws hold for all numbers, not just for the booleans.

Given function f , all function values f x are at least y if and only if the minimum function value f x is at
least y . Traditionally, that's a universal quantification equated to a minimum. In unified algebra, it is just fac-
toring. Leaving the non-null domain of f implicit, we write

A(x ---->fx >-- y) factor out ->y
= A (x . - , f x) > _ y

= A f > _ y

If we go in the other direction, "unfactoring" is called "distribution". And it works whether f x and y are num-
bers and -> is the number ordering, or f x and y are booleans and -> is reverse implication. It's no differ-
ent from the factoring/distribution law that says the minimum value of (f x - y) equals (the minimum value of

(f x) - y .

A(x -->fx - y) factor out - y
= A (x - -) f x) - y

= A f - y

If we factor from the other side of the - sign, we have to change minimum to maximum:

A(x ---) y - f x) factor out y -
= y - V (x - - > f x)

= y - V f

And similarly

A(x ---* y >--fx) factor out y>-

= y -> V(x --)fx)
= y > - V f

Once again, it works for numbers and booleans equally well. Unified algebra gives us many other factoring/
distribution laws just like these (see [14]).

The goal is to create an algebra that's easy to learn and easy to use. That goal is not always consistent with
traditional mathematical terminology and symbology. Readers are cautioned against matching the algebra di-
rectly with their own familiar terms and symbols. Although I have been using the words "minimum" and "maxi-

14 THE MATHEMATICAL INTELLIGENCER

mum" for A and V , the words "greatest lower bound" and "least upper bound", or "infimum" and "supremum",
may be more traditional in some contexts. For example,

A(n: nat ----> 1/n) = 0

Even more caution must be used with the words "all" and "exists". Intuition about existence in mathematics (like
intuition about anything else) depends on what you have learned. We tend to believe that what we have learned
is true. But mathematical truth is constructed, and we must be open to the possibility of construct ing it differ-
ently. Unlearning can be more difficult than learning.

Quantifier Examples
Is (3 x . P x) ~ (Yy .Qy) equivalent to Vx. Yy. (Px ~ Qy) ? Even experienced logicians don ' t find it obvious.
To see whether they are equivalent, those who reason informally say things like "suppose some x has proper ty
P ", and "suppose all y have property Q ". They are led into case analyses by treating V and 3 as abbrevi-
ations for "for all" and "there exists" (as they originally were). Of the very few who reason formally, most don ' t
know many laws; perhaps they start by getting rid of the implications in favor of negation and disjunction, then
use deMorgan's laws. Let me rewrite the questionable equivalences in the new notations.

(VP -< AQ) = A(x --) A(y --) P x <- Qy})

We might read the left side as saying that the maximum P is less than or equal to the minimum Q , and we
might read the right side as saying that all P are less than or equal to all Q . Informal readings can be mis-
leading, and we should never attach our understanding to an informal reading, but sometimes we can get inspi-
ration from it. In this case, the reading sounds reasonable enough to suggest we might prove it, and not just for
booleans, but for all numbers. Leaving the non-null domains implicit, here 's the proof:

A{x ~ A{y ---> P x <- Qy}} factor out P x < -

= A(x ---> P x <- AQ} factor out -<AQ
= V P - < AQ

Let L be a nonempty list (a function whose domain is an initial segment of the naturals). +L is its sum, and
VL is its maximum; let #L be its length. We can say that the average item in the list is less than or equal to
the maximum item as follows.

+L/#L <- V L now apply > 1 to both sides of the inequality
<- (+L/#L > 1) -< (VL > 1) multiply by #L ; distribute >1
= (+L > #L) <- V{i ----> L i > 1}

leaving the domain implicit. The bot tom line is the "pigeon-hole principle"; it says that if the total number of
things is greater than the number of places to put them, then some place has more than one thing in it. Notice
what has happened: we read V as "maximum" on the top line, and as "some" on the bot tom line; we read -
as "less than or equal to" on the top line, and as "if then" on the bot tom line.

Here is a further illustration of the benefits of unified algebra. Let f be a function from the naturals to the
reals. If f is nondecreasing, then f 0 is its minimum. Traditionally, this might be written (leaving the domain
implicit) as

(V n . f n <: f (n + l)) ~ (fO = M I N { f n l O < - n < ~ })

Rewriting this in the new notation, and weakening it to say that fO is less than or equal to the minimum, we
get

A{n - -) f n -< f (n + l) } -< (f0 -< AJ)

Now we apply the portat ion law, which says that for boolean a and any b and c ,

(a <- (b <- c)) = (a A b <_ c)

to obtain

fO A A{n ---~ f n -< f (n + l) } <- A f

If f happens to have a boolean range, this is induction, more traditionally written

fO A (Vn . fn ~ f (n + l)) ~ (Vn. f n)

Thus we see induction as a special case of a more general law saying that the first item in a nondecreasing se-
quence is its minimum.

VOLUME 26, NUMBER 2, 2004 1 5

Probability
The seminal work [4] by Boole on boo lean a lgebra refers to bo th logic and probabil i ty . The s t andard theory of
probabi l i ty ass igns 0 to an event that cannot happen, 1/2 to an event that is equally l ikely to happen or not hap-
pen, and 1 to an event that is certain to happen. In a set of events in which exact ly one event must happen, the

probabi l i t ies sum to 1 . The integral of a probabi l i ty distr ibution must be 1 .

Pe rhaps there is another way to develop probabi l i ty theory based on unif ied algebra. Perhaps an event that
cannot happen has probabi l i ty I , an event tha t is equally l ikely to happen or not happen has probabi l i ty 0 ,
and an event that is cer ta in to happen has probabi l i ty T . In a set of events in which exact ly one event must

happen, the average probabi l i ty is 0 . The integral of a probabi l i ty d is t r ibut ion mus t be 0 . Pe rhaps the new
probabi l i ty space is re la ted to the logar i thm of the old space; essential ly, p robabi l i t i es are rep laced by informa-
t ion content . My hope is that the compl ica ted formulas for d is t r ibut ions in the s t andard theory can be s implif ied
by t ransforming the space of probabi l i t ies .

Metalogic
In the s tudy of logic, at or near the beginning, logicians p resen t the symbol I- to r ep re sen t theoremhood . I ask

you to pu t yourse l f in the p lace of a beginning student . This symbol is appl ied to a boo lean express ion jus t like
the boo lean opera tors ; but we know all the boo lean opera to r s and this isn ' t one of them. It somet imes has a left

ope rand as well as a right operand, and then the explana t ion makes it s eem jus t l ike implication. To say that it

is a "meta-opera tor" ju s t labels it, and doesn ' t expla in it. Saying that it appl ies to the form, ra ther than the mean-
ing, is confusing too, s ince the entire po in t of the a lgebra is to enable us to work with the form and ignore the
meaning. The dis t inct ion be tween me tano ta t ions and the objec t nota t ions is not easi ly seen.

To make things worse, there are different levels of meta-opera tors . Proof rules are somet imes p resen ted us-
ing a hor izonta l bar, which is yet ano ther level of implication. Consider, for example , the Modus Ponens p roof
rule, which uses all th ree kinds of implication:

A k x, B k x ~ y
A , B ky

Rewrit ing c o m m a as conjunct ion, and turnst i le and ba r as implication, we get a tautology:

(A~x) A (B ~ (x~y)) ~ (AAB ~ y)

Rewrit ing any p r o o f rule this way gives a tau to logy (if k has nothing to i ts left, use T). Rewrit ing any tau-
to logy whose main coimect ive is impl ica t ion gives a val id p roo f rule. It is hard to see the difference be tween the

me ta -opera to r s and the object- level operatoTs because there is no formal difference! The p r o o f rules are used to
expla in how to use the boo lean express ions; na tura l language is used to expla in how to use the p roo f rules. For
beginners (and o thers) it would be be t t e r to skip the meta-nota t ions a l together and jus t use natura l language to

expla in how to use the boo lean express ions .
At a more advanced level, when we want a formal ism to s tudy formalisms, we will need an ope ra to r that ap-

pl ies to the form of an express ion. For that purpose , we do not need any new kind or level of operator . Rather,
we need to do exac t ly wha t G6del did when he encoded express ions , but we can use a be t t e r encoding. We need
to do exact ly wha t p rog rammers do: dis t inguish p rogram from data. One pe r son ' s p rog ram may be a compi ler
wri ter ' s data, but when it is data, it is a cha rac te r string. The cha rac te r str ing "a V - a " can be used as a code
for the express ion a V - a . We apply k to cha rac te r s tr ings so that Fs is a t heo rem when the boolean ex-
press ion r ep resen ted by string s is a theorem.

We have a name, "theorem", for a boo lean express ion that can be s implif ied to T , and an opera tor , k ,
whose pu rpose is to identify theorems. Strangely, logicians have not in t roduced a name, say "anti theorem", for
a boo lean express ion that can be s implif ied to L , and no ope ra to r such as 4 , whose pu rpose is to identify
ant i theorems. Pe rhaps tha t ' s because "ant i theorem" jus t means "negation of a theorem" in those logics having

negat ion and an appropr i a t e p roo f rule. But we bo the r to name both booleans , even though one is jus t the nega-

t ion of the other.
I p ropose that logicians can improve meta logic by taking ano ther lesson from programming. Ins tead of k and

4 , we need only one ope ra to r to serve bo th purposes . It is cal led an interpreter . I wan t T s to be a theorem if

and only if s r ep resen t s a theorem, and an an t i theorem if and only if s r ep resen t s an ant i theorem. It is re la ted

to ~- and 4 by the two impl ica t ions

ks -< I s --< - - I s

In fact, if we have def ined k and -I , those impl ica t ions define I . But I want T to rep lace I- and -I , so
I shall ins tead define it by showing how it appl ies to every form of boo lean express ion. Here is the beginning of
its definition.

16 THE MATHEMATICAL INTELEGENCER

I " T " = T

I " • = •

I (" - " s) = - I s
I (s " A " t) = Zs A Zt

ili(s"V"t) = I s V I t

And so on. In a vague sense Z acts as the inverse of quotat ion marks; it "unquotes" its operand. That is wha t
an in te rpre te r does: it turns pass ive da ta into active program. It is a famil iar fact to p rog rammers that we can
wri te an in te rpre te r for a language in that s ame language, and that is jus t wha t we are doing here. In terpret ing

(unquoting) is exac t ly wha t logicians call Tarskian semantics . In summary, an in te rpre te r is a be t t e r vers ion of
F , and str ings make metalevel ope ra to r s unnecessary .

Using T , the famous GSdel incomple teness p roo f is jus t 3 lines. Suppose that every boolean express ion is
e i ther a t heo rem or an an t i theorem (a comple te logic), and define Q by

Q = " - T Q "

Then

TQ rep lace Q with its equal
= T " - T Q " �9 unquotes
= - Z Q

which proves a boo lean express ion equal to its negation, showing the logic to be inconsistent . A logic in which

we can define an interpreter , and in which we can rep lace an express ion with its equal, mus t be incons is ten t or

incomplete . We choose consis tency, and we choose to al low the rep lacement of an express ion with its equal, so
we are forced to give up the abil i ty to define a comple te interpreter ; in par t icular , I cannot unquote " - IQ" . Fo r
fur ther detai ls of this vers ion of GSdel ' s incomple teness theorem, see [12],[23].

You cannot learn a p rogramming language by reading an in te rpre te r for it wr i t ten in that same language. And
you cannot learn logic, or a logic, by reading an in te rpre te r for it wr i t ten in logic. Not only is it inscru table to a

novice, but also it may be subjec t to more than one interpretat ion. Logic is be t te r p re sen ted as a lgebra [11]. We
don ' t p resen t number a lgebra with the aid of a me t a ope ra to r that appl ies to number express ions and resul ts in
thei r values, and we should not p resen t boo lean a lgebra that way. I th ink boolean a lgebra should be p re sen ted
with a little natura l language and a lot of laws, because laws don ' t use any metanota t ions .

T e r m s of H o n o r
My final comment concerns mathemat ica l t e rminology in tended to honor mathemat ic ians . In some par t s of math-

emat ics it is s tandard: Lie algebra, Stone algebra, Car tes ian product , Jo rdan decomposi t ion , Cayley t ransform,

Hilbert space, Banach space, Hausdorf f space, Borel measure , Lebesgue integration, F redho lm index, Wedder-
burn ' s Theorem, and so on. It is well known that the pe r son so honored is somet imes the wrong person; of ten
it is only one of many who equally deserve to have their names a t tached to the idea. I suspec t that somet imes
the in tent ion is not so much to honor a pe r son as to use the pe r son ' s pres t ige to lend respectabi l i ty to an idea.
Even when the in tent ion is to honor, the effect is to obscure and make the ma themat ics forbidding and inac-
cessible. It may be argued that this is good, keeping the unini t ia ted from thinking they unders tand when they
don't , bu t I re jec t that a rgument as elitist. I know what nand and nor are, but I forget which is the Scheffer s t roke
and which the Peirce arrow. To say that an ope ra to r is symmetr ic or commuta t ive is much more descr ipt ive and
unders tandab le than calling it Abelian. DeMorgan 's laws would be be t t e r named duali ty laws. We who are used
to the te rms forget wha t a bar r ie r they pose to beginners.

The te rm "boolean algebra" honors George Boole. (It is popula r ly thought that the word "algebra" honors
someone, but it comes from an arabic word meaning "the re in tegra t ion and reunion of b roken parts". In any case,
the word is now s tandard, known by peop le everywhere .) The bes t way to honor George Boole is to make the
a lgebra that he c rea ted [4] a well known and well used tool, and to do that we might have to remove his name
from it, and give it a more descr ipt ive and access ib le name, like "binary algebra".

Conclusions
Logic has been well s tudied and is now well unders tood, but it is not well used. P rogrammers learn that logic is
a foundat ion of programming, but they don ' t of ten use it to program. Mathemat ic ians s tudy about logic, but they
don ' t of ten use it in thei r proofs. Logic is a tool, l ike a knife. People have looked at it f rom every angle; they 've

desc r ibed how it works at great length; now it 's t ime to p ick it up and use it. To use logic well, one mus t learn
it early, and prac t ice a lot. Fancy vers ions of logic, such as modal logic and metalogic, can be left to univers i ty
study, but there is a s imple bas ic a lgebra that can be taught early and used widely.

VOLUME 26, NUMBER 2, 2004 17

Number algebra is used by scientists and engineers everywhere. It is used by economists and architects. It is
taught first to 6-year-olds, without a metanotation, very concretely as addition and subtraction of numbers. Then
variables and equations are introduced, and always the applications are emphasized. As a result of that early and
long education, scientists and engineers and mathematicians are comfortable with it. Boolean algebra can be
equally useful if it is taught the same way. At present, it is not in a good state for presentation to a wide audi-
ence. We need to simplify the terminology, get rid of the metanotations, adopt the view that proof is calculation,
choose some good symbols, detach it from its dominant application in which the boolean values represent true
and false statements, and explain it as algebra.

There is a small advantage to choosing uniquely boolean symbols: we can give them a precedence after the
arithmetic operators, which reduces the need for parentheses. On the other hand, there is a large advantage to
uniting boolean and number symbols in the way I have suggested: the laws and solutions are familiar and can
be interpreted either as booleans or numbers. In addition, by placing booleans in the same context as numbers,
we move quickly away from debates about the meanings of operators. The fact that the booleans can be em-
bedded in the extended integers just as smoothly as the integers are embedded in the rationals seems a com-
pelling reason to do so.

Quantifiers can be simplified, made uniform, and generalized by treating them as operators on functions. We
should stop speaking about "existence", and speak instead about the maximum of a function. Similarly, we should
stop speaking about "all", and speak instead about the minimum of a function. We should stop trying to say what
functions and other mathematical ideas are, and say instead how to write them and use them.

An interpreter serves the same purpose as the metalevel theoremhood operator with the added advantage that
it gives antitheoremhood as well as theoremhood. And by applying it to strings, we avoid having to introduce a
separate metalevel of operators. Metalogic is an advanced topic, not a good introduction to boolean algebra for
those who are new to the subject.

This paper has not presented a detailed proposal for a change to our primary and secondary mathematics cur-
riculum, but it has presented the case for making a change, and several suggestions. The main suggestion is to
unify boolean algebra with number algebra so that we can begin with the simplest algebra and move smoothly
to the more complicated algebras, all using the same notations and in the same calculational framework.

Acknowledgments
Theo Norvell provided references [16] and [19]. Benet Devereux provided references [3] and [18]. Rutger M. Dijk-
stra, Wim Hesselink, and Jim Grundy corrected some errors and caused me to improve some explanations.

REFERENCES
[0] Unfortunately, 500-year-old algebra texts are hard to find. This is

not a quotation, but my own creation. I think it is representative of

the work of the time, such as [20].
[1] L.E. Allen: "Symbolic Logic: a Razor-Edged Tool for Drafting and

Interpreting Legal Documents", Yale Law Journal v.66 p.833-879,

1957.
[2] R. Back, J. Grundy, J. von Wright: "Structured Calculational Proof",

Formal Aspects of Computing v.9 n. 5 p.469-483, 1997.

[3] J.M. Bochenski: A History of Formal Logic second edition, trans-

lated and edited by Ivo Thomas, Chelsea Publishing, New York,

1970.
[4] G. Boole: An Investigation of the Laws of Thought, on which are

founded the Mathematical Theories of Logic and Probabilities,

MacMillan, 1854, reprinted by Dover, 1973.

[5] R. Boute: "Binary Algebra and Functional Predicate Calculus: a

Practical Approach", University of Ghent, Belgium, 1999.

[6] A. Church: "The Calculi of Lambda-Conversion", Annals of Math-

ematical Studies v. 6, Princeton University Press, 1941.
[7] E.W. Dijkstra, C.S.Scholten: Predicate Calculus and Program Se-

mantics, Springer-Verlag, 1990.

[8] R.L. Goodstein: Development of Mathematical Logic, Springer-Ver-
lag, 1971.

[9] D. Gries: "Improving the Curriculum through the teaching of Cal-

culation and Discrimination", Communications of the ACM v.34 n.3

p.45-55, 1991 March.

[10] D. Gries, F.B. Schneider: A Logical Approach to Discrete Math,
Springer-Verlag, 1993.

[11] P. Halmos, S. Givant: Logic as Algebra, Mathematical Association

of America, 1998.

[12] E.C.R. Hehner: "Beautifying G5del", chapter 18 in Beauty is our
Business, a birthday tribute to Edsger Dijkstra, Springer-Verlag,

1990.

[13] E.C.R. Hehner: A Practical Theory of Programming, Springer-Ver-

lag 1993. The second edition, 2004, is at www.cs.toronto.edu/

-hehner/aPToP
[14] E.C.R. Hehner: "Unified Algebra", www.cs.toronto.edu/-hehner/

UA.pdf.

[15] I.N. Herstein: Topics in Algebra p.323, Blaisdell, 1964.

[16] R.H. Katz: Contemporary Logic Design, Benjamin Cummings,

1994, p.10.

18 THE MATHEMATICAL INTELLIGENCER

[17] L. Lamport: "How to Write a Proof", American Mathematical

Monthly v.102 n.7 p.600-608, 1995 Aug.

[18] J. Lukasiewicz: "On the History of the Logic of Propositions", Se-

lected Works, citing Sextus Empiricus in Adversus Mathematicos,

circa 200.

[19] C. Navarre: quoted in Barbara W. Tuchman: A Distant Mirror." the

Calamitous Fourteenth Century, Knopf, 1978.

[20] R. Recorde: The Whetstone of Witte, London 1557, reprinted by

Da Capo Press, Amsterdam, 1969.

[21] P.J. Robinson, J. Staples: "Formalizing a Hierarchical Structure of

Practical Mathematical Reasoning", Journal of Logic and Compu-

tation 3(1):47-61, February 1993.

[22] J.B. Rosser: "Highlights of the History of the Lambda-Calculus",

Annals of the History of Computing v.6 n.4 p.337-349, 1984 Oc-

tober.

[23] J.L.A. van de Snepscheut: What Computing is All About, Springer-

Verlag, 1993.

[24] J.M. Spivey: The Z Notation: a Reference Manual, Prentice-Hall,

1989.

