Professor Wayne Hayes IGS IGS Jan 12 - March 14. 2017 Momoko's note

Boolean Algebra & Logic

ex. "Timbe is the applied of Conned." \rightarrow Fibe ""P = "NOT P" = negation of p TRUTH TABLE P TF PNG, "and" "but, conjunction of p and g. TF TF PNG, "and" "but, conjunction of p and g. TT TT TT TT TT TT TT TT TT T	Proposition direct statement of fact (can be true/false, but NOT both)							Jan 12, 2
"P = "NOT p" = negation of p TRUTH TABLE P "p T F pAg. "and" "both conjunction of p and g "In English software." The " prove and to share that draw used to share that P g PAg pVg PBg levels that accord simultaneously T T T T T F PVg = "at adjunction F T F T T pBg. = "at adjunction F T F T T pBg. = "at adjunction F T F T T pBg. = "at p. then". " P implies g". " p mig. of g". $P \Rightarrow g = "at p. then". " P implies g". " p mig. of g". P \Rightarrow g = "at p. then". " P implies g". " p mig. of g". conditional statement when legisle implication T T T T F T and determine the face (trease sizes) P = F T T T T Twhich is proved subjectionP = F T T T TP = F T T T TP = F T T T T TP = P = P = P = P = P = P = P = P = P =$								
$\begin{array}{cccc} T & F \\ p \land g & \text{and} & p \text{ and } g \\ \hline T & F \\ \hline T & T \\ \hline & e \\ e$								
$\begin{array}{ccccc} T & F \\ p & T \\ p & p \\ rescal to show more than $	f p = "NOT p" = negation of p TRUTH TABLE	p	7p	-				
prog All c length count of p hand g products in the original sections. The is is a section of the solution of the section of the sectio		T	F					
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $	prg "and " "but" conjunction of p and g	F	T					
$\begin{bmatrix} exect that acres simultaneously. T T T T T T T T T T T T T T T T T T T$								
$\begin{array}{cccc} p \lor q & = "ot" disjunction & T & F & T & T \\ f & p \oplus q & = "otherwise on" (preasely one) & F & T & F & T & T \\ f & p \oplus q & = "otherwise on" (preasely one) & F & F & F & F \\ f & p \oplus q & = "otherwise on" (preasely one) & F & F & F & F \\ f & p \oplus q & = "otherwise q", " p only \forall q,", "p is a addicident for q." \\ & (P \oplus q) & = p \lor q \\ f & p \to q & = "otherwise q", " p only \forall q,", "p is a addicident for q." \\ & (P \oplus q) & = p \lor q \\ f & p \to q & = "otherwise q", " p only \forall q,", "p is a addicident for q." \\ & (P \oplus q) & = p \lor q \\ f & p \to q & T & p & p \to q \\ f & p \to q & T & p & p \to q \\ f & p \to q & T & T & T & T & T \\ f & f & f & f & f & T & T \\ f & f & f & f & f & f & T \\ f & f & f & f & f & f & T \\ f & f & f & f & f & f & f \\ f & f & f$	often used to show more than	P	8	png	1	ovq.	p⊕q	
F T F T T $F F F F$ $F F$ $F F F$ $F F$ $F F F$ $F F$ F F $F F$ F F F F F F F F F	l event that occur simultaneously	T	Т	Т		Т	F	
F T F T T $F F F F$ $F F$ $F F F$ $F F$ $F F F$ $F F$ F $F F$ F $F F$ F F F F F F F F F	f pvq = "ok" disjunction	T	F	F		Т	Т	
$f p \rightarrow g = i \downarrow p, then, "p incluses g.", "p only if g.", "p is addition. f p \rightarrow g = i \downarrow p, then, "p incluses g.", "p only if g.", "p is addition. f p \rightarrow g p \rightarrow g Tp Tp Tp \rightarrow p f this is appoint to consult indication. T T T T T T T in logical implication. T T T T T T T in logical implication. T T T T T T T in logical implication. T T T T T T in logical implication. T T T T T T f T T T T in logical implication. T T T T T T f T T T T in logical implication. F T T T T f T T f T T f T T T f T T f T T f T T f T T T f T f T T f T f T T f T f T f T f T f T f T$		F	Т	F		Т	Т	
$f p \Rightarrow g = ``if p, ther', "p implies g", "p only if g", "p is addicised for g" conditional statement at a logical implication. T T T F T in logical implication. T T T F T in logical implication. Not determine the fact (result > back) IF T T T T T under is NOT fact -> cousing something SINCE g-must be 100% (happens). Unlike year work. T f F F T T F Unlike is gp is g > p Def contrapostane of p > g is g > p Def contrapostane of p > g is g > p Def p > g = ``if and only if "= biconditional statement if p and g = (p + g) \(g - p) dhe "p is quinter to g" T F F L, -, +> qui "P > g - p > g. (p = g) \(g - p) here p = g = p = g. (p = g) \(g - p) here p = g = p = g. (p = g) \(g - p) here p = g = p = g. (p = g) \(g - p) here p = g = p = g. (p = g) \(g - p) here p = g = p = g. (p = g) \(g - p) here p = g = p = g. (p = g) \(g - p) here p = g = p = g. (p = g) \(g - p) here p = g = p = g. (p = g) \(g - p) here p = g = p = g. (p = g) \(g - p) here p = g = p = g. (p = g = g - g) here p = g = p = g. (p = g = g - g) here p = g = p = g. (p = g = g - g) here p = g = p = g. (p = g = g - g) here p = g = p = g. (p = g = g - g = g - g = g. (p = g = g - g) here p = g = p = g. (p = g = g - g = g = g = g = g. (p = g = g - g = g = g = g = g. (p = g = g - g = g = g = g = g = g. (p = g = g - g = g = g = g = g = g. (p = g = g = g = g = g = g = g = g = g = $	t pog = "exclusive or" (precisely one)	F	F	F		F	F	
f p ≥ g = "if p; then', "p incluss g,", "p only if g,", "p is additional statement also logical implication.						K	("p->	q) = 10vq
conditional statement at a logical implication $P = P + P + P + P + P + P + P + P + P + $	f p→g = "if p, then", "p implies g", "p only if g", "p is sufficient.	for q"						
in logical implication, we find (see the result $T F F F T$ and determine the face (realt \rightarrow bice) $F T T T T$ which is NOT face \rightarrow causing something $F F T T F$ since g must be (00% (dappens) which is equivalent to the criginal statement. The contribution destine matter Def converse of $p \Rightarrow g$ is $g \Rightarrow p$ Def contrapositive of $p \Rightarrow g$ is $7g \Rightarrow 7p$, which is equivalent to the original statement. The inverse of $p \Rightarrow g$ is $3^{*}p \Rightarrow 7g$. Def $p \Rightarrow g = "if and only y" = biconditional statement of p and g.f = (p \Rightarrow g) \land (g \Rightarrow p) at n'' p' \land quivelent to g"T F Fscedence of Logical Operators pill7, \land, \lor, \rightarrow, \leftrightarrow m'' P \Rightarrow g \Rightarrow r$				P	8	p→g	тр	⁷ 1p→q
and determine the face (readit > bec) Which is NOT fact > causing something Since 8-must be 100% (dappens) while yeal word. Def converse of p>g is 8>p Def contrapositive of p>g is 72>7p, which is equivalent to the original statement Def perg = "if and only y" = biconditional statement & p and g $\equiv (p \rightarrow g) \land (g \rightarrow p) \ da \ p \ is equivalent to g"$ $T \ F \ F$ $t \ F \ T \ F$	* this is apposite to causal implication			T	Т	Т	F	Т
which is NOT face \rightarrow causing something Since 3 must be (00% (happens) unlike yeal work if is denote asist. The contrained destite matter Def converse of $p \Rightarrow g$ is $g \Rightarrow p$ Def contrapositive of $p \Rightarrow g$ is $7g \Rightarrow 7p$, which is equivalent to the original statement Def minerse of $p \Rightarrow g$ is $7g \Rightarrow 7p$, which is equivalent to the original statement Def priverse of $p \Rightarrow g$ is $7g \Rightarrow 7p$. Def priverse of $p \Rightarrow g$ is $7g \Rightarrow 7p$. Def priverse of $p \Rightarrow g$ is $7g \Rightarrow 7p$. Def priverse of $p \Rightarrow g$ is $7p \Rightarrow 7g$. Def priverse of $p \Rightarrow 7$	in logical implication, we find / see the result			T	F	F	F	T
Since since is not ideal statement of p and g $\equiv (p \rightarrow g) \land (g \rightarrow p) \ deal \ p \Rightarrow g \Rightarrow r$ $p \Rightarrow g \Rightarrow g \Rightarrow p \Rightarrow g$ $p \Rightarrow g \Rightarrow p \Rightarrow g \Rightarrow p \Rightarrow g$ $p \Rightarrow g \Rightarrow p \Rightarrow g \Rightarrow p \Rightarrow g$ $p \Rightarrow g \Rightarrow p \Rightarrow g \Rightarrow g$	and determine the face (rearle-face)			F	Т	Т	Т	T
$\begin{array}{c} \text{Def converse of p?q$ is $$?p$}\\ \text{Def converse of p?q$ is $$?p$?p$, which is equivalent to the original statement}\\ \text{Def converse of p?q$ is $?p??p$, which is equivalent to the original statement}\\ \text{Def inverse of p?q$ is $?p??q$}\\ \text{Def pr$ \\ \hline T F F T F T T T T T $$	which is NOT face -> causing something			F	F	Т	T	F
Def converse of $p \Rightarrow q$ is $q \Rightarrow p$ Def contrapositive of $p \Rightarrow q$ is $7q \Rightarrow 7p$, which is equivalent to the original statement Tet inverse of $p \Rightarrow q$ is $7p \Rightarrow 7q$. Def $p \Leftrightarrow q = "if and only y" = biconditional statement of p and q.p \Leftrightarrow q = "if and only y" = biconditional statement of p and q.p \Leftrightarrow q = "if and only y" = biconditional statement of p and q.p \Leftrightarrow q = (p \Rightarrow q) \land (q \Rightarrow p) \land ala "p is equivalent to q".T T Tis cedence of Logical Operators p \mid I.7, \land, \lor, \Rightarrow, \Leftrightarrowp \Rightarrow q \Rightarrow r.p \Rightarrow q \Rightarrow $	since 8-must be 100% (happens) unlike	, yeal wa	rld			if to does	it exist,	
Def contrapositive of $p \Rightarrow q$ is $7q \Rightarrow 7p$, which is equivalent to the original statement Tet inverse of $p \Rightarrow q$ is " $p \Rightarrow 7q$ Def $p \Rightarrow q =$ "if and only y " = biconditional statement of p and q $\equiv (p \Rightarrow q) \land (q \Rightarrow p) \land fa$ "p is equivalent to q " T = F cedence of Logical Operators p.11 $7, \land, \lor, \Rightarrow, \leftrightarrow$ q_{1} " $p \Rightarrow q \Rightarrow r$ $T = p \Rightarrow q$ $T = p \Rightarrow q \Rightarrow r$ $T = p \Rightarrow q \Rightarrow q \Rightarrow r$ $T = p \Rightarrow q \Rightarrow$						the conditio	n destit mat	ter (
Definitive of $p \Rightarrow g = if and only if = biconditional statement of p and g \begin{array}{c} p \Rightarrow g = if and only if = biconditional statement of p and g \\ = (p \Rightarrow g) \land (g \Rightarrow p) afa "p is equivalent to g" \\ \hline T T T \\ \hline T F F \\ \hline T, \land, \lor, \Rightarrow ex. "P \Rightarrow g \Rightarrow r \\ \hline T, \land, \lor, \Rightarrow ex. "P \Rightarrow g \Rightarrow r \\ \hline T, \land, \lor, \Rightarrow ex. "P \Rightarrow g \Rightarrow r \\ \hline T F F \\ \hline F T F T \\ \hline F T F F \\ \hline F T F \\ \hline F T F \\ \hline F T F F \\ \hline F T F \\ \hline F T F F F \\ \hline F T F F \\ \hline F T F F \\ \hline F T F F F \\ \hline F T F F $	Def converse of p->q is q>p							
Tet inverse of $p \Rightarrow g = x^{-1}p \Rightarrow g$ Def $p \Rightarrow g = x^{-1}f$ and only $y^{-1} = biconditional statement of g and g\equiv (p \Rightarrow g) \land (g \Rightarrow p) at x^{-1}p is equivalent to g^{-1}T = FF = FT = FF = FT = FT = FF = FT = FF = FT = FF = FT = FF = F$	Def contrapositive of p>g is 7g >7p, which is equivalent	to the a	original	statemen	t			
$\begin{array}{cccc} bef & p \leftrightarrow g = "if and only if" = biconditional statement of p and g & P & p \leftrightarrow g \\ & \equiv (p \rightarrow g) \land (g \rightarrow p) \ dia \ "p is equivalence to g" & T & T & T \\ & T & F & F \\ \hline cccedence of Logical Operators p.11 & F & T & F \\ \hline 7, \land, \lor, \rightarrow, \leftrightarrow & e_{X_{n}} \xrightarrow{?} P \rightarrow g \rightarrow r & F & F & T \\ \hline \end{array}$	Pet inverse of p>g is p> je							
$ = (p \rightarrow q) \land (q \rightarrow p) \land fa "p is equivalent to q" T T T T T T T T T $		pand	g-	P	8	p⇔q_		
$F T F$ $\neg, \land, \lor, \rightarrow, \leftrightarrow e_{X} \xrightarrow{\neg} p \xrightarrow{\rightarrow} q \xrightarrow{\rightarrow} r$ $F F T$				T	Т	Т		
$\neg, \land, \lor, \rightarrow, \leftrightarrow \qquad e_{X_{1}} \xrightarrow{\neg} p \xrightarrow{\rightarrow} g \xrightarrow{\rightarrow} r \qquad \qquad F F T$				T	F	F		
$\neg, \wedge, \vee, \rightarrow, \leftrightarrow \qquad e_{X} \xrightarrow{\neg} p \rightarrow q \rightarrow r \qquad F F T$	cedence of Logical Operators p.11			F	Т	F		
				F	F	Т		
		ations "	check	p.[]				

ек. 1	Knight & Knave Act in conde	
	knights always tell truth	
	knoves always tell a lie	
	A says "B is a favight."	
	B says "We are opposite type".	

 $\begin{array}{c} proposition & p = "A is a knight" \\ g = "B is a knight" \\ \\ where to start \\ \left\{ \begin{array}{c} If \ p, \ then \ A says truth ("B is a knight"), so \ q is the \\ \\ (If \ q, \ then \ B says truth ("We are opposite types"), so \ p is false. \\ \\ (p \rightarrow q) \land (q \rightarrow \neg p) \end{array} \right. \end{array}$

p.	8-	p→g	g->2p	(p->g)∧(q->7p)		
Т	Т	Т	F	F	> NOT TRUE	
TF	F	F	Т	F	(premise = if p)	
FT	т	Т	Т	Т		
F	F	Т	Т	Т		

 $\begin{cases} If \neg p, \text{ then } A \text{ says a be ("B is a bright"), so } ? ?, \\ (If \neg g, \text{ then } B \text{ says a bie ("We are opposite type"), so } ? p, \\ ('p \rightarrow ? g) \land ('g \rightarrow ? p) \end{cases}$

P	8-	'p→7g	°g→γp	(p->p)(2->p)	
T	T	F	т	F	
T	F,	Т	F	F	
F	T	F	т	F	·· A is a knowe
F	F	Т	Т	Т	< premise (2) is true and B is also a knave.

Def Bit = "Binary Digit" = T(1)/F(0)	$\begin{array}{c} 0 \mid 1 \mid 0 \mid 0 \mid \\ 1 \mid 0 \mid 0 \mid 0 \mid \\ 1 \mid 0 \mid 0 \mid 0 \mid \\ 0 \mid 0 \mid 0 \mid 0 \mid \\ 1 \mid 0 \mid 0 \mid 0 \mid \\ 0 \mid 0 \mid 0 \mid 0 \mid \\ 0 \mid 0 \mid$	Jan 17, 2017
	0 R 1 1 1 1 1 0 1 X0 R 1 0 1 1 1 0 0	
Def tautology is always true e.x. pv.	•	p25
Pet contradiction is always false ex. p	Λp	

Def contengency can be true or false (neighter tourology nor contradiction)

Def p=q = "identically." = pand q are logically equivalent if p+>q is a tautidogy.

ABLE 6 Logical Equivalences.			TABLE 7 Logical Equivalences
quivalence	Name	1-1	Involving Conditional Statements.
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws	-	$p \to q \equiv \neg p \lor q$ $p \to q \equiv \neg q \to \neg p$
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws	• — —	$p \lor q \equiv \neg p \to q$ $p \land q \equiv \neg(p \to \neg q)$
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws	-	$\neg (p \to q) \equiv p \land \neg q$ $(p \to q) \land (p \to r) \equiv p \to (q \land r)$
$\neg(\neg p) \equiv p$	Double negation law	1-1	$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws	- -	$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$ $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws		
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws		TABLE 8LogicalEquivalences InvolvingBiconditional Statements.
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws		$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws		$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$ $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws]_[$\neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q$

Predicates & Quantifiers	p.37
* Ropositional logic deals with small fixed sets of objects	
* We want to talk about sets of objects "for all" and "there exists" < quantifiers	

* We want variables in our expressions. <- predicates

e.x. predicate Pix)="x>3"	ex. Q(x;y)="x=y+3"	e.x. consider the swap operation	Sample code
P(4) = T (since $x = 4 > 3$)	Q(1,3) = T (since 6=3+3)	Swap(X,y) = Pre X=a ~ y=b	Swap (x.y)
P(2) = F (since X=Z≯3)	$Q(6,2) = F$ (since $6 \neq 2 + 3$)	Post X=b ^ y=a	temp = x
predicate		where a & & are constant	X=Y
Def $\exists \chi \in S \ Qinco = $ There exists on \cdot	K in the set S such that Qncs"		y=x
Sexistential gaantifier = "there ex	sts"		end supp
Det YX ∈ S Qax) = "For every x in -	the set S, Qinc)"		
wiversal quantifier = "for every x	, "for all x"		

* De Morgan's Jans for Quantifiers	p47
$3 \times P(x) \equiv 4 \times P(x)$ $3 \times P(x) \equiv 3 \times P(x)$	·
* Combining. Quantifiers	
when mixing, order is important	p.60
e.g. Vx=y P(x.y) ≠ =yyVx P(x.y)	•
such life $P(x,y) = "x+y=0^{n}$	
∀X=YP(X,y) = "For every real number X. there is a real number y sit P(X,y) ← True	
34 VXP(X,Y) = "There is a real number y st. for every real number X. P(X,Y) < False	
such like $P(x,y) = "x+y=z"$	
YXYJJZP(XYZ) ··· Trae	
$\exists Z \forall x \forall Y P(x, Y, Z) = False$ (There is no magic number Z whose value is the sum of any x and any \mathcal{X})	

	dial to too a more		•			V	- 0
but if P(X.y) =	"X+y=y+x", 7	work	← sometimes	it works,	depends or	r P(X,y)	←go through all

TABLE 1 Qua	ntifications of Two Variables.	D.60	possibility in your head and see
 Statement	When True?	When False?	if it's the or not
$ \forall x \forall y P(x, y) \forall y \forall x P(x, y) $	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.	
 $\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y.	
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y.	For every x there is a y for which $P(x, y)$ is false.	
 $\exists x \exists y P(x, y) \exists y \exists x P(x, y)$	There is a pair x, y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y.	

* Practice: Translate from English to Logic & from Logic to English
- "the sum of two positive integers is positive"
= Vx Vy E Z X 20 A Y20 = x+4=0 < Your P(x,y) <- Note: there are many ways to say.
- C(x) = "X owns a computer"
F(x,y) = "x and y are friends"
Yx (C(x) V =Y (C(y) ∧ F(x),y)))
" everyone has a computer or a friend who has a computer
$- \exists \% \forall \forall \forall \forall Z ((F_{(\%,Y)} \land F_{(\%,Z)} \land (\forall \neq Z)) \rightarrow {}^{1} F_{(\forall Z)})$
Step 1 examine $(F(x,y) \land F(x,z) \land (y \neq z)) \Rightarrow F(y,z)$
if student x, and y are firends, x, and Z are friends, and if y and Z are not the same student,
then y and Z are not friends
Step 2 original statement there is a student x st. for all students y and all students Z other then y
If x and y are friends and if x and z are friends, then y and z are not friends
Step 3 generalize the expression ""there is a student none of whose friends are also friends with each other"
-"There is a woman who has taken a flight on every airline in the world."
Step 1. change the statement into more "logical way"
" "There as a woman on the Earth sit for every airline on the Earth
and there as a flight of that airdine that the woman has taken"
Step 2 create the proposition
T(w,f) = "w has taken flight f"
S(f, a) = "f is a scheduled flight (route) on airline a"
StepB 3W Va3f (Sefia) NTW.F)

f Argument is a sequence of statements that f Argument is valid if its condusion (or						the avgume
Fallacy is an invalid argument where tautol	logy is surreptationsly.					
replaced by contingency as if the contingencey	, were always true.	TABLE 1 Rules of				
premises andusion		Rule of Inference	$Tautology$ $(p \land (p \to q)$	$(a)) \rightarrow a$	Name Modus p	ponens
$e.g. [(p \rightarrow q) \land q] \rightarrow p$	if p="its raining"	$\frac{p}{p \to q}$	and a second sec)) ' ' 1		Oliens
	q="there is a doud"	$\neg q$	$(\neg q \land (p \rightarrow$	$(\cdot q)) \rightarrow \neg p$	Modus to	tollens
This is a contengency, not a tautology	rain implies the existence	$\frac{p \to q}{\therefore \neg p}$				
"fallacy of affirming the conclusion"	of clouds, but the entire	$p \rightarrow q$	$((p \rightarrow q) \land$	$(q \to r)) \to (p \to r)$	Hypothe	etical syllogism
(you connot conclude it)	statement is a contengency	$\therefore \frac{q \to r}{p \to r}$				J
e.g. [(p>q) ∧ ² p] → ⁷ g	p75		$((p \lor q) \land \neg$	$(p) \rightarrow q$	Disjunct	ctive syllogism
"fallacy of denying the hypothesis"		$\therefore \frac{\neg p}{q}$				
· · · ·		$\frac{p}{p \lor q}$	$p \to (p \lor q)$)	Addition	1
*Inference in Quantified Statements		$p \wedge q$	$(p \land q) \to p$		Simplific	ication
-Universal instantiation		:. p	(())]
(YXES PCX))→PCC) for any in	dividual CES	р q	$((p) \land (q)) \to (p \land q)$		Conjunc	tion
e.g, "All humans are mortal" < w		$ \therefore \ p \land q $ $ \qquad $	$((p \lor a) \land ($	$(\neg p \lor r)) \to (q \lor r)$	(r) Resolution	
	H= {all humans}	$\frac{p \lor q}{r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$			л
⇒"Socrates is mortal" (ya						
- extential instantiation			es of Inference	e for Quantified Staten	ments.	p.76
$\exists x \in S P(x)$, assume c is one such	element s.t. Pics	Rule of Inferen	ıce	Name		·
we don't necessarily know the value, but		$\therefore \frac{\forall x P(x)}{P(c)}$	'	Universal instantiat	tion	[
so we name It c and continue our a		P(c) for an a	arbitrary c	Universal generali	ration	
-exstentional generalization	ď	$\therefore \ \overline{\forall x P(x)}$	$\therefore \frac{\forall x P(x)}{\forall x P(x)}$ Universal generalization			
conclude $\exists X P(X)$ when there is $c \in$: S s.t. P.c.) is true	$\therefore \frac{\exists x P(x)}{P(c) \text{ for som}}$	ne element c	Existential instantia	ation	
- wiversal generalization		P(c) for som	ne element c	Existential generali	lization	
if Pic) is true for all (arbitrary elen	water HN PINS TO the	$\therefore \exists x P(x)$	<u> </u>		Zurion	I

* Combining Rules of Interence for Propositions & Quantified Statement	p77
universal modus ponents	
$\forall x \in S (P(x)) \rightarrow Q(x))$	
$\alpha \in S$	
P(a)	
$Q(\mathbf{a})$	

Introduction	to	Proofs
there is		1 ff are

Introduction to proofs	p.80
there is a difference between formal & juformal proof	
Lake human conversation	
Def Theorem is a statement that can be shown to be true (facts/results)	
is a formed statement that has been proved correct are called propositions	
Def We demonstrate that a theorem is true with a proof (a valid argument)	
Def Axioms (postulates) are statements we assume to be true	
Cisiz a principle?	
Def A lemma is a "small theorem" which is often used to help prove a bigger theorem	
Def A corollary is an immidiate (obvious) consequence of a just proved Thm	
Def A conjective is a statement believed to be true but not yet proved	
pure deduction	
Def Direct Proof uses sequence implications with axioms and previously proven statements	
" mainly directly $p \rightarrow \cdots \rightarrow g$.	
e.g. Prove that "n is odd \rightarrow n ² is add "	
$n = 2k + 1, n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$	
$k \in \mathbb{Z}$: $2k^{2} + k \in \mathbb{Z}$: $n^{2} = odd$	
Def Roof by contraposition (one of indirect proofs)	
" we wanna know $p \rightarrow q$ so instead prove $\frac{1}{2} \rightarrow \frac{1}{p}$	
e.g. Prove that "if 3n+2 is add, then n is odd"	
contraposition: if n is even, then 3n+2 is even	
$n=2k \text{ where } k\in \mathbb{Z} : \exists n+2=bk+2=2(3k+1)$	
since $3 \not\models + \mid \in \mathbb{Z}$, $3n + 2 = even$	
Since contraposition is true, if 3n+2 is odd, then n is odd	
Def For the statement $p \Rightarrow p$, if we can show p is false, then we have a proof, called a vacuous proof J_{p}	n 24, 2017
which can be a trivial proof	
e.g. Let $P(n) = "n > 1 \rightarrow n^2 > "$, show $P(o) is true$	
$(0>) \rightarrow (0^2>1)$ is true since $F \rightarrow F$ is $T \leftarrow Vacuous proof$	P-84
eq. Pow="a, $b \in \mathbb{Z}^* \land a \ge b \rightarrow a^n \ge b^n 3$, show P(0) is true	
$P(0) = "a \cdot b \in \mathbb{Z}^{+} \land a \ge b \to a^{\circ} \ge b^{\circ} "a^{\circ} = b^{\circ} = 1 < \text{trivial proof}$	
× ·	

p.80

Def Proof by Contradiction (one type of indirect proof) shows a statement p or "p is proof proof" proof by using contradiction

e.g. Show that at least 22 days must fall on the same day of the week

Sun	Mon	Tue	Wed	Thu	Fri	Sat	P(that you wanna show) = original statement <: 2 9 9 1 2
							Let "p=" at most three days of 22 days must fall on the same day of the week"
							But we have only 7 days to chose from a week.
							Conce we've chosen 21 days, every calender day has been picked
							at least 3 times (There's no 8th day in a week)
							Therefore, ⁷ p is false (p is true) Q.E.D.

* Roof Methods & Strategy	
	, 92
e.g. Shows that 2"<100 if n<7 2=2<100, 2=4<100, 2=8<100, 24=16<100, 2=32<100, 2=64<100, 2=128>10	00
- Proof by Cases = < PIVP2VP3VP4)->g.	
e.g. Shows that 1x41=1x1141 where x.y.e.R	
$case(i) \aleph \ge 0 , \ \# \ge 0 = \ \aleph \ \# = \ \vartheta \ \# \ \vartheta \ \# = \ \vartheta \ \# \ \# \ \vartheta \ \# \ \psi \ \# \ \# \ \# \ \# \ \# \ \psi \ \# \ \#$	
$case(ii) x \ge 0, y < 0 > x y = x y $	
case(iii) x<0,4≥0 = 1x4 = 1x[4]	
$case(iv) \ll 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
Therefore, in all possible cases, XY = X Y < exhaust all possibilities	
- Existence Proof shows = 22P(x)	76
Constructive shows an actual example of x sit P(x) is true	
- Non constructive doesn't show an element x but shows its existense	
eg, Prove the Thm = $3 \times y \in (\mathbb{R} - \mathbb{Q})$ s.t. χ^{3} is a vational number	
eg, from the Thm = $\exists x: y \in (\mathbb{R} - \mathbb{Q})$ sit, X^{σ} is a rational number If $X = y = \sqrt{2}$, $X^{\sigma} = \sqrt{2}^{\sqrt{2}}$	
	4
If $X=Y=\sqrt{2}$, $X^{4}=\sqrt{2}^{\sqrt{2}}$ If $\sqrt{2}^{\sqrt{2}}$ is rational, we've done \leftarrow constructive way nonconstructive wa	y
If $\chi = \chi = \sqrt{2}$, $\chi^{4} = \sqrt{2}^{\sqrt{2}}$ If $\sqrt{2}^{\sqrt{2}}$ is rational, we've done \leftarrow constructive way nonconstructive way Otherwise, $\sqrt{2}^{\sqrt{2}}$ is irrational, then let $\chi = \sqrt{2}^{\sqrt{2}}$, $\chi = \sqrt{2}$ $\approx \chi^{4} = \sqrt{2}^{+2} = \sqrt{2}^{-2} = 2 \in \mathbb{R}^{2}$	y
If X=Y=J2, X ⁴ =J2 ^{√2} If J2 ⁴² is rational, we've done ← constructive way. nonconstructive way. Otherwise, J2 ^{√2} is irrational, then let X=J2 ^{√2} , Y=J2 SX ⁴ =(J2 ⁴²) ⁴² = J2 ² = 2 ∈ R.4 Therefore, ∃X,Y∈ (R-Q) by showing 2 cases, but we don't know which case satisfies the statement	y 99
If X=y=J2, X ⁴ =J2 ^{√2} If JZ ^{√2} is rational, we've done ← constructive way nonconstructive wa Otherwise, J5 ^{√2} is invational, then let X=J2 ^{√2} , y=J2 $\therefore X^{4}=(J2^{42})^{42}=J2^{2}=2 \in \mathbb{R}^{2}$ Therefore, $\exists X, y \in (\mathbb{R}-\mathbb{Q})$ by showing 2 cases, but we don't know which case satisfies the statement — Uniqueness Proof shows if $y \neq x$, $P(y)$ is false where $P(x)$ is true then $P(y) \Rightarrow y = x$ (by contraposition)	U
If X= y= √2, X ⁴ = √2 ^{√2} If JZ ^{√2} is rational, we've done ← constructive way nonconstructive wa Otherwise, √2 ^{√2} is invational, then let X=J2 ^{√2} , y=J2 ∴ X ⁴ =(√2 ⁴²) ^{√2} = √2 ² = 2 ∈ R × Therefore, ∃X, y ∈ (R-Q) by showing 2 cases, but we don't know which case satisfies the statement -Uniqueness Proof … shows if y=x, Ry; is false where Rxx is true then P(y) → J=x (by contraposition) e.g. X, y ∈ (R, x>0, y>0 Prove. (X+4)/2 > √X + P(9)	U
If X=y=J2, X ⁴ =J2 ^{√2} If JZ ^{√2} is rational, we've done ← constructive way nonconstructive wa Otherwise, J2 ^{√2} is inrational, then let X=J2 ^{√2} , y=J2 $\times X^{4}$ =(J2 ⁴²) ⁴² = J2 ² = 2 ∈ R ~ Therefore, $\exists x, y \in (R-Q)$ by showing 2 cases, but we don't know which case satisfies the statement -Uniqueness Proof shows if $y \neq x$, $R(y)$ is false where Rxs is true then $P(y) \rightarrow f = x$ (by contraposition) Artifume mean metric mean 2.02	.99
If $\chi = y = \sqrt{2}$, $\chi^{4} = \sqrt{2^{1/2}}$ If $\sqrt{2^{1/2}}$ is rational, we've done \leftarrow constructive way nonconstructive way Otherwise, $\sqrt{2^{1/2}}$ is invational, then let $\chi = \sqrt{2^{1/2}}$, $y = \sqrt{2}$ $\propto \chi^{4} = \sqrt{2^{1/2}} = \sqrt{2^{2}} = 2 \in \mathbb{R}^{2}$ Therefore, $\exists x, y \in (\mathbb{R} - \mathbb{Q})$ by showing 2 cases, but we don't know which case satisfies the statement -Uniqueness Proof shows if $y \neq x$, $R(y)$ is false where $R(x)$ is true then $R(y) \rightarrow g = \chi$ (by contraposition) e.g., $\chi, y \in \mathbb{R}$, $\chi > 0$, $y > 0$. Prove $(\chi + \frac{y}{2})/2 > \sqrt{\chi \frac{y}{2}}$ Existence: We show that an element x with the desired property exists.	.99

So we conclude that if X and y are distinct positive real numbers, (X+y)/2. > 1/XY

- Backwards Reasoning (Proof strategy)	Jan 26, 2017
- Backwards Reasoning (Roof strategy) Assume % and y are distinct positive real numbers	
$*$ in this case, statements must be transformed with biconditional (\iff)	
-Looking for Counterexamples shows a statement false	p./02
O The conjection may be false	•
② Failing repeatedly to find counterexample sometimes give a hint to prove	
③ Lack of counterexample is NOT proof	
* Note = Prove or Disprove	
e.g. Fermats last theorem	p.106
$\chi^n + \chi^n = z^n$ has no solution in $\chi, \chi, Z \in \mathbb{Z}$ with $\chi \chi Z \neq 0$ whenever $n \in \mathbb{Z}$ with $n > 2$	¥

<u>Sets</u>	
	a set is unordered collection of all of numbers, elements, objects, things, and anything
	which is unlike a list (ordered collection)
e.g.	vowels= { a, e, i, u, o} = { a, i, u, e, o} = { a, a, e, i, u.o, o, o}

$IN = \{ 1, 2, 3, \} = \{ 7, 14, \}$	p 116	
$Z = \{0, \pm 1, \pm 2 \dots \}$	N = {0, 1, 2, 3,}, the set of natural numbers Z = {, -2, -1, 0, 1, 2,}, the set of integers T_{+}^{+}	
	$\mathbf{Z}^+ = \{1, 2, 3, \ldots\}$, the set of positive integers $\mathbf{Q} = \{p/q \mid p \in \mathbf{Z}, q \in \mathbf{Z}, \text{ and } q \neq 0\}$, the set of rational numbers R , the set of real numbers	
Def membership symbol $\in \dots \times \in S = " \times is a member of S"$	R ⁺ , the set of positive real numbers C, the set of complex numbers .	

p.116

Def
$$A \subseteq B = "A is a subset of B" iff $\forall x \in A \ (x \in B)$ or iff $\forall x \ (x \in A \rightarrow x \in B)$
Def $A \subseteq B = "A is a proper subset of B" = (A \subseteq B \land A \neq B)$
Note: $A \subseteq B$ allows A$$

Def
$$\emptyset = \{ \} = "null set", "empty set"$$

* Venn Direptams
 A B
 U $U = "universe"$
Thim $0 \leq S$ for any set S
need to show $\forall N (X \in O \rightarrow X \in S) = \forall N (F \rightarrow X \in S) = \forall N T = T Q.F.D$
Vacuous proof p.84
Def a power set of a given set S is the set of all subsets of $S = P(S)$
 $e.g.$ power set of the set $\{0.1, 2\}$
 $P(\{0, 1, 2\}) = \{0, \{0\}\}, \{1\}, \{2\}, \{0.1\}, \{0.2\}, \{1, 2\}, \{0.1, 2\}\}$
 $e.g. P(\emptyset) = \{0\}, P(\{0\}) = \{0, \{0\}\}) = \{0, \{0\}\}$

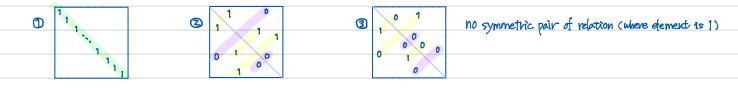
* Ordered n-tuple ... has n elements and order is important <> "two lists are equal to each other only if the same elements in the same order e.g, if n=2, "ordered pairs" if n=3, "ordered triples" (%·Y)≠(Y,%)

Def A and B are 2 sets, The Cartesian Produce of A and B is $A \times B = \{(a, b) | a \in A \land b \in B\}$ $A \times B \times C = \{(a, b, c) | a \in A \land b \in B \land c \in C\}$ AxBxG={(a,b,c) aEAA & EB A C EG}

* Set Operations	(A () B)	
Def "union of A and B" = $A \cup B = \{ \% \% \in A \lor \% \in B \}$	AUB	
Def "intersection of A and B" = A $\cap B$ = " $\{x \mid x \in A \land x \in B\}$		
Def A and B are disjoint if $A \cap B = \emptyset$ if $A \subset B$,	AIB	A
Def set subtraction = $A-B$ (or AB) = $\xi \times x \in A \land x \notin B \}$ $A-B=\emptyset$	$(A ()^{AOB} B)$	(A)
Def Given a universe TL, TL\A also denoted A, whic is a complement of A		

P	, (30			
Т	TABLE 1 Set Identities.			
Identity Name				
	$A \cap U = A$ $A \cup \emptyset = A$	Identity laws		
	$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws		
	$A \cup A = A$ $A \cap A = A$	Idempotent laws		
	$\overline{(\overline{A})} = A$	Complementation law		
	$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws		
	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws		
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws		
	$\overline{\overline{A \cap B}} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws		
	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws		
	$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws		

Functions


Def: a function (sometimes called map transformation) f from A to B takes every element of A to exactly one element of B e.g. y=f(x) $f=A \rightarrow B$ this is Not a function X Note that $b \in B$ can result from multiple values of $a \in A$ yeB1 f(a)=b but fine has only one value %eA Def: b is the image of a under f Jan 31, 2017 a is the pre-image of b under f Codmain Def: Range of A underf = { LEB | JAEA fraj= L} ←range ≤ Co-domain Def= function f is 1-to-1 (indective, an injection) iff f(a)=f(b) → a=b i.e. each & has only 1 pre-image $\forall a \forall b (f(a) = f(b) \rightarrow a = b) \quad oP \quad \forall a \forall b (a \neq b \rightarrow f(a) \neq f(b))$ Def = function f is onto (surjective, a surjection) iff BEB JAE f(A)=R i.e., every member of co-domain B is "covered" by the image of something in A ⇒ Co-domain = range , f(A) = B e.g. $A = \mathbb{R}$, $B = \mathbb{R}$ then $f(x) = \chi^2$ ($f = A \rightarrow B$) is NOT onto $A = |R, B = |R^{\dagger}$ then $f(x) = \chi^{2}$ ($f = A \rightarrow B$) is onto don't have pre-image where B=R Def=function f is bijective iff it's both injective and surjective aka "1-to-1 correspondence" R141 Def= Let f=A→B be bijective. That means VBEB 3aEAf(a) The inverse of f, f(b)=a, to be the a s.t. f(a)=b i.e. f(b)=a if f is bijective function *If f is not bijective, Then $f(f^{-1}(R)) = b$ and $f^{-1}(f(\alpha)) = a$ J'is not defined 2145 A one-to-one correspondence is called invertible because we can define an inverse of this Def: composition of function function. A function is not invertible if it is not a one-to-one correspondence, because the $(f \circ f')(h) = f(f'(h)) = h$ inverse of such a function does not exist. $(f^{-}o_{f})(a) = f^{-}(f(a)) = a$ $f^{-1}(b)$ where $q: A \rightarrow B$, $f: B \rightarrow C$ (also $a \in A$, $f \in B$) $\tilde{b} = f(a)$ f(a) $(f \circ g)(a) = f(g(a)) = f(b) = c \in C$ fog Def = The graph of f=A>B is {(a,b) | a ∈ A ∩ f(a)=b] p148 → It doesn't need to show visible images on Ky-coordinate ⇒ Graph 25 a set of pair (n-tuple)

p.138

· Dinvig Thiltix in The The Contendent)	- 1
A b c d e EB	
$\frac{2}{3} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 2 \\ 4 \\ 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 2 \\ 4 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	
3 10111 $2ka$	
€Ă	
* How many possible relations exist?	
* How many possible relations exist? (Recall $P \le A \times B$ $ A = n$, $ B = m$, each entry. 2s 0 or 1	
total # of possible relations is 2 man entry	
total # of possible relations is 2000 - entry. E.g., on 3x5 matrix, there's	
$2^{3\times5} = 2^{15} = 32768$ possible relations	

* Roperties of Relations on A×A	
$(a,a) \in \mathbb{R} = "A is reflexive"$	p. 57 6
② [(a,b) ∈ R \leftrightarrow (b,a) ∈ R] = "A is symmetric"	p.\$77

(3) $\forall a, b \in A [(a, b) \in \mathbb{R} \land (b, a) = \mathbb{R} \rightarrow a = b] = [\neq (a, b) \in \mathbb{R} \land (a \neq b)] = "\mathbb{R}$ is anti-symmetric"

\bigoplus [(a,b) \in R \land (b,c) \in R \rightarrow (a,c) \in R] = "R is transitive"	p.578
e.g. =, >, <	· · · · · · · · · · · · · · · · · · ·

But = is Not transitive

* Combining. R		p579
	tion is just a set of ordered pairs ⇒ using set operations on relations to define new relations E students 3 , 13 = Scourses 3	
•	= Σ has taken 3, $R_2 = \Sigma$ need to take in order to graduate"	
	What do they mean RINR2, RIUR2, RI@R2, RI-R2, and R2-R1?	
	$R_1 \cap R_2 =$ "all courses a student needs to taken and has already taken"	
	$R_1 U R_2 = "all courses a student needs to taken + has already taken"$	
	R1@R2 = "all elective courses that a student has already taken + required courses to graduote but not taken yet"	
	$R_1-R_2 = "$ all elective courses that a student has already taken"	
	R2-R1 = " all required courses to anducte but not taken yet"	

* Composition of Relations

p.580

p.580

U	1, F. S.D.	T) = ("Airline,"	"flight =	#", "departure (ity, "distinction",	"departure time")
e.g.			0		p.589	
5	TABLE 8	Flights.				
	Airline	Flight_number	Gate	Destination	Departure_time	Combinations of domains can also uniquely identify n -tuples in an n -ary relation. When the values of a set of domains determine an n -tuple in a relation, the Cartesian product of these
	Nadir	122	34	Detroit	08:10	domains is called a composite key .
7	Acme	221	22	Denver	08:17	
	Acme	122	33	Anchorage	08:22	
NOT	Acme	323	34	Honolulu	08:30	5. Assuming that no new <i>n</i> -tuples are added, find a cor
unique	Nadir Acme	199 222	13 22	Detroit Denver	08:47 09:10	ite key with two fields containing the <i>Airline</i> field for
¥	Nadir	322	34	Detroit	09:10	database in Table 8. (Airline, flight#),
	ator s _d (Desti	do you obtain wh C, where C is the nation = Denver). y the table product Table 8.	e conditio , to the da	on (Airline $=$ Natabase in Table	Nadir) V (Nod e 8? (Nod	(Airline, departure time) 1, 122, 34, Detroit, 08=10), (Nadir, 199, 13, Detroit, 08 1, 322, 34, Detroit, 09=44), (Acme, 221, 22, Denver, 08= 10, 222, 22, Denver, 09=10)
	ator s_{t} (Desti 17. Display $P_{1,4}$ to	$_{C}$, where C is the nation = Denver). y the table produce	e conditio , to the da	on (Airline $=$ Natabase in Table	Nadir) V (Nod e 8? (Nod	, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 0, 322, 34, Detroit, 09≈44), (Acme, 221, 22, Denver, 08≈
	ator s_{0} (Destine 17. Display $P_{1,4}$ to <i>Airline</i>	$_{C}$, where C is the nation = Denver), y the table product Table 8. Destination	e conditio , to the da	on (Airline $=$ Natabase in Table	Nadir) V (Nod e 8? (Nod	, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 0, 322, 34, Detroit, 09≈44), (Acme, 221, 22, Denver, 08≈
	ator s_{d} (Desti 17. Display $P_{1,4}$ to Airline Nadir	$_{C}$, where C is the nation = Denver), y the table product Table 8. Destination	e conditio , to the da	on (Airline $=$ Natabase in Table	Nadir) V (Nod e 8? (Nod	, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 0, 322, 34, Detroit, 09≈44), (Acme, 221, 22, Denver, 08≈
	ator s_{d} (Desti 17. Display $P_{1,4}$ to Airline Nadir Acme	C, where C is the nation = Denver, $V the table product$ $Table 8.$ $Destination$ $Detroit$ $Denver$	e conditio , to the da	on (Airline $=$ Natabase in Table	Nadir) V (Nod e 8? (Nod	, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 0, 322, 34, Detroit, 09≈44), (Acme, 221, 22, Denver, 08≈
	ator s_{d} (Desti 17. Display $P_{1,4}$ to Airline Nadir	$_{C}$, where C is the nation = Denver), y the table product Table 8. Destination	e conditio , to the da	on (Airline $=$ Natabase in Table	Nadir) V (Nod e 8? (Nod	, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 0, 322, 34, Detroit, 09≈44), (Acme, 221, 22, Denver, 08≈
	ator s_{d} (Desti 17. Display $P_{1,4}$ to Airline Nadir Acme Acme	c, where C is the nation = Denver), y the table product Table 8. Destination Detroit Denver Anchorage	e conditio , to the da	on (Airline $=$ Natabase in Table	Nadir) ∨(Nad ection(Ach	r, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 , 322, 34, Detroit, 09×44), (Acme, 221, 22, Denver, 08= e, 222, 22, Denver, 09×10)
e.g. 7.	ator s_{d} (Desti 17. Display $P_{1,4}$ to Airline Nadir Acme Acme Acme Acme	c, where C is the nation = Denver), y the table product Table 8. Destination Detroit Denver Anchorage Honolulu	e conditio , to the da ced by app tion repre	on (Airline = N atabase in Table oplying the projection esent the follow	ving (Ned	, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 0, 322, 34, Detroit, 09≈44), (Acme, 221, 22, Denver, 08≈
e.g. 7.	ator s_{d} (Desti 17. Display $P_{1,4}$ to Airline Nadir Acme Acme Acme The 3-tupl attributes of	c, where C is the nation = Denver), y the table product Table 8. Destination Detroit Denver Anchorage Honolulu les in a 3-ary rela	e conditio , to the da ced by app tion repre	on (Airline = N atabase in Table oplying the projection esent the follow	vingA) yes	r, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 , 322, 34, Detroit, 09×44), (Acme, 221, 22, Denver, 08= e, 222, 22, Denver, 09×10)
e.g. 7.	ator s_{d} (Desti 17. Display $P_{1,4}$ to Airline Nadir Acme Acme Acme Acme attributes of phone num	c, where C is the nation = Denver), y the table product Table 8. Destination Detroit Denver Anchorage Honolulu les in a 3-ary rela of a student databasen ber.	e conditio , to the da ced by app tion representation representation representation representation	on (Airline = N atabase in Table oplying the projection of the projection of the projection of the projection of the projection of the projection of the projection of the projection of the pro	Vadir) \vee (Nadir) \vee (Nadir	r, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 , 322, 34, Detroit, 09×44), (Acme, 221, 22, Denver, 08= e, 222, 22, Denver, 09×10)
e.g. 7.	ator s_d (Desti 17. Display $P_{1,4}$ to Airline Nadir Acme Acme Acme Acme attributes of phone num a) Is stud	c, where C is the nation = Denver), where C is the nation = Denver), y the table product Table 8. Destination Detroit Denver Anchorage Honolulu des in a 3-ary rela of a student database of a stu	e conditio , to the da ced by app ation repre- se: studen rely to be a	on (Airline = N atabase in Table plying the proj- esent the follow at ID number, na a primary key?	Vadir) \vee (Nadir) \vee (Nadir	r, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 , 322, 34, Detroit, 09×44), (Acme, 221, 22, Denver, 08= e, 222, 22, Denver, 09×10)
e.g. 7.	ator s_{d} (Desti 17. Display $P_{1,4}$ to Airline Nadir Acme Acme Acme Acme The 3-tupl attributes of phone num a) Is stude b) Is nam	c, where C is the nation = Denver), y the table product Table 8. Destination Detroit Denver Anchorage Honolulu les in a 3-ary rela of a student databasen ber.	e conditio , to the da ced by app attion represes: studen cely to be a imary key	on (Airline = N atabase in Table oplying the projection esent the follow at ID number, na a primary key?	Vadir) \vee (Nadir) \vee (Nadir	r, 122, 34, Detroit, 08≈10), (Nadir, 199, 13, Detroit, 08 , 322, 34, Detroit, 09×44), (Acme, 221, 22, Denver, 08= e, 222, 22, Denver, 09×10)

* Brief Review of Matrix	Feb 7, 2017
$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{23} & A_{23} \end{bmatrix} 2 \text{ rows, } 3 \text{ clowmas } "2x3"$	
- Addition: element by element (both must be the same size)	
-Multiplication (Dot Broduct)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	s the nxk matrix and its p.179
* Amount of computation in A in B	
each element of G costs in scalar multiplication & (m-1) additions $(\prod_{i=1}^{m} Aix bris)$	
total # of demants in G is nxt	
» Tatal cost is nxmxk	
Thm_ (AB)G=A(BG)	
But the amount of computation could be different	
e.9, Let A10x20, B20x30, C30x60	
$(AB)G = (AB)G = (AB)G = (AB) + (0 \times 30 \times 40) = 6000 + (2000) = (8000)$	
much	se (AB)G in this case (faster)
-Property of Matrix	
I = identity = -1 (otherwise 0)	
I Just e-must be square	
A ^T = transpose = "flip across aliogonal"	
if $A^{T} = A$, A is a symmetric matrix $\leftarrow if A^{T} = A$, A is a symmetric	
*Representing Relations (binary relations)	
- list of ordered pairs $R \subseteq A \times B = \{(a_1, b_1), (a_1, b_2) \cdots (a_N, b_N)\}$	
- Matrix (Boolean)B_	
$A \begin{vmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ $	
where MR=[mij] = {0 otherwise	
eg. Mr where R="z devidsj" z,j<5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
R is reflexive iff aRa Va∈A Symmetric iff aRe ↔ BRa anti-symmetric iff aRe∧ BRa → a=e	I is { reflexive symmetric
the element has 1	anci-symmetric

Composition of Relations p.182	
say R relates A to B, S relates B to C	
Define MR and Ms as above, then MROSS relates A to C sit.	
MROOK = [tzj], tij=1 iff 3k (aiRek ~ & Reg)	
Then MROOK = Boolean Product of matricies MROMX	
Matrix multiplication with x being 1, t being v	
the test of te	,

* Digraphs (Directed Graphs) self-loop aR&, aRd, fRd, dR&, cR&, cRa, fRF e.g, Arrows = "edge", letters = "node" in the graph Note= if R is symmetric, all arrows must go both ways ⇒ the graph is "undirected" c d 0101 0 0 0 0 0 'S input * Closure of Relations p.597 Given R under property P, closure of R under P is the smallest new relation S that both 1 has property P 2 contains R as a subset e-g Mr = 100010 reflexive clausure ... add 3 elements eg Reflexive closure of R= E (a. b) EZ | a = B] $S = RU\Delta = \{(a,b) \mid a < b\} \cup \{(a,a) \mid a \in \mathbb{Z}\} = \{(a,b) \mid a = b\}$: reflexive enclosure of $\langle is \leq b \rangle$ e.g. Let R be "<" on integers. Create a symmetric closure of R MR = 00 Al 1

> wanna add minimum. Relation

while keeping the original relation R Swanna

 $\therefore \text{ closure } (\mathbb{R}) = \mathbb{R} \cup \{(\alpha, \beta) \mid (\beta, \alpha) \in \mathbb{R}\} = \{(\alpha, \beta) \mid \alpha < \beta \lor \alpha > \beta\} = \{(\alpha, \beta) \mid \alpha \neq \beta\}$ change this -

symmetric closure of "<" zs "<, >" AFA " \neq "

tech Def closure = Ict R be a relation on A * A, Ict P be any property of relations (e.g., reflexive, symmetric, transitive etc.) If 3 a relation S s.t. S is a subset of every relation satisfying P that contains R, then S is the dosure of R under P

i.e, 3S (P(S) N VT (RCT N P(T) →SST))

⇒if this evaluate is TRUE, S is the enclosure

* Transitive Closure < The hardest one Feb 14, 2017 Let R= { (1,3), (1.4), (2,1), (3,2) } Note: R is transitive if aRe ∧ 2Re → aRe Step 1 since $1R_8$, $3R_2 : is <math>1R_2? \rightarrow No$ then add $\overline{t} \Rightarrow Now (1,2) \in R$ what else? $2P_1$, $1P_3 \rightarrow (2.3)$ $2F_1, 1F_4 \rightarrow (2.4)$ added $3R_2, 2R_1 \rightarrow (3, 1)$ Step I Now, need to think the added relations too $\mathbb{R}_2, \mathbb{Z}_1 \rightarrow (1, 1)$ $_{3}P_{2}, _{2}P_{4}^{3} \rightarrow (3,3), (3,4)$ $2R_3, 3R_2 \rightarrow (2.2)$ step 3 Again, think about the new relations ⇒ Transitive closure of R is all these pairs with R $_1R_3,_3R_4^2 \rightarrow (1,3), (1,4)$ Let's consider an easier way $1 \xrightarrow{3} \text{ recall def of transitive} Considering. Pathes here}$ $2 \xrightarrow{if} (A \xrightarrow{F} F) \land (F \xrightarrow{F} C) \rightarrow (A \xrightarrow{F} C)$ $\begin{array}{c} & & \\$ Path on directed edge Def = a graph is a set of nodes and a set of ordered pair on nodes called edges Def = (x.y) is a directed edge. Path P is a sequence of edges ez = (Ni, Yi) s.t. Yi = Ni+1 (second node in ei is the first node in Corr) eg, (a.b), (b,c), (c.d), (d.c) ... Def = Path length is the number of edges in the graph (= # node -1) e.g. _____ path length = 2, 3 nodes Note O Path from a node to itself can be length zero if no self-loop or any non-negative integer if a Ra 4? ③ If k edges & last node = the first node where k>0. this is called a circuit or circle . 3 both edge and nodes can appear more than once Recall composition of relations RoR=R² In graph terms, R^2 = set of path of length 2 eg, if aRBABRC, (a,c) is in R² $\mathbb{R} \cdot \mathbb{R} \circ \mathbb{R} \circ \mathbb{R} = \mathbb{R}^{k} = \text{set of path of length } k$ Note = by definition, $\mathbb{R}^{\circ} \equiv \mathbb{I} = \text{path of length } \emptyset$ Def= R* = $\bigcup_{k=1}^{\infty}$ R^k = "connectivity relation on R" = "reachibility of graph on R" P.602 = transitive closure of P **THEOREM 3** Let \mathbf{M}_R be the zero-one matrix of the relation *R* on a set with *n* elements. Then the zero-one matrix of the transitive closure R^* is Thm $R^* = \bigcup_{k=1}^{n} R^k$ where n = # nodes (elements of A) $\mathbf{M}_{R^*} = \mathbf{M}_R \vee \mathbf{M}_R^{[2]} \vee \mathbf{M}_R^{[3]} \vee \cdots \vee \mathbf{M}_R^{[n]}$

* cost of computing transitive enclosure of a relation R on A×A where |Al=n

R can be represented as a binary matrix nxn = M

\mathbb{R}^2 can be computed as M×M which costs $\approx n^3$, n times \rightarrow total cost is at most $O(n^4)$

mactually can do R* in nº times

* Warshall's Algorithm - think of connectivity

Let Wo = Mr = matrix representing. R (directed graph) Def = Way = Matrix of reachability (2.1) but only allowed to use intermediate nodes L, ..., K P.606 Let $\mathbf{W}_k = [w_{ij}^{[k]}]$ be the zero-one matrix that has a 1 in its (i, j)th position if and only if there is a path from v_i to v_j with interior vertices from the set $\{v_1, v_2, \ldots, v_k\}$. Then LEMMA 2 $w_{ii}^{[k]} = w_{ii}^{[k-1]} \lor (w_{ik}^{[k-1]} \land w_{ki}^{[k-1]}),$ whenever i, j, and k are positive integers not exceeding n. **EXAMPLE 8** Let *R* be the relation with directed graph shown in Figure 3. Let *a*, *b*, *c*, *d* be a listing of the eg. (p. 605)

elements of the set. Find the matrices W_0 , W_1 , W_2 , W_3 , and W_4 . The matrix W_4 is the transitive closure of R.

Solution: Let $v_1 = a$, $v_2 = b$, $v_3 = c$, and $v_4 = d$. \mathbf{W}_0 is the matrix of the relation. Hence,

$$\mathbf{W}_0 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

The Directed Graph of the Relation R.

FIGURE 3

 \mathbf{W}_1 has 1 as its (i, j)th entry if there is a path from v_i to v_j that has only $v_1 = a$ as an interior vertex. Note that all paths of length one can still be used because they have no interior vertices. Also, there is now an allowable path from b to d, namely, b, a, d. Hence,

$$\mathbf{W}_{1} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
 from b to d via a

 W_2 has 1 as its (i, j)th entry if there is a path from v_i to v_j that has only $v_1 = a$ and/or $v_2 = b$ as its interior vertices, if any. Because there are no edges that have b as a terminal vertex, no new paths are obtained when we permit b to be an interior vertex. Hence, $\mathbf{W}_2 = \mathbf{W}_1$.

W₃ has 1 as its (i, j)th entry if there is a path from v_i to v_j that has only $v_1 = a, v_2 = b$, and/or $v_3 = c$ as its interior vertices, if any. We now have paths from d to a, namely, d, c, a, and from d to d, namely, d, c, d. Hence,

$$\mathbf{W}_3 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}.$$

Cnow there is a path from d to a via c

Finally, **W**₄ has 1 as its (i, j)th entry if there is a path from v_i to v_j that has $v_1 = a, v_2 = b$, = c, and/or $v_4 = d$ as interior vertices, if any. Because these are all the vertices of the graph, this entry is 1 if and only if there is a path from v_i to v_j . Hence,

	1	0	1 1 1 1	1	
$W_4 =$	1	0	1	1	
$\mathbf{vv}_4 =$	1	0	1	1	ŀ
	1	0	1	1	

This last matrix, W_4 , is the matrix of the transitive closure.

v tolkypoint an position and advandance toleans (at the letter	, symmetric, and transitive.
a relation R on set A is called an Equivalence Relation (ER) if it is reflexive e.g. old-style G-language only used first 8 characters of carriable na	
int this Variable; } equivalent names in obl G-language	o
int this Variation;	
Let R be a relation on all strings of all length where aR& if the	hey share first 8 characters
reflexive, symmetric, transitive	U
:-given on EP, a set of strings starting with "this Vari" o	re called "Equivalent class"
e.g. EXAMPLE 9 What are the equivalence classes of 0 and 1 for congruence modulo 4	
{0,4,8,113 = [0] =" equivalence class of 0"	
$\{1, 5, 9, [7, m]\} = [2, 1] = $ ⁿ of 1 ⁿ	all reflexive, symmetric, and transitive
$\{z, b, [0, 18], [2] = " of z"$	· · · · · · · · · · · · · · · · · · ·
{3,7,11,19"}= [3] = " of 3"	
	(Feb 1
$Def = \pi vo related by an E.R. they are called equivalent, a \sim B$	*speed
Note: " a ~ b " order is NOT important (a B is symmetric here.)
e.g, is x-y < 1 on $E.P$?	
•	y-x ≤ ; transiture? x-y <1 ∧ y-z < -> x-z < ×
⇒NOT E.P.	
	"equiliblence class of " A can be for since
Def: given $a \in A$ and on E.P., let $Ca]_{R} = \{ \{ \} \in A \mid a \neq \} \}$ called We say a is a "representation" of $Ca]_{R}$ but any number of e.g., what is $Ca]_{R}$ if $R = \{ (a, B) \in \mathbb{Z}^{+} \mid a = B \pmod{4} \}$	$E.P \rightarrow veflexive$
Def: given $a \in A$ and on E.R. let $Car = E B \in A a P + F$ called We say a is a "representation" of Car but any number of	$E.P \rightarrow veflexive$
Def: given $a \in A$ and on $E.P.$ let $Ca]_{P} = \{ \{ \} \in A \mid a \neq \} \}$ called We say a is a "representation" of $Ca]_{P}$ but any number of e.g. what is $Ca]_{P}$ if $R = \{ (a, b) \in \mathbb{Z}^{+} \}$ $a = \{ \} (mod 4) \}$ $Ca]_{R} = \{ \{ \}, 7, 1\}, 15, 19 \dots \} = C[9]_{P}$ e.g. 26. What are the equivalence classes of the equivalence rel	EAJE would suffice E.P. → reflexive
Def: given $a \in A$ and on $\in R$. [et $[a]_R = \{ \} \in A aR \}$ called We say a is a "representation" of $[a]_R$ but any number of e.g. what is $[3]_R \ if R = \{ (a, b) \in \mathbb{Z}^+ a = \} (mod 4) \}$ $[3]_R = \{ 3, 7, 11, 15, 19 \dots \} = [19]_R$ e.g. 26. What are the equivalence classes of the equivalence relations in Exercise 1? a) $\{(0, 0), (1, 1), (2, 2), (3, 3)\}$	E.P. \rightarrow reflexive [a] $\mu W p 6/6$ [0] $\mu = \{0\}, [2] \mu = \{1\}, [2] \mu = \{2\}, [3] \mu = \{3\}$
$\begin{array}{c c} \hline Def= & given \ a \in A \ and \ on \ E.R. \ [et \ Ca]_{R} = \& \& \& \in A \ \ a \not R & \& \end{Bmatrix} \ called \\ \hline We \ say a \ is \ a \ "yepresentation" \ of \ Ca]_{R} \ but \ any \ number \ of \\ e.g, \ what \ is \ C3]_{R} \ if \ R = \& \& (a, \&) \in \mathbb{Z}^{+} \ \ a = \& (mod \ 4) \end{smallmatrix} \ called \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	E.P. → reflexive E.P. → reflexive
$\begin{array}{c c} \hline Def= given \ a \in A \ and \ on \ E.P. \ [et \ Ca]_{P} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	E.P. \rightarrow reflexive [a] $\mu W p 6/6$ [0] $\mu = \{0\}, [2] \mu = \{1\}, [2] \mu = \{2\}, [3] \mu = \{3\}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E.P. \rightarrow reflexive [a] $\mu W p 6/6$ [0] $\mu = \{0\}, [2] \mu = \{1\}, [2] \mu = \{2\}, [3] \mu = \{3\}$
$\begin{array}{c} \hline Def= given \ a \in A \ and \ on \ E.F. \ [et \ Ca]_{F} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	E.P. \rightarrow reflexive [a] $\mu W p 6/6$ [0] $\mu = \{0\}, [2] \mu = \{1\}, [2] \mu = \{2\}, [3] \mu = \{3\}$
$\begin{array}{c} \mbox{Def: given } a \in A \ \ and \ \ on \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	E.P. \rightarrow reflexive [a] $\mu W p 6/6$ [0] $\mu = \{0\}, [2] \mu = \{1\}, [2] \mu = \{2\}, [3] \mu = \{3\}$
$\begin{array}{c} \hline Def= given \ a \in A \ and \ on \ E.F. \ [et \ Ca]_{F} = \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$E_{P} \rightarrow ref exive$ $Ia- HW = 6/6$ $IO_{P} = \{o_{3}^{2}, C _{P} = \{1\}, C_{2}^{2} = \{2\}, C_{3}^{2} = \{3\}$ $IO_{P} = \{o_{3}^{2}, C _{P} = \{1, 2\}, (C_{2}^{2} = \{1, 2\}, C_{3}^{2} = C _{P}), C_{3}^{2} = \{3\}$ $P, 6/3$ $A_{1} \qquad A_{2} \qquad A_{3}$
$\begin{array}{c} \mbox{Def: given } a \in A \ \ and \ \ on \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$E_{P} \rightarrow reflexive$ $E_{P} \rightarrow reflexive$ $Ia- HW = 6/6$ $IO_{P} = \{0\}, C _{P} = \{1, 2\}, (Z_{P} = \{2\}, C_{P} = \{3\})$ $IO_{P} = \{0\}, C _{P} = \{1, 2\}, (Z_{P} = \{1, 2\} = C _{P}), C_{P} = \{3\}$ $P, 6/3$ A_{1}
Def: given $a \in A$ and on E.R. let $Ca]_{R} = \{ \{ \{ \{ a \} \} \} \}$ called We say a is a "representation" of $Ca]_{R}$ but any number of e.g. what is $Ca]_{R}$ if $R = \{ \{ a, b \} \in \mathbb{Z}^{+} \} \}$ a = $\beta \pmod{4}$? $Ca]_{R} = \{ \{ 3, 7, 1\} \}$ if $R = \{ \{ a, b \} \in \mathbb{Z}^{+} \} \}$ a = $\beta \pmod{4}$? $Ca]_{R} = \{ \{ 3, 7, 1\} \}$ if $R = [19]_{R}$ e.g. 26. What are the equivalence classes of the equivalence relations in Exercise 1? a) $\{ (0, 0), (1, 1), (2, 2), (3, 3) \}$ b) $\{ (0, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3) \}$ c) $\{ (0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) \}$ c) $\{ (0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) \}$ c) $\{ (0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) \}$ c) $\{ (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3) \}$ e) $\{ (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3) \}$ flim $aP_{4} \leftrightarrow Ca]_{R} = C \neq Ca]_{R} \cap C \notin Ca]_{R} \neq \emptyset$ on E.R. corollary = $aP_{4} \leftarrow Ca]_{R} = A$ corollary = $aP_{4} \leftarrow Ca]_{R} \cap C \notin Ca]_{R} = \emptyset$ corollary = $aP_{4} \leftarrow Ca]_{R} = A$ corollary = $aP_{4} \leftarrow Ca]_{R} \leftarrow Ca]_{R} \in A$ corollary = $aP_{4} \leftarrow Ca]_{R} \in A$ corolary = $aP_{4} \leftarrow Ca]_{R} \in A$ corolary = $aP_{4} \leftarrow Ca]_{R$	$E_{P} \rightarrow reflexive$ $E_{P} \rightarrow reflexive$ $Ia- HW = 6/6$ $IO_{P} = \{o_{3}, C _{P} = \{1, 2\}, (Z_{P} = \{2\}, C_{3})_{P} = \{3\}$ $IO_{P} = \{o_{3}, C _{P} = \{1, 2\}, (Z_{P} = \{1, 2\} = C _{P}), C_{3} = \{3\}$ $A_{1} \qquad A_{2} \qquad A_{3} \qquad A_{4} \qquad A_{5} \qquad A_{4} \qquad A_{5} \qquad A_{4} \qquad A_{5} \qquad$
Def: given $a \in A$ and on $\in R$. [et $[a]_R = \{ \{ \} a \in A \}$ called We say a is a "representation" of $[a]_R$ but any number of e.g, what is $[3]_R \ if R = \{ (a, b) \in \mathbb{Z}^+ \}$ a= $\{ (mod 4) \}$ $[3]_R = \{ \}, 7, 11, 15, 19 \dots \} = [19]_R$ e.g, 26. What are the equivalence classes of the equivalence relations in Exercise 1? a) $\{ (0, 0), (1, 1), (2, 2), (3, 3) \}$ b) $\{ (0, 0), (1, 1), (2, 2), (2, 3), (3, 2), (3, 3) \}$ c) $\{ (0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) \}$ d) $\{ (0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3) \}$ e) $\{ (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3) \}$ e) $\{ (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3) \}$ flim. $aP_4 \leftrightarrow [a]_R = [c]_R \leftrightarrow [a]_R \cap [c]_R = \emptyset$ corollary = $aR_2 \leftrightarrow [a]_R = A$ since A is on $E.R$, reflexive union of all elements More generally, given only set of subsets $Ai \leq A$, we say that	E.P. \rightarrow reflexive E.P. \rightarrow reflexive Ia- HW P 6/6 [0]_P= $\{0\}, C[]_P= \{1\}, C2]_P= \{2\}, C3]_P= \{3\}$ [0]_P= $\{0\}, C[]_P= \{1, 2\}, (C2]_P= \{1, 2\} = C[]_P), C3]_P= \{3\}$ [] [] [] [] [] [] [] [] [] []

* Partial orderings p 618

Def= given a relation R, Ris called a partial ordering of A if Ris reflexive, anti-symmetric, and transitive on A AKA" posets" e.g. \geq on \mathbb{Z} A≥A ... reflexive, A≥L ∧ A≤L → a=L ... anti-symmetric, A≥L ∧ L≥C → A≥C ... transitive ⇒ ≥ on Z is parcial ordering on Z e.g. devides " on Zt a a ... referive, alf ~ & a > a= & ... anti-symmetric, alf ~ & lc > a c ... transitive ⇒ " " on Z^t is a parcial ordering on Z^t * why called " parcial" ordering? (p.619) Def = a RE V & Ra we say a and & are "comparable" in the eg of "1". 3 and 9 are comparable : 319 Def = If all pairs in A are comparable under P, but 5 and 7 are not comparable (: 5/7 and 7/5) \rightarrow part of Z^t are comparable then R is a total ordering. ... total ordering < partial ordering **DEFINITION 2** The elements *a* and *b* of a poset (S, \triangleleft) are called *comparable* if either $a \preccurlyeq b$ or $b \preccurlyeq a$. When *a* and *b* are elements of *S* such that neither $a \preccurlyeq b$ nor $b \preccurlyeq a$, *a* and *b* are called *incomparable*. Def: If R on A is a total ordering, and every non-empty set of A has a least element, then A is well-ordered under R e.g., Z is NOT well-ordered since there's no least element e.g., the lexicographic ordering is well-ordered set $(a_1, a_2) \prec (b_1, b_2) \text{ if } a_1 \prec b_1 \lor (a_1 = b_1 \land a_2 \prec b_2)$ Feb 21, 2017 e.g. words in a dictionary: shorter words come first before longer words if the shorter word is the short of the longer word eg, "and" < "andromeda" * Hasse diagram on posets p.622 > check ICS 46 Note (Algorithm) step 1 create directed acyclic graph (DAGS) - reflexive, transitive step 2 remove all edges that can be inferred from other edges $e.q. \geq on \{1, 2, 3, 4\}$ original directed graph * going up (input is bottom) e.g. "|" divids on A = { 1.2, 3, 4.6, 8.12} if Hass-diagram is written well, mays & min are obvious Def = a maximal element has no dements grater (~) than itself a minimal element has no dements smaller (>) than itself maximuw e.g., from above, 1) is minimal & & and 12 are maximal Def= an element a ∈ A is maximum (greatest) if b≤a Vb∈A minimum (least) if ASK YBEA e.g., from above, 1 is minimum, no maximum <- greatest/least are unique if they exists

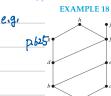
U is called "upper bound on A" if $a \leq u$, $\forall a \in A$ (Note= u must be comparable to all elements in A)

"lower bound on A" if $a \succeq u$, $\forall a \in A$ (Note= u must be comparable to all elements in A)

e.g., from previous page ("1"), if A= E1.2.33

b and 12 are both upper bound, (4&8 are NOT since it's not comparabe with 3 ∈ A)

I is a lower bound on any ASS


Def= the Least upper bound is the smallest of all upper bounds (LUB)

the Gratest lower bound is the largest of all lower bounds (GLB)

e.g., from previous page ("1") if A= E6.123

lower bound is 1.2.3 -> gratest one is 3 (GLB)

upper bound is $|2 \rightarrow |cast one is |2 (LUB)$

Find the lower and upper bounds of the subsets $\{a, b, c\}$, $\{j, h\}$, and $\{a, c, d, f\}$ in the poset with the Hasse diagram shown in Figure 7.

Solution: The upper bounds of $\{a, b, c\}$ are e, f, j, and h, and its only lower bound is a. There are no upper bounds of $\{j, h\}$, and its lower bounds are a, b, c, d, e, and f. The upper bounds of $\{a, c, d, f\}$ are f, h, and j, and its lower bound is a.

* Topological Sort (Also check ICS 46 Note "Algorithm I")

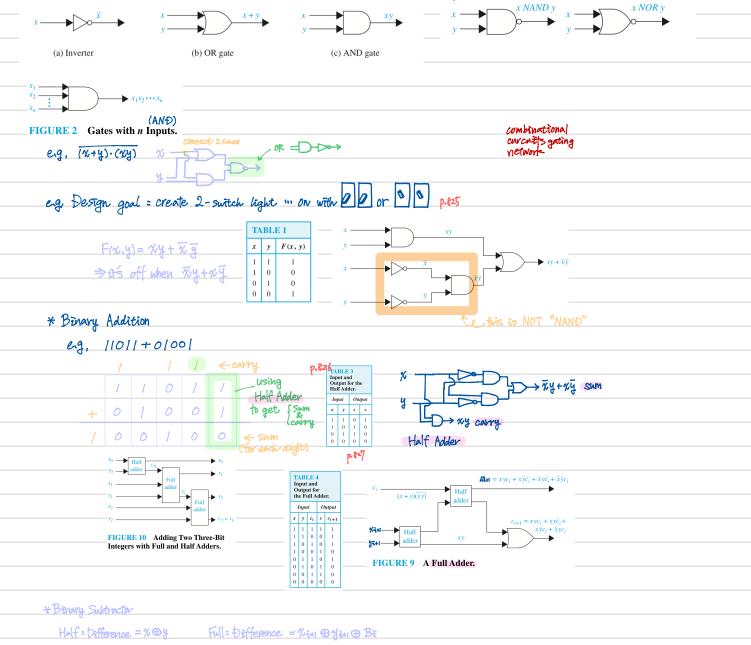
Basically lists the elements bottom-up in Hasse diagram sit, only comparable items matter in the ordering, in comparable items can be shuffled.

e.g, previous page 12, 8 example of few valid topological sort

* Lemma : every finite non-empty poset has at least one minimal element

* Algorythm	8 12	8	12			2. (8.	(2_ 	12
K=1	2 3				Ì	3		13	l
while <i>S≠</i> Ø									
let ar = any minimal dement of S	k	1	2	3	4	5	6	7	
let S=S-{a+3	minimals	{ 📭	2,3	4,3	8 , 3	3	6	12-	
let k= k+1	(circle the chosen one)	l	z,3	2	6.4	4	8.12	8	
end while	⁸ i ¹	8 i	i 12		1 ²⁸ i		12 8 j	. 12 8	• • [2.
Yetum (a1, a2,, ak)	4 6	4	6	4	64		6 4!~		
		-	• 5	2 -					

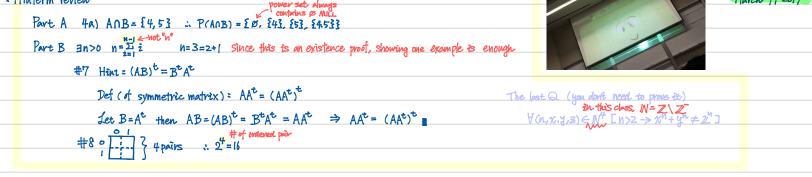
Feb 23, 2017 * strict ordering Def= say \preceq is a partial ordering, then the associated strict ordering \prec removes the reflexive ordering. $e.g. \leq \rightarrow < on numbers. \leq \rightarrow < on sets$ Recall Directed Acycle Graph (DAGS) = DAGS represent strict orderings because (assume no self-loop)


1

because ① no reflexive elements (irreflexive)

- (2) out \tilde{i} -symmetric $y < N \rightarrow N \neq y$ $y \xrightarrow{\times}_{\infty}$
- ③ transitive X<Y ∧ Y<Z → X<Z , implied by transitive closure

Boolean Algebra ' p.811	
* different notations (duality) for T, F, \wedge , \vee , $\frac{1}{2}$, etc. 1, \emptyset , \cdot , $+$, $\frac{1}{2}$	practice = (TAF) V ? (FVT) = FV7T = FVF = F)
$e.g, \ \%+ y=1 \iff \%=1 \lor y=1$	(-0+(0+1) = 0+1 = 0+0 = 0) Same
[+ = , +0= , 0+ = , 0+0=0	
N·Y=1 iff n=1 / y=1	The function $F(x, y, z) = xy + \overline{z}$ from B^3 to B from Example 5 can be represented by distinguishing the vertices that correspond to the five 3-tuples (1, 1, 1), (1, 1, 0), (1, 0, 0), (0, 1, 0
$^{n}\mathcal{K} \equiv \overline{\mathcal{K}}$	and $(0, 0, 0)$, where $F(x, y, z) = 1$, as shown in Figure 1. These vertices are displayed using solid black circles
* Boolean functions (e.g. F(X,y,z)=Xy+z	EXAMPLE 6
In general, let $B = \{0, 1\}$ $B^n = \{(x_1, x_2, \dots, x_n) \mid x_i \in B\}$	110 111 p.8/3
How many possible Boolean function exists?	
e.g. 1 bit input. 1 bit output (output is ALWAYS 1 bit) ag: $F = B^3 \rightarrow B$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FIGURE 1
0 0 1 0 1 ⇒ columns each also have	2 ^{er} entries (each entry is a bit)
$= 0 = \frac{1}{2} = \frac{1}{2} = 1$ $\implies \text{requires } \frac{1}{2} = \frac{1}{2} =$	
Most "normal" algebra rules apply directly.	TABLE 3 The 16 Boolean Functions of Degree Two.
(e.g. Predince ", ., + complement is applied immediately after evaluation of underlying	I I
$e_{1}(w+y)(a+k) = wa+wk+ya+yk$	
affective at least each of these terms "checks" IT one of 4 possible case of "there's at least one T inside each pavent! Both T->T	273
$e_{ig}, (x+y)(x+z) = xx + xz + xy + yz$	
= % (%+y+z) + y之	
= %+yz	
$\underline{\text{Thm}} \%(\%+y+z) = \%$	
prof 1) prof 2) truch	table
expand $NN+NY+NZ = N+N(Y+Z) = N(++Z) = N$	
0 0	
0	
/ 0	
* Representing Boolean Functions	
$Def = a$ literal is any Boolean variable (e.g., x), or its complement (\overline{x})	
Def = Given n literals N1, N2,, Xn, a miniterm is a product containing	every literal or its complement exactly once
e.g. y1. y2. y3 yn where yz is either Xi or Ti	•
Def = a Boolean sum of minierms representing a f ^{en} is called the "Sum of produc	ets" or "Disjunctive Normal Form (DNF)" p.82
<u>Thm</u> , given n Boolean variable, every Boolean on them can be expressed as sum	-of-products (i.e. DNF)
e.g., Find DNF for $F(x,y,z) = (x+y)\overline{z}$	TABLE 2
$= \chi \overline{z} + y \overline{z}$ or the	$\frac{x y z x+y \overline{z} (x+y)\overline{z}}{1 1 1 1 0 0}$
$= \%(3+3) \approx + (\%+3) = 3$	1 1 0 1 1 1 1 0 1 1 0 0
= %4 <u>2</u> + % <u>3</u> 2 + % <u>3</u> 2 + % <u>3</u> 2 + % <u>3</u> 2	0 1 1 1 0 0 0 1 0 1 1 1
= %y호+%y호+%y호+%y호	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


*Fanctional Completeness defines some set of operators then can express any. Boolean function Thm the set of Boolean operators $\xi+, \cdot, -3$ are functionally complete Note: We can eliminate "+" by De Morgan's Law $\chi+y = \overline{\chi} \cdot \overline{y} \Rightarrow \xi \cdot -3$ is F.C, Can we find smaller set of operators that is F.G.? e.g. NAND (χ .'y) = $\overline{\chi}$.'y, turns out NAND itself, is F.G. *Logic gates (Circuit Diagrams) p.23 Feb 28, 2017

Borrow = Ty y Borrow = Bin = Tin Bi + Tin yin + yin Bi

SUMAX = TOPM AT AN ANDRESSION	two dout asks if the attemant is war and is
int i symbol Syntax = form of an expression	(we don't care if the statement is nonsensical)
i = 2; statement/sentence Semantix = assigns meaning .	4> But we care if a statement is valid
i= 2*i+1; expression	
* parse tree (derivation tree)	
$e_{1}g_{1} \neq 2 \neq + e_{1}g_{1} = p_{1}g_{2}f_{3}$ sentence	
noon phrase verb phrase	
article adjective noun verb adverb	
the hungry rabbit cats quickly FIGURE 1 A Derivation Tree.	
Det = Growman describes a language hu describing curtactically valid.	Sentences (numso / statement)
Det = Grammar describes a language by describing syntactically valid Def = a set of valid statements describes a language	scherices (prince) 3 (herero)
Def= takens (aka terminals) are atomic (iner smallest meaningful stri	100)
Def= symbols describes parts of sentences and can be terminal or non-	5
e.g. (English sentence)	
sentence -> noun phrase, verb phrase	
Here, this means "can be expressed" or "produces"	
	ase, -> verb. adverb 4-non-terminal
nown phrase → article, nown Verb phra	se -> verb, adverb <- non-terminal > "huns" "eats" <
nown phrase → article, nown Verb phra	
nown phrase → article, nown Verb phra	> "Kune" " pate" (Symbols
nown phrase \rightarrow article, nown Verb phrase \rightarrow "the" \square "a" verb \rightarrow " nown \rightarrow "horse" \square "rabbic" adverb \rightarrow	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	"runs" "eats" "guictly" "slowly" March Z, nobols
nown phrase \rightarrow article, nown Verb phrase \rightarrow "the" $ $ "a" Verb \rightarrow " nown \rightarrow "horse" "rabbic" adverb -	"huns" "exts" "guictly" "slowly" "guictly" "slowly" March z, Models P.849 A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word (sentence) over V is a string of finite length of elements of V. The empty string or null string or nul
nown phrase → arcicle, nown Verb phra article → "the" "a" Verb → nown → "horse" "rabbit" adverb → Def = phrase-structure grammar G = (V, T, S, P) V = Vocabulary a fixite, nonempty set of elements called som	> "nuns" "eats" < } symbols -> "quickly" "slowly" March 2,
noun phrase → arcicle, noun Verb phra article → "the" "a" verb → noun → "horse" ["rabbit" adverb → Def = phrase-structure grammar G = (V, T, S, P) V = vocabulary a fruite, nonempty set of elements called sym T = terminal (non-ferminal N=V\T)	* "huns" " eats" * "guictely" "slowly" " March 2,
noun phrase → arcicle, noun Verb phra article → "the" "a" Verb → noun → "horse" "rabbit" adverb → Def = phrase-structure grammar G = (V, T, S, P) V = vocabulary a finite, nonempty set of elements called sm T = terminal (non-terminal N=V\T) P = productions (oka production rules)	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
noun phrase → arcicle, noun Verb phra article → "the" u"a" Verb → noun → "horse" u"rabbic" adverb → Def = phrase-structure grammar G = (V, T, S, P) V = vocabulary a fruite, nonempty set of elements called sm T = terminal (non-terminal N=V\T) P = productions (ata production rules) S = start symbol	* "nuns" " eats" * "guict=ly" "slowly" March Z, nbels A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word sentence) over V is a string of finite length of elements of V. The empty string or null strin denoted by λ, is the string containing no symbols. The set of all words over V is denot by V*. A language over V is a subset of V*. Def = λ, the empty string, is the string containing no symbols
noun phrase \rightarrow arcicle, noun Verb phra article \rightarrow "the" "a" Verb \rightarrow noun \rightarrow "horse" ["rabbic" adverb \rightarrow Def = phrase-structure grammar $G = (V, T, S, P)$ $V = vocabulary a finite, nonempty set of elements called sym T = terminal (non-terminal N=V \setminus T)P = productions (at a production rules)S = start symbole.g, S \rightarrow \chi \mid aSE$	* "huns" " eats" * "guict=ly" "slowly" March 2, March 2,
noun phrase \rightarrow arcicle, noun Verb phra article \rightarrow "the" ["a" Verb \rightarrow noun \rightarrow "horse" ["rabbic" adverb \rightarrow Def = phrase-structure grammar $G = (V, T, S, P)$ $V = vocabulary a finite, nonempty set of elements called sym T = terminal (non-terminal N=V \setminus T)P = productions (oka production rules)S = start symbole.g, S \rightarrow \chi [aSt- valid statements = \chi, at, aatt, aatt, aatt$	$P^{\text{Ref}} = \frac{\text{Pref}}{\text{Pref}}$ A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word sentence) over V is a string of finite length of elements of V. The empty string or null strindenoted by λ, is the string containing no symbols. The set of all words over V is denoted by V. A language over V is a subset of V [*] . $Def = \lambda, \text{ the empty string, is the string containing no symbols}$ $F_{\text{Ref}, m} = \frac{8}{4} \frac{\pi^{n}}{n!} \frac{n = 0.1.2 \text{ m}}{3} \frac{850}{non-\text{ferminal}}$
noun phrase \rightarrow arcicle, noun Verb phra article \rightarrow "the" ["a" verb \rightarrow noun \rightarrow "horse" ["rabbit" adverb \rightarrow Def = phrase-structure grammar $G = (V, T, S, P)$ $V = vocabulary \dots a fruite, nonempty set of elements called sm T = terminal (non-terminal N=V(T))P = productions (ata production rules)S = start symbole.g, S \rightarrow \chi [a Sb]Valid statements = \lambda, ab, aabb, aabbJet Wo = l Zor be a string of symbols (which could be terminal orW_1 = l Z_1r be a string of symbols (which could be terminal or$	* "Nuns" " eats" * "guict=ly" "slowly" March 2, March 2, March 2, P.849 A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word is sentence) over V is a string of finite length of elements of V. The empty string or null string denoted by λ , is the string containing no symbols. The set of all words over V is denoted by V*. A language over V is a subset of V*. Def = λ , the empty string, is the string containing no symbols E.E., = $\{\Delta^{M} A^{N} \mid N = 0.1.23, p.850$ Non-termitial) Non-termitial)
noun phrase \rightarrow arcicle, noun Verb phra article \rightarrow "the" ["a" Verb \rightarrow noun \rightarrow "horse" ["rabbit" adverb \rightarrow Def = phrase-structure grammar $G = (V, T, S, P)$ V = vocabulary a furte, nonempty set of elements called som $T = terminal$ (non-terminal N=V(T) P = productions (aka production rules) S = start symbol $e.g, S \rightarrow \chi [a S & Valid statements = \lambda, a.f., aa.f.f., aa.f.f.Jet Wo = L zor be a string of symbols (which could be terminal orW_1 = L z_1 r be a string of symbols (which could be terminal orDef = if \equiv production sit, Z_0 \rightarrow Z_1, then we say string W_1 is d$	> "nuns" "exts" → "quict=ly" "slowly" March Z, Mools P. ⁸⁴⁹ A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word sentence) over V is a string of finite length of elements of V. The empty string or null strin denoted by λ, is the string containing no symbols. The set of all words over V is denot by V*. A language over V is a subset of V*. $Def = \lambda$, the empty string, is the string containing no symbols E_{F} , = $Sa^{H}a^{H}$ $N = 0.1.2$
noun phrase \rightarrow arcicle, noun Verb phra article \rightarrow "the" ["a" verb \rightarrow noun \rightarrow "horse" ["rabbit" adverb \rightarrow Def = phrase-structure grammar $G = (V, T, S, P)$ $V = vocabulary \dots a fruite, nonempty set of elements called sm T = terminal (non-terminal N=V(T))P = productions (ata production rules)S = start symbole.g, S \rightarrow \chi [a Sb]Valid statements = \lambda, ab, aabb, aabbJet Wo = l Zor be a string of symbols (which could be terminal orW_1 = l Z_1r be a string of symbols (which could be terminal or$	> "nuns" "exts" → "quict=ly" "slowly" March Z, Mools P. ⁸⁴⁹ A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word sentence) over V is a string of finite length of elements of V. The empty string or null strin denoted by λ, is the string containing no symbols. The set of all words over V is denot by V*. A language over V is a subset of V*. $Def = \lambda$, the empty string, is the string containing no symbols E_{F} , = $Sa^{H}a^{H}$ $N = 0.1.2$
noun phrase \rightarrow arcicle, noun Verb phra article \rightarrow "the" "a" verb \rightarrow noun \rightarrow "horse" "rabbit" adverb \rightarrow Def = phrase-structure grammar $G = (V, T, S, P)$ V = vocabulary a fruite, nonempty set of elements called som $T = terminal$ (non-terminal N=V(T) P = productions (aka production rules) S = start symbol $e.g, S \rightarrow \chi [a S & Valid statements = \lambda, a & a & b & a & a & b$ Jet Wo= $L \ge r$ be a string of symbols (which could be terminal or $W_1 = L \ge r$ be a string of symbols (which could be terminal or $Def = if \equiv production sit, \Xi_0 \rightarrow \Xi_1, then we say string W_1 is de.g, article noun W^{\Rightarrow} "the" "a" noun W_1$	* "runs" " eats" $\langle ywbols \rangle$ \Rightarrow "quictify" "slowly" \downarrow March 2, March 2,

-	re can be more than one devivation showing. Wo ^{\$} Wn Rofessors Def≈ definitely more than 1
	t language can be described by many grammars = $\forall L \exists G L(G) = L$
X Turner of an	and the state of t
•	unimars creativist what types of productions are allowed) Intext-sensitive grammars = LAr -> Lwr (you can only replace. A with w as long as between ler
iffe it u	"A can only produce w if Surrounded on both stoles by L and r, i.e., L and r provide the only context in which A can be replaced with n
Type 2	Context-free grammars = A -> w
	"A can be replaced with w anytime"
TypeB	"Regular" grammars (only. 3 types of productions are allowed)
.9(-	z) $A \rightarrow \lambda$
	\overline{zz}) $A \rightarrow a$
	zzz) $A \rightarrow aB$ w/ $a=terminal \& A, B$ are non-terminals
	allows left-to-right parsing of input strings, reading exactly one terminal at a time
	e.g., from previous page
	$sentence \rightarrow "a" nvp "the" nvp$
	NVP -> "horse" VP "rabbit" VP
	Vp -> "runs" adv "exts" adv
	$adv \rightarrow "slowly" (E)$ "quickly" (E)
	$(E \rightarrow \lambda)$
* simple e	xample of mathematical expressions
-	+4、 (x+4)*4、 ((x+4)*4) +x
E-	> (E) E = E E + E V PAISE tree +
V	→xly ["] (x*3)+x × x
* Backus-	Naur Form (BNF) p.853 % Y
Asc	II method describing productions
	<e> == (<<e>>) where < > is non-terminal</e></e>
	<v> = x y</v>
idterm review	power set always March 7, 2017

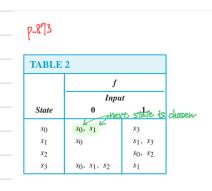
* Finite state machine

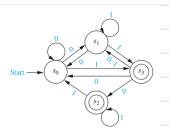
integer to bit string. (base 2) e.g. $b = |\cdot 2^2 + |\cdot 2' + 0 \cdot 2^\circ \rightarrow 00||_0$ Goal= find FSM that recognizes base-2 integers that are even ⇒ (bit strong) end with a zero 0 self-100p 0 end statement with double-circle (state) transition table next output state input state FSM = FSA March 9, 2017 0 в So ending state can be more than 1 success state ۵ b 0 ۵ a 1 b 0 в à FSA/FSM mused for language recognition Let V = Vocabulary (tokens, Terminais/ non-terminals) V*= Strings (not necessarily valid of vocab.) -zero or more concatenated members of vocab e.g. int 2 = 2 3 ... 5 tokens valid string in G/Java Let A. Bare sets of strings from V^* , then $AB = \{x, y \mid x \in A, y \in B\}$ p. 866 $A, B \leq V^*$ e.g. $A = \Sigma^*$ input", "output" 3, $B = \Sigma^* \pi^*$, "y" 3 String AB are "input x" "input y" "output x" "output y" Det = Kleen closure of a set of strings A is A* = U A* A concortinated k times (Not multiplication) Def= FSA/FSM = M=(S, I, f, So, F) P.867 where S= set of states **DEFINITION 3** A finite-state automaton $M = (S, I, f, s_0, F)$ consists of a finite set S of states, a finite input alphabet I, a transition function f that assigns a next state to every pair of state and input (so that $f: S \times I \rightarrow S$), an initial or start state s_0 , and a subset F of S consisting of final I = znput alphabet (or accepting states). f = state transition table So = start state F = set of successful final states Def = string N="No N1 N2 ... Nn" Ni E terminals/tokens is recognized if machine M starting in state So and reading entire N ends in a state in F, P-868 Note = Two FSMs are equivalent if they both recognize the same language **DEFINITION 4** A string *x* is said to be *recognized* or *accepted* by the machine $M = (S, I, f, s_0, F)$ if it takes the initial state s_0 to a final state, that is, $f(s_0, x)$ is a state in *F*. The *language recognized* or *accepted* by the machine *M*, denoted by L(M), is the set of all strings that are recognized by *M*. Two finite-state automata are called *equivalent* if they recognize the same language. $\mathfrak{G} \xrightarrow{\mathfrak{g}} \mathfrak{G} \xrightarrow{\mathfrak{g}} \mathfrak{G} \xrightarrow{\mathfrak{g}} \mathfrak{G}$ $\mathcal{L}(M_0) = \mathcal{L}(M_1)$

* NDFSMs (non-deterministic FSMs) ... only mathematical construct

e.g., TSP (traveling salesman problem) = n cities to visit

goal = find the cheapest path that each city is once visited \rightarrow n! possible pathes Note = $70! > 10^{100}$


in principle, what is the answer? (2 a solution?)


-> the case of TSP, yes (3 path for TSP cost < 100?)

Importance Note= once TSP (NP-complete) is plurase as yes! No, a "yes" answer is easily verified

Def: given a strong N=Xo X1 X2 ... Xm, NDFSM "M" recognizes X if 3 a path through FSM ending a final state in F

Note = the state table for NDFSM has multiple "next" states

FIGURE 6 The Nondeterministic Finite-State Automaton with State Table Given in Table 2. * Turing. Machines

FSMs are finite , i.e., finite memory due finite tests	
e.g. It cannot recognize $\{O^n \mid n \ge 0\}$ for arbitrary n (works fine for pre-	-known max n)
=> Turing Machines have "tape", which provides memory source tape	"Turning. Hachines have read and write capabilities
"idealized" computer, for mathematical description only <- BOILING	1 BOIIBB -> On the tage as the control with movies back and forth
only operation allowed = read one cell, write one cell, move I or R by one ce	along thats tape, changing states depending on
FSM is responsible for deciding what to write, and where to move	the tape symbol read (888)"
-What's order R/W head	p.889
- current state of FSM	Unit $s_3 s_2$ Read/Write Head
Def= Turing Machine T= (S, I, f, So, F)	B B 1 1 0 1 B 0 1 B B
where S= set of states in FSM	Tape is infinite in both directions. Only finitely many nonblank cells at any time.
I = Imput/Output symbols + "B" are allow	FIGURE 1 A Representation of a Turing Machine. ved ow the tape
$f = (\mathcal{I} \times \mathbf{I}) \rightarrow (\mathcal{I} \times \mathbf{I} \times \{\mathcal{L}, \mathcal{R}\})$,
state x i/o new xi/o x d	
.So=start state, F=final accepting state:	ses
at end "step" T,	
O find a new state based on current state +	input symbol
② Write a new symbol on the tape	
③ moves one cell left or right	
We write this step as the five-tuple $(s, x, s',$ pair (s, x) , then the Turing machine T will A common way to define a Turing ma	, x' , d). If the partial function f is undefined for the
What is the final tape when tuples $(s_0, 0, s_0, 0, R)$, $(s_0, 1, s_1, 1)$	the Turing machine T defined by the seven five- $(1, R), (s_0, B, s_3, B, R), (s_1, 0, s_0, 0, R), (s_1, 1, s_2, 0, L)$ R) is run on the tape shown in Figure 2(a)?
(a) & b = b = b = b = b = b = b = b = b = b	<u>,1. R)</u>
(c) <u>F</u> (<u>S10055</u>)	
	/= i / i , S, , (, P)
	B B ··· 3/w =1/0
	Serliserord)
() (s ₂ <u>+</u> <u>k</u>	/w=[/ο 3ω/ δα σ β
··· B B 0 1 0 1 0 1 0	

 ...
 B
 B
 0
 1
 0
 0
 0
 B
 B
 ...

 Machine lights

 Since there is no five-tuple beginning with the pair of (S3,0)

 STOP

Def=Trecognizes a string % written on tape iff T, starts So, halts in a state in F	
Note= if T halts on non-F state, or never halt, % is not recognized	
$Pet=a$ language L is recognized by T iff x is recognized by T $\forall x \in L$	
-given % as imput, T(%) replaces with y on tope	
-We say T(n)=Y if T doesn't halt in non-F state, T(n) is undefined	
-many "extentions" e.g. multiple tapes, multiple R/W heads, multiple FSMs	
- many extensions end, many cover the source of the source	there ashuble the polynomial time)
	0 • 0
if runtime on input of size is $\sim n^{t}$ for any fixed k, then polynomial time algorized to n^{t} for any fixed k, then polynomial time algorized to n^{t} for any fixed k, then polynomial time algorized to n^{t} for a second to n^{t} forable to n^{t} for a second to n^{t} forable	
if runtime on input of size is ~ K" for any fixed k, then exponencial time algore	
* church-turing = anything that is computable, is computable by a Turing Machine <- thesis	3
any such machine is "Turing complete"	
EXAMPLE 3 Find a Turing machine that recognizes the set $\{0^n 1^n \mid n \ge 1\}$.	
<i>Solution:</i> To build such a machine, we will use an auxiliary tape symbol M as a marker. We have	e
$V = \{0, 1\}$ and $I = \{0, 1, M\}$. We wish to recognize only a subset of strings in V^* . We wish have one final state, s_6 . The Turing machine successively replaces a 0 at the leftmost position of	11
the string with an <i>M</i> and a 1 at the rightmost position of the string with an <i>M</i> , sweeping bac	
and forth, terminating in a final state if and only if the string consists of a block of 0s followe by a block of the same number of 1s.	d
Although this is easy to describe and is easily carried out by a Turing machine, the machine we need to use is somewhat complicated. We use the marker <i>M</i> to keep track of the leftmost	
and rightmost symbols we have already examined. The five-tuples we use are $(s_0, 0, s_1, M, R)$ $(s_1, 0, s_1, 0, R)$, $(s_1, 1, s_1, 1, R)$, (s_1, M, s_2, M, L) , (s_1, B, s_2, B, L) , $(s_2, 1, s_3, M, L)$	
$(s_3, 1, s_3, 1, L), (s_3, 0, s_4, 0, L), (s_3, M, s_5, M, R), (s_4, 0, s_4, 0, L), (s_4, M, s_0, M, R), an (s_5, M, s_6, M, R).$ For example, the string 000111 would successively become M00111	
M0011M, MM011M, MM01MM, MMM1MM, MMMMMMM as the machine operate until it halts. Only the changes are shown, as most steps leave the string unaltered.	
We leave it to the reader (Exercise 13) to explain the actions of this Turing machine and t	
explain why it recognizes the set $\{0^n 1^n \mid n \ge 1\}$.	H O.O.T B.B.P.
$\mathbb{S}^{-\frac{U,B,F}{2}} \mathbb{S}^{\frac{L,B,f}{2}} \mathbb{S}^{\frac{L,M,\mathcal{I}}{2}} \mathbb{S}^{\frac{L}{2}}$	and the second s
B.B.R (second cycle)	B.B.R (the case
U	ichas no O anymore)
* Complexity, Decidability, Computability.	March 16, 2017
Def= a "decision problem" is a problem with a Y/N answer	
Note = = = undecidable problems	
e.g., halting problem = given & arbitrary problem p and input x, does p halt when appl	ied to x?
Def= A problem is a decidable if = a concreate algorithm that always decides to	
Some easy-specified functions are not computable	check pdf= University of Waterloo CS 360 Introduction to the
e.g. given n, what is the longest possible finite string that can be output by Turing. Machine w/ n	states? Theory of Computing
Note: specific small n, its computable	Winter 1998
e.g, "Hard problem" NP-complete	
P= E set of all problems computable in polynomial time by Determistic T.M. 3	
NP= { set of all problems computable in polynomial time by non-Determistic T.M. 3	
Does $P = NP$? We can't disprove \Rightarrow We ASSUME $P \neq NP$ (not proved yet)	
····· · ···· · ·······················	