
"

%¥rtlu%|} santander?

Boolean Algebra & Logic

Jan 12,2017 (TH)
either

Def Proposition . " direct Statement of fact (can be truelfalse
,

but NOT both)

ex ,

"
Twnto is the capital of Canada ! → False

Def '

p =

"

NOTP
"

= negation of p TRUTH TABLE P 7

P

T F

Def pnq
"

and
" "

but
"

conjunction of pandq
F T

me
in English sentence

.

" but 't

ottenusedtoshowmoretnaw P of Png pvq poq

levenethat occur simultaneously T T T T F

Def pvq=" OR
"

disjunction T F F T T

F T F T T
' '

XOR"

Det page
"

exclusive or
"

(precisely one) F F F F

t
p→q)±pvq

Def p→q=
"

ifp , then
"

,

"

pimples of
"

,

"

ponlyifq
"

,

"

pissutfiaientforq
"

conditional statement aka logical implication P of p→q TP
T

p→q
mum

* twists opposite Tocausalimphcation T T T F T

inlogtal implication, wefindlseetheresuk T F F F T

and determine the fact (resultant) F T T T T

Which is NOT fact → causing something F F T T F

since qmust be 100% (happens) Unlike real world ifx doesn't exist ,

the condition doesn't matter

Def converse of p→q is q→p

Def contrapositive of p→qis7q→7p ,
which is equivalent to the original statement

Det inverse of pages
'

p→q
Det p←>q=

"

if and only if
"

= biconditional statement of pandq P of Paf
= (p→q)^(q→p) aka "pi's equivalent tog

" T T T

T F F

Precedence of Logical Operators p.li F T F

7
,

^
,

v
,

→ ,←> ex ,7P→q→r F F T
mtdna �3�

mm.

* Logic and BTE Operations " ' check Pill

.

ex ' knight & Knauff.EE#artD
-

knights always tell truth

knaves always tell alie

A says "B is a knight
'

!Bsays
"

We are opposite type
"

.

proposition . " pa
"

Aisa knight
"

q='
'

B is a Knight
"

Inhere to start

Ifk
then A- says truth (

" Bisa knight
"

)
, soqis true

(
{ It of,

then B says truth C "
Weave opposite types

"

)
,

so pisfalse .

>(p→q)^(q→'p)

ppg
P→q q→' p (p→q)ncq⇒p ,

T

,=T
T F F } NOT TRUETfF F T F (premise - ifp)FtT T T TFt

F T T T

III. then A-
says a lie C

"

Bisa knight
' '

)
,

so 78 .{
If .

q ,
then Bsaysaliedweare opposite type

"
) ,

so 'p .

btp→iq)nc'q→'p
7

P

,pGqP→q
8→' p

ipiqiniqop
,

T T F T F
F F

T
,= FtT F FFTT

,=
F T F " Aisa knave

Ft Ft
T T T ← premise ('

p) is true and Bis also a knave
.

check pill Jan 17,2017

Def Bit =
"

Binary Digi
'

= Tail Fco)
%/ b % b % !

AND 0 I 0 0 0 0 I

OR I I I I 10 I

XOR I 0 I I I 0 0

Def tautology is always true ex . pvp

pot
Det contradiction is always false ex . Pip

Def contingency can be true or false (neigher Tautology nor contradiction)

identically
1

"

=Def peg =

"

triple equa p and q are logically equivalent if ptq is a tautology

pit28

Predicates & Quantifiers 1237

* Propositional logic deals with small fixed sets of objects

* We want to talk about sets of objects
" for all

"

and
' '

there exists
"

← quantifiers
* We Want variables in our expressions .

← predicates

EX . predicate RX) =
"

X >3
"

ex . Qlxy)=' '

X=yt3
"

ex . consider the swap operation sample code

M4)=T(since X= 4>3) Qc 6,3)=T (since 6=3+3) Swap(X , y) = Pre X=A^Y=b
Swaptxy

)

PR) =F(since X -2>13) QH ,z)=F (since 6-+2+3) Post X=b^Y=a Temp
=X

¢
predicate Where a & fare constant X =L

Det FX ES
' Qix) =

"

There exists an X in the set 5 such that Qcxs
"

Y=X
us existential quantifier =

"

there exists
' ' end swap

Det IKESQcx) =
"

For every x in the sets , Qixs
"

↳ universal quantifier =

"

for every x
" ' ' for all X

"

.

* De Morgan's Laws for Quantifiers p47
'

IX Pcx) -= FXRX) HXRX) ± IXPCX)

* Combining Quantifiers

in when mixing ,
order is Important p .

60

eg , FXIY Play) ¥ 7- yttx Play)

such like Play) =
' '

Xty=o
"

in

VXIFMXY) =

"

For every real number X , there is a real number y se Ray) true

IYVX Play) =

"

There is a real number y st .
for every real number X , Play) ← False

suchlike Pcxiy) =

"

XtY=z
"

YXFYIZPCXYZ) in True

IZYXYYPIXY , £) " ' False (There is no magic number 2- whose value is the sum of any X and any Y)

but if PW .y)=
"

XtY=YtX
"

, it work ← sometimes Eu works
, depends on Play) Ego through all

possibility In your

1260 head and see

If It's true or not

* Practice : Translate from English to Logic & from Logic to English
-

' '

the sum of two positive integers Is positive
"

= FX Yy E z Xisonyotxtufoun ← Your PRY)
← Note : there are many ways to say

- Gx) =
' '

X owns a computer
"

Flay) =

"

X and Y are friends
"

YX (C (X) V 7- Y (CCY) AFCX , y)))

' "

everyone has a computer or a friend who has a computer
- IXYYYZ ((FCX

, y) A Fix , £) A (YFZ)) → 7 Fly it))

Step I examine (Fcxiy) ^ Fixit) ^ (ytz)) → ' Fc Ya)

" If student X and y are friends
, X and 2- are friends

,
and it y and Z are not the Same student

,

then Y and Z are not friends

Step21 original statement in there Is a student x sit . for all students y and all students Z other then Y
if X and y are friends and if X and Z are friends

,
then Y and 2- are not friends

Step31 generalize the expression " '

' '

there is a student none of Whose friends are also friends with each other
-

"

There Is a woman who has Taken a flight on every airline in the World
.

"

Step 1 change the statement Into more
"

logical way
"

i "
"

There is a woman on the Earth st
.

for every airline on the Earth

and there Is a flight of that airline that the Woman has taken"

Step21 create the proposition
Tcw

, f) =

"

w has taken flight f ' '

Set
, a) =

" f is a scheduled flight (route) on airline a
"

Step31 I Wttazf (Sofia) ntcwf))

✓
a conclusion reached
on the basis of evidenceRules of Inference and reasoning Jan 19,2017

Det Argument is a sequence of statements that end with a conclusion fit doesn't need to be true in general
Def Argument Is valid if Its conclusion (or final statements follow from the truth of the preceding statements (premises) of the argument .

Def

Fallacy Is an invalid argument where tautology is surreptitiously
replaced by contingency as if the contingency were always true .

PYZ

premises conclusion

eg , [*ef^q]→P~ if pa
' ' it's raining

"

Statement -

D �2� q=
' '

there is a cloud
"

This Is a oontengency , not a tautology rain implies the existence
"

fallacy of affirming the conclusion
" of clouds , but the entire

(you cannot conclude Its statement Is a contengency

e.g. [(p→q) mp] →
'

of p.

' 75
' '

fallacy of denying the hypothesis
"

* Inference in Quantified Statements

- universal instantiation

(FXES Pcx)) → Pcc) for any individual C ES

e.g.
' '

All humans are mortal
"

t where Mcxt
' '

X is mortal
"

"

Socrates is a human
"

H = { all humans }

⇒ "

Socrates Is mortal
" HXEH

MW) ^ sett) → Me)

- extential instantiation p-76

7- XES PCX)
,

assume C Is one such element SE , Pcc)

we don't necessarily know the value . but we know Tt exists
,

so we name Tt c and continue Our argument
- existential generalization

conclude a XKX) When there is c ES sit .
Pcc) is true

- universal generalization
it Plc) Is true for all (arbitrary element c)

,
VXRX) Is true

* Combining Rules of Inference for Propositions & Quantified Statement 1277

universal modus ponents
FXES (PCXHQ (xD

AC¥
a-

Q (a)

Introduction to Proofs p. 80

there is a difference between formal & eateryproof
↳ like human conversation

Def

Theorem is a statement that can be shown to be true (facts / results) * Less important theorems sometimes

↳ a formed statement that has been proved correct are called propositions

Def We demonstrate that a theorem is true with a proof (a valid argument)

Def Axioms (postulates) are statements we assume to be true

Its Ee a principle ?

Def A lemma is a
"

small theorem
'

Which is often used to help prove a bigger theorem

Def A corollary Is an immidiate (obvious) consequence of a just proved Thm

Def A conjecture is a Statement believed to be true but not yet proved

pure deduction
Def Direct Proof uses sequence implications with axioms and previously proven statements

' " mainly directly p → . " → q

eng . Prove that
"

W is odd → ri is odd
"

n= 21<+1
,

vi. (zk +15--46+41<+1 = 2 (zktzk) +1

KEZ : ZKIK Ez = . n2= odd

Def Proof by contraposition (one of indirectproofs)

" ' We Wanna know p→q so instead prove 'q→7p
e- g. Prove that "

if 3nt2 is odd
, then W Is Odd

"

contraposition = If n is even , then 3nt2 is even

n= 2k where KEK i. 3nt2 = 6kt 2=2 (3kt I)

Since 3kt I ez ,
3n+2 = even

since contraposition Is true , if 3nt2 Is odd
,

then m is Odd

Det For the statement p→q , if we can show p is false
,

then we have a proof ,
called a Vacuous proof Jan 24,2017

which can be a trivial proof

eg . Let Rh) =

' '

n > 1 → n5l
"

,
show Pco) Is true

(0>1) → (02>1) Is true since F → F is T ← vacuous proof 1284

eg .
Pcm =

' '

a , be 7£ ^ a zb → an > li } ,
show PH) is true

plot =

"
a . he ztn azb → aTzb° "

a0=I= 1 ← trivial proof

Def Proof by Contradiction (one type of indirect proof) shows a statement por Tp is p86

false by using contradiction

e.g. Show that at least 22 days must fall On the same day of the week

Sun Mon Tue Wed Thu Fri Sat p (that you wanna show) = Original statement <
i

"

? 3 4 5% "
>

Let 7p=
" at most three days of 22 days must fall on the same day of the Week

"

But we have only 7 days to chose from a week .

← Once we 've chosen zhmdanysxevery calender day has been picked
at least 3 times

.
(There's no 8th day in a week)

Therefore , 7p is false (p is true) QED .

* Proof Methods & Strategy
- Exhaustive Proof " showing all examples 1292

e.g. Shows that 2
"

< 100 if h< 7 2
'

= 2<100 ,
22--4<100

,
23--8<100

,
24=16400 ,

25--32<100
,

26--64<100 , 27--128>100

- Proof by Cases = cpivpzvpsv pit)→q

e.g. Shows that IXY 1=1×11 YI where X , YEIR
case cis Xzo , Yzo = IXYI = XY = IXIIYI

caseciilxzo , Yoo = IXYI = - XY = IXHYI

case Ciii) xco , YZO = IXYI = - XY = IXHYI

casein) X< 0 , Y< 0 : IXYI = XY = 1×114

Therefore
,

in all possible cases ,
1 XYKIXHYI ← exhaust all possibilities

- Existence Proof " shows FXRX) p. 96

[Constructive " ' shows an actual example of X sit Pix) is true

Non constructive ' " doesn't show an element X but shows its existent

eg , Prove the Thm = 7- X . YEHR-a) sit , XY is a rational number

If X=Y=R ,
XY =fz^

If ER is rational
, we 've done ← constructive Way non constructive Way

Otherwise
,

Fit is irrational , then let Xirk
, y=fz i. xt=HrM=f2= 2 EIRJ

Therefore
,

IX. YE (R ' Q) by showing 2 cases ,
but We don't know which case satisfies the Statement

-

Uniqueness Proof in shows it ytx , My) is false where Pcxs is true 1299

then Ply) → y=X (by contraposition)

e.g. x . yek , xx , y >o
.

prove Exitthmyajhyzmeayhxmeyrtric
 mean

p.gg

(X+Y)/2 > Ty ⇒ (xty 5/4 = XY ⇐ (Xtyt >4xy

a X2t2Xyty > 4xy a Xtzxy +5>0 # (X -yp > 0

(X - YBO where XFY is true

So we conclude that if X and y are distinct positive real numbers
, (Xtyvz > Fy

- Backwards Reasoning (Proof strategy) Janzb , 2017
xty

" ' Assume X and Y are distinctn positive real numbers

* in this case , statements must be transformed with biwnditional (← ')

-

Looking for Counterexamples " ' shows a statement false
p . 102

D The conjeeion may be false

�2� Failing repeatedly to find counterexample sometimes give a hint to prove
�3� Lack of counterexample is NOT proof

* Note = Prove or Disprove
e. g , Fermat 's last theorem

p . 106

Xhtyk Zn has no solution in X . Y , ZEZ With XYZ to whenever he K with n > 2

Sets
=

Def = a set is

unhardened
collection of all of numbers, elements

, Objects , things ,
and anything p.

116

which is unlike a list (ordered collection)

eg , vowels = { a , e . i ,
u

,
o } = { a . i

,
u , e , O } = { a , a , e , i , u . o.O , o }

p.
116

W = { / , 2,3 , in } = { 17 . 14 ,
' " }

R = { 0
.

± I
, 1=2 ' " }

Def membership symbol E in XES =

"

X is a member of S
"

Def AEB =

"

A is a subset of B
"

iff VXEA (XEB) or iff FX (XEA → XEB)

Def ACB =
"

A is a proper subset of B
"

= (A e 13 ^ At B) ^kNote= AEB allows A=B

Def 01 = { } =
"

null set
' '

,

"

empty set
"

* Venn

Di§ams
it tt=' '

universe
"

A B Thm OES for any sets

need to show YXCXEO → XES) = YXCF → XES) ± FXT ± T QED
.

mm

vacuous proof p . 84

Def a power set of a given sets is the set of all subsets of S = Pcs) pin

e.g. power set of the set {0-1,2}
PC { o , 1.2 }) = { 0 , { 0 }

, { I }
,

{ 2 }
,

{ 0 , I }
,

{ 0.23
, { 1.2 }

, { o , 1.2 } }

e.g. , P (0) = { 0 }
,

Pl { 0 }) = { 6 , { 0 } }

* Ordered n . tuple " has n elements and order is important H
"

two lists are equal to each other only if the same elements in the same order

eig , if n=z ,

"

ordered pairs" if h=3 ,

"
ordered triples"

^

.
(2.5) (Xif) Fly , X)

0
•

(512)
>

Def A and B are 2 sets
,

The Cartesian Product of A and B is A×B= { (a ' b) IAEA ^ BEB }

A×B×G={ (aibic) Iaea ^ be Bncea } state coabmmantkhach
End

* Set Operations A B

AUB
Def "

union of A and B
' '

= AUB = { XIXEA v XEB }

Def ' '

intersection of A and B
"

= ANB =

"

{ XIXE An XEB }

Def A and B are disjoint if AAB = 0 it ACB , AIB
MB

Tt Tt

Det set subtraction = A- B (or

"t#T§T={ Xlxe An XEB } A -13=0 A B A

Def Given a universe Tt , VILA also denoted A-
,

whiois a complement of A

p. 130

Function p . 138

Def : a function (sometimes called map transformation) f from A to B takes every element of A to exactly one element of B

e.g. Y=fw) f=A→B

y€B^⇒←
 this is NOT a function

* Note that BEB can result from multiple values of a EA

⇐:#£ "
flat =L but flat has only one value

a a

XEA

A

tB_
Def

= b is the image of a under f Jan 3112017
a

• f→ y•T
f

a is the pre - image of b under f

domain Co domain

Deft Range of A under f = { be BI 7- ae A feat =b } ← range E Co - domain

Def
= function f is I - to - I lingiective,

an injection) iff fear fcb) → a=b

i.e. each b has only 1 pre - image
Vatb Hla) - for) → a=b) of Haff (ath → fta) the))

Def
= function f is onto (Surjective , a surjection) iff FEB I aeflatb

ie , every member of co - domain B is
"

covered
"

by the image of something in A

co . domain = range ,
f CA)=B

e. g , A = IR
,

13=112 then fcx) = Xi (fi A -713) is NOT onto

A= IR ,
13=112

"
then fix , = xi (f- A → B) is onto

+4¥
 they don't have pre - image where 13=112

Def -

. function t is bijectiveiff it's both injective and surjective aka
"

I - to - I correspondence
"

12141

Def : Let fi A→B be bijective .
That means VBEB IAEAFKI

The inverse of f
,

fTb)=a
,

to be the a st , fiarb i.e. ftbra if fobijective function * If fis not bijective,

Tim fifth)) = b and f '
Hca)) = a T

'

is not defined 17.145

Def .

. Composition of function

(fof '

) (f) - fifth ,)=f

C ftof) (a) -
. fitful)=a

where g. A→B
, f=B→C(also at A

, be B)

Hog) (a)=f(g(a))=flb)=c EC

A gla)
B t*site¥7

fog

Def - The graph of f- A→B is { lab) IAEA ntlarh } pt48
meIt doesn't need to show visible Images on Xy - coordinate ⇒ Graph zs a set of pair C ntupk)

Def : f is well - defined if YXEDIYEG sit , Yifcx) p. 149

eg floor (X)= LX

]÷myaEz=tY±X
)

LTLJ =3
, L . 41=-4

ceiling(X)

=Tx7±myinez=(
YZX)

Fit = 4 , Fat -3

* Inversef÷-3; This fan has No inverse
' -5 . since # XEAHXFYEI

Relations
=

Def
= Let A ,B be sets

, recall that AXB :{ (a .li/aeA.beB }

A relation R is some subset of A×B

We write a Rb to mean
"

a is related to be under R
"

e.g. A= { students of VICI }

B={ classes of UTGI }

Let SEA
,

CEB
,

and sRc=
"

students is taking class C
"

* In general , relation is many
- to - many (NOT 1- to -1 or onto)

* function C Relation

#funegtion$ relation
relation

* some formulas aRb eg ,
relation on 7£ Is R= 1 =

"

is divisible by
"

A=f i. { (4,2) , (6,3) , (9.3) } C R

a Eb (4.3) ¢R

azb etc , "
also , # 1<>1 EK

'

st , C 11 , HER #
"

11 is a prime number
"

* Binary Matrix , "
I is true (In relation) Rel

a b C d e E B

7 0 0 I 0 I

2 0 I I 0 1 eg . IRC
,

|Re , 3Rd

z
1 0 1 1 1 42a

EA

* How many possible relations exist ?
maximum

(Recall Rettxb IAKH , 113km
, each entry zs 0 or 1

total # of possible relations zs ±n@
' entry

EF On 3×5 matrix , there
↳ Options

23×5=215--32768 possible relations

* Properties of Relations on Ax A

D (a , a) ER =
"

A Is reflexive
"

12576

�2� [(at) ER t (f , a) ER] =
"

A Is symmetric
"

12574

�3� Ya , BE A [(a , f) ER ^ (f , a)=R → a=f] I [# (a . f) ER ((b , a) ER ^ (Atf)] I
"

R is anti - symmetric
"

1 1

 01
D 1

= , ,
NO symmetric pair of relation (where element is 1)

-
. I 0n0

1
O 0

,

°

1
, ,

°
0

D [(a , f) ER ^ (f , c) ER → (a , C) ER] =
"

Rts transitive
"

12578

e.g. =
, >.<

But t Is Not transitive

* Combining Relations 12579

Note : Relation Is just a set of ordered pairs ⇒ using set operations on relations to define new relations

eg . A = { students }
,

B = { courses }

Rn = { has taken }
,

Rz={ need to take in order to graduate
"

What do they mean Rink
,

KUR 2
,

Rn Ak
, R - Rz

, and Rz - Ri ?

Rink =

"

all courses a student needs to taken and has already taken
"

ORN
KURZ =

"

all courses a student needs to taken + has already taken"
~

KAR =
"

all elective courses that a student has already taken t required courses to graduate but not taken yet
"

Rn -122 =
"

all elective courses that a student has alreadytaken" "

Rz - R ,
= all required courses to graduate but not taken yet

* Composition of Relations 12580

Let RE A×B
, SEB ×G

then So R = { (a , c) I a EA , CEG , If EB (ab) ER ^ (b , c) ES }

* There can be multiple cs for any a ,
and vice versa

e.g. R=
"

is the parent of "

(aib) ER , (b , c) E R (a . C) EROR ← a has more than 1 grandparents
* Recursion relations 12580

RHR
,

122=12012
,

" '

,
Rh "= Rho R

Thm= R on a set A is transitive iff Rne R th >0

H) suppose HER to ,
RER is true

Note that (a ill ER and (b , c) ER → (a , C) EROR = 122 since PER
,

and (a , c) ER

(←) it's too hard To prove now , "

* navy Relations

" ' defines relationship between multiple entries simultaneously
Def - given sets A

,
Az

,

" .

.
An (Domains) ,

n is the degree of a relation RE Aix Az × in × An

eig , IN × IN × IN st , act < C

e.g. (A , F 5 ,
D . T) = (

"

Airline ,

" "

flight #
"

,

"

departure city
"

,

"

distinction
"

,

"

departure time
"
) p . 583

e.g. p. 589

:uonfguef

(Airline , flight #)
,

(Airline , departure time)

(Nadir
,

122 , 34 , Detroit
,

08=10)
,

(Nadir
,

199 , 13 , Detroit , 08=47)

(Nadir
, 322,34 , Detroit , 09 - 44) ,

(Acme , 221 ,
22

, Denver
,

08 : ' 7)
,

(Acme , 222
,

22 , Denver
,

09=10)

e.g. a) Yes C # of key = degree M

b) No

C) No

* Brief Review of Matrix Feb 7 , 2017

A=[al
,

Aa"n da's] 2 rows
,

3 doumns
"

2×3
"

- Addition : element by element (both muse be the same size)

- Multiplication (Dot Products

}

.TT#mno.kgfB=fg
= } ,F,¥÷

WA bean 'm matrix and Bhanmxk matrix ' The Product of Aandb denoted by AB is the nxk matrix andres pipq
element cij (lei en

, 1±j=k) is

Cij
= ain bijtaizbzjtintaimbmj

=¥najxbEi
i. throw j - th column

* Amount of computation in A inB

each element of G costs m scalar multiplication & Cmt) additions 1 x#
, Aixbxj)

total # of elements in G is nxk

i.

THcostIsn×m×kfmnmn
Th± (ABK = ACBG)

But the amount of computation could be different

e.g. , Let Aloxzo
, B2o×}o ,

(30×40

AB (ABK since CAB)
,o×]o

cost of (ABK =

(10×2*30)
tcloxoxllhm = 6000+12000=18000

much
" A (BG) = (20×30×40)t (10×20×40)=24000 +8000=32000

J
more expensive ⇒ From GS prospect, We choose (ABK in this case C faster)

- Property of Matrix

I = identity = [#; (otherwise 01

nut must be square

AT
= transpose =

"

flip across diagonal
"

if AT =A
,

A is a symmetric matrix ← if AT
= A , A is a symmetric

* Representing Relations (binary relations)

- list of Ordered pairs RE A ×B = { (ai ,
b ,) ,

1 ai , fz) in (Ax , by) }

- Matrix (Boolean)

,p#¥3,
, if (ai ,bjs€RI 0

⇒
where MR=[mij] =

{
0 otherwise

e.g. MR where R= "

idevidsj
" i ,j< 5

7 23 4

%
 0 / 0 /

3 0 0 I 0 ← antisymmetric
4 0 0 0 /

R is reflexive Iff aka VAEA Symmetric iff are ←>bRa antisymmetric iff aRenbRa→a=f I is reflexive
^ symmetric

i ' 0 I
(

the element has I
{

anti - symmetric"

, 1 tin
, 0 0 1 0

Composition of Relations p. 182

say R relates A to B ,
S relates B to C

Define MR and Ms as above , then MRAS relates A to C sit .

MR@s = [tij]
, tijal iff IK (ai Rek ^ bkrcj)

Then M Rios = Boolean Product of matrices MRO Ms

Matrix multiplication with X being ^
,

+ being ✓

* Digraphs (Directed Graphs)

e.g. a → ftl*¥¥ * g.

a % ' aRd . bRd , Her , are , cRa ,
onset

 tool'

d arrows =

' '

edge
"

,
letters =

"

node
"

in the graph

Note : if R is symmetric ,
all arrows must go both ways ⇒ the graph is

"

undirected
"% MR

µ output
a f c d

a O 1 0 1

bOm0 0

d 0 1 0 0

↳
Input

* Closure of Relations 17.597

Given R under property P
, closure of R under P is the smallest new relation S that both

D has property P

�2� contains R as a subset

e. g MR = '

too
,

.
,

reflexive Claus are " ' add 3 elements

eg Reflexive closure of R = { (a , b) EK 1 a . b }

p
5 = Rwo = { (a . f) 1 a < f } U { (a , a) 1 a E z } = { (a . b 1 1 a If } : , reflexive enclosure of < is E

W

e , g. Let R be
"

a
"

on integers . Create a symmetric closure of R

MR = °oo
.

all 1

a , , •

'
'

oo 5
WAMA add

mninnimunm
Relation

while keeping the original relation R
kswanna

change this = . Closure (R) = R U { (a , b) l (b , a) ER } = { (a , b) I a < b v a > b } = { (a , b) I atf }

symmetric closure of
'

's
"

is
"

<
, >

"

AKA
"

t
' '

tech Def closure = Let R be a relation on A × A , Let P be any property of relations (eg , reflexive, symmetric , transitive etc)

If I a relations sit ,
S Is a subset of every relation satisfying P that contains R

,

then 5 is the closure of 12 under P

ie , IS (Pcs) A VT (Rt ^ PCT) → SET))

⇒ if this evaluate Is TRUE ,
5 is the enclosure

* Transitive Closure ← The hardest one Feb 14 , 2017

Let R= { (1.3) ,
(1.4)

,
(2.1)

, 13,2) } Note = R Is transitive if are ^ hRc → arc

Step I since 1123
, 3122 = Is 1122 ? → No then add It ⇒ how (1 , 2) ER

What else ? zk ,
112 } → (2.3)

zk , , Rq → (2,4)

3k
. ZR , → ↳ , , ,

| added

Step 21 Now
, need to think the added relations too

1/22
, ZR ,

→ (1,1)

3122 , 21234 → (3,3) , (3,4)

2/23
, 3/22 → / 2 , 2)

step 31 Again , think about the new relations

1123,3124 → (1.3)
,

(1.4) ⇒ Transitive closure of R is all these pairs with R

Lets consider an easier way

1

,p#s.

3 recall def of transitive Considering Patties here

2 . .

4
if la 'sb) ^ (b 'sc) → (a5c)

←

a

#i#i→¥£ii→I¥k→i¥¥*i→?¥#k,Co

Path on directed edge
Def = a graph is a set of nodes and a see of ordered pair on nodes called edges

XRY
Def = LEHIs a directed edge .

Path P Is a sequence of edges EE = (Xi , YE) st. Yi
= Xia (second node in ei Is the first node In Eta)

E.g , (a if) , (f , C) , (C , d)
,

(di c) ' ' .

Def
= Path length Is the number of edges In the graph (= # node - I)

e- g , as→j→t path length =2
,

3 nodes

Note D Path from a node to itself can be length zero it no self . loop or any non - negative integer if aRa ← ?

�2� If K edges & last node = the first node where 1<>0 , this is called a circuit or circle t€l
�3� both edge and nodes can appear more than once

Recall composition of relations RoR=R2

In graph terms
,

R2= set of path of length 2

path
eig , if a Re ^ bRc

, (a , C) is in 122

Ro Ro " , OR = Rk = set of path of length K Note = by definition
,

R°I I = path of length 0

* V

Def . R*
= §,

Rk
=

"

connectivity relation on 12
"

=

"

reach Ibility of graph on 12
"

I transitive closure of 12 P, 602

Th± R*= ¥,
R where h = # nodes (elements of A)

* cost of computing transitive enclosure of a relation R on A × A where then
size of A

R can be represented as a binary matrix nxn = 14

R
'

can be computed as Mx M which costs = n3
,

n times → total cost is at most 0 (n4)

' " actually can do R* In n3 times

* War shall 's Algorithm - think of connectivity

Letmahfox
,

= MR = matrix representing R (directed graph)

Def = Wx I Matrix of readability C 5 , j) but only allowed to use intermediate nodes l ,
" '

, K

R 6

:
g . (P 605)

← now there is a path
from f to d via a

know there is a path from d to a via C

* Equivalence Relations

Def : a relation Ron set A is called an Equivalence Relation (ER) if it is reflexive, symmetric ,
and transitive .

e.g. old - style G - language only used first 8 characters of carriable name to identify

int this Variable : } equivalent names in old G - language
int this Variation ;

Let R be a relation on all strings of all length where are if they share first 8 characters

reflexive
, symmetric ,

transitive

=
- given an ER . a set of strings starting with " this Vari

' '

are called
"

Equivalent class
"

e.g. (p, 610)

{ 0 , 4 , 8 , 16 in } = [0] =
' '

equivalence class of 0
"

{ 1 . 5.9.17 , " } = el] =
"

" of 1
"

all reflexive , symmetric ,
and transitive

{ 2 . 6 , 10 , 18 " D= [2] =

"
" of z

"

{ 3.7 , 11 , 19 , " } = [3] =

"
" of 3

"

Feb 16,2017

Def
= Two related by an ER , they are called equivalent ,

a~b * speech 25Mt

Note :
"

a ~b
"

order is NOT Important (are is symmetric here)

e.g. Is IX - YK 1 on ER ?

reflexive ? 1 X - XK 0<1 I ; symmetric ? IX - yl =L y - XI I ; transitive ? 1×-21<1 nly -2-1<1 A1×-2-1<1 1

⇒ NOT ER .

Def = given a EA and on ER , let [a]R = { felt 1 are } called
"

equivalence class of
"

A can be f since

ER → reflexive
We say a is a

"

representation
"

of [a]r but any number of [a]p Would suffice

e. of , what is [3]R if R = { (a , b) EE
' I a = f (mod 4) }

[3]R= { 3,7 , 11 , 15 , 19 in } = E 19]p

e.g. HW p. 616

a) [0]R= { o }
,

[I]R= { I }
,

[2]R= { 2 }
,

[3]p= { 3 }

C) [0]R= { 0 }
,

[I]R= { 1 . 2 } , ([2]p= { I , 2 } = [I] p)
,

[3]R= { 3 }

Thm= a Rf ←> [A] R = Tf] R N [a]p n [f] R =/ 0 on E , R ,

corollary = a$f ←> [a] Rn [b]R = 0
p.

613

corollary i ¥A Ea]R = A ← since A is on ER , reflexive
union of all elements

More generally , given only set of subsets AIEA , we say that

{ Ai } form a partition of A iff ti { Ai } ¥0
, its ⇒ Ain Aj

= 0
,

and UAI
= A

for all i

A partition of A implicitly defines a relation R on A

Thm= Let R be an ER , on A
, then the equivalence classes of R form a partition of A

partition diagram
Conversely , given a partition [Ai] of A .

 7 ER . R. that has At as Its equivalence classes → stronger Venn diagram

* Partial orderings p. 618

Det = given a relation R
, R is called a partial ordering of A if R is reflexive

,
anti - symmetric , and Transitive on A AKA

"

poets
"

e.g. 2 on K

AZ a in reflexive
, a 2 b n a eh → a=b in anti - symmetric ,

azb ^ bzc → a 2C " transitive

⇒ 2 on K is partial ordering on K

e.g. devices
"

I
"

on 7£

ala in reflexive , alfn Ha → a =L " ' anti - symmetric ,
albnblc → al C " ' transitive

⇒ "

I
"

on 7£ is a partial ordering on I
'

* why called
"

partial
"

ordering ? C P . 619)

Def = a Re v era we say a and f are
"

comparable
"

in the eg of
"

I
' '

,
3 and 9 are comparable ' i 319

Def = If all pairs In A are comparable under R
,

but 5 and 7 are not comparable C '
i 5117 and 7th)

then R is a total ordering → part of 7£ are comparable

' ' ' total ordering E partial ordering general I

Def If Ron A is a total ordering ,

and every non - empty set of A has a least element , then A is well - ordered under R

e.g. I Is NOT well - ordered since there no least element

eng ,
the lexicographic ordering Is well - ordered set

↳ (A , , a <) < (bn
, fz) If A , < f , V (a , = f , n Az 4 be) Feb 21

, 2017

e.g. Words In a dictionary : shorter words come first before longer words it the shorter word is the short of the longer word

eg ,

" and
"

< " andromeda
"

* Hasse diagram on PottsPity check Ics 46 Note (Algorithm)

step 1 create directed agedgraph (

DAGDM reflexive , transitive

step 21 remove all edges that can be inferred from other edgesmm

e.g. 2 on { I ,
2 , 3,4 }

original directed graph

*¥550 ⇒ FW
* going up (input is bottom)

1 2 34

ag ,

"

I
"

divides on A = { 1,2 , 3 , 4 .
6 , 8 , 12 }

}f⇐p.

'

}
it Hass . diagram is written well ,

max & min are obvious

Def = a maximal element has no elements grater (<) than Itself

a Minimal element has no elements smaller (i) than Itself

.
maximum

maximal '
.

eg , from above ,
1 is minimal & 8 and 12 are maximal

8g

.

;¥p.

'

} Why. minimalDef = an element a EA is maximum 1 greatest) it bea VBEA . minimum

minimum (least) if a If ttf EA /
eg ,

from above
,

1 is minimum , no maximum ← greatest / least are unique if they exists

Det = given sets
, and subset AES

,
UES

U is called
"

upper bound on A
"

if a I u
,

-VaeA (Note u must be comparable to all elements in A)

" lower bound on A
"

if a I u
,

VAEA (Note u must be comparable to all elements in A)

e.g. from previous page (" I "
)

,
it A = { 1.2 ' 3 }

8 •

ou4 . • 6band 12 are both upper bound , (4&8 are NOT since its not comparable with 3 E A) no a 3

1 is a lower bound on any AES %
Def the Least upper bound is the smallest of all upper bounds (LUB)

the Grates lower bound is the largest of all lower bounds (GLB)

e .g , from previous page C
"

I
' '

s if A={ 6,12 }

lower bound is 1,2 , 3 → grates 't one is 3 (GLB)

upper bound is 12 → least one is 12 (LUB)

÷ 2625

*
Topological Sort C Also check IG 'S 46 Note

' '

Algorithm I
' '

)

Basically lists the elements bottom - up in Hasse diagram sit , only comparable items matter in the ordering in comparable items can be shuffled .

as Previous Page

k;¥Ij, 9.3.32
'

,4j.bg?j.hg } example of few valid topological sort

* Lemma : every finite non . empty poet has at least one minimal element

8
• • 12 • 12

* Algorithm

}#¥i, } :[ii.

suit
:L ! ! . "1<=1

.

!
3

!
3

while SFO

let Ak = any minimal element of S k 1 2 3 4 5

 67
/ et 5=5 - { ak } minimal s 1 2,3 4,3 8.3 3 6 12

corde the { jisjj4insirislet K= KH chosen one)

end while

return . "a" " " a. , t.FI?liIiIliIY::vHm:vns
. n

* Strict ordering Feb 23
, 2017

Def = say I is a partial ordering ,
then the associated strict ordering 4 removes the reflexive ordering

e ,g , I → < on numbers
,

E → C on sets

Recall Directed Acyde Graph CDAGS) = BAGS represent strict orderings because (assume no self - loop)

because D no reflexive elements Cirreflexive)

a
�2� anti . symmetric y<X→X¢yg= >
�3� transitive X< Y ^ Y< z → Xcz a-¥z implied by transitive closure

Boolean Algebra I Pell

* different notations (duality) for T , F ,
^

,
V

,TX ,
in etc practice =CT^F) ✓ ' C FVT) = Fv 'T = FVF = F

1
, 0 , .

, +
,

F
eng , X+y=1 # x=l v y=l 1 . o + # = o+T

= 0+0=0
} same

1+1=1 ,
1+0=1 , 0+1=1 ,

0+0=0

X . Y = 1 iff X= In Y=1

1
X = I

* Boolean functions (eig , FIX , y ,z)= Xytz)

In general , let 13={0-1} Bh= { (X , ,Xz , in
, Xn) 1 XIEB]

/
12813

How many possible Boolean function exists ? V

e.g. 1 bit input , 1 bit output (output is ALWAYS 1 bit) eq , F=B3→B

To/ Foo'|Fg2|Fy /Fy
in general ,

n bits of input ⇒ I rows

⇒ columns each also have 2
"

entries (each entry is a bit)
= 0 = I =X = 1

⇒ requires 212
"

'
columns P. 814 the case of 2 bit input # Fon

= 222--24=16
mm

Most ' '
normal "

algebra rules apply directly ↳ # boolean fans

leg , Predince
' '

,
.

, + complement is applied immediately after evaluation of underlying expression

eig , fyutytcath) = Xatxfyatybn
atlas FEE each of these terms "checks

"

one of 4 possible case of ' ' there's at least one T inside each parenthesis
"

Both T→T

e.g. (Xty) (Xtz) = Xxtxztxytyz

=X(Xtytz) + YZ

%
Xtyz

Th± Xtxtytz)=x

Prof 1) Prof 2) truth table
Tora is T

expand XXTXYTXZ = XTX (ytz) = Xcltytz) = X X Y Z XTYTZ Xlxtytz)
Mf O 0 0 0 0

0 0 / I 0

0 I 0 1 0I0 0 / II
 0 I I

* Representing Boolean Functions I 1 / 1 1

Def : a literal Is any Boolean variable leg , X)
,

or its complement (E)

Det = Given n literals X , . Xz
, in

, Xn
,

a minterm is a product containing every literal or its complement exactly once

e.g. Y , .Y< . Y } ' " Yn where Yi is either Xi or Xi

Def
= a Boolean sum of minter ms representing a fun is called the

"
sum of products

"

or
"

Disjunctive Normal Form C DNA
"

p . 84

Th# given W Boolean variable , every Boolean on them can be expressed as sum - of - products C i.e. DNF)

eig , Find DNF for FCX . y ,z) = (XTYIE

= XETYE OR truth table

= Xcyty)zt (XTXTYE

= XYE txyztxyztxyz
= xyzixyztxyztxyz

Xtanctional Completeness

defines some set of operators then can express any Boolean function

Thin the set of Boolean operators { t
, .

,

-

} are functionally complete

Note : We can eliminate
' 't

"

by De Morgans Law

X+y= XI ⇒ { u

.

-

} is FC ,

Can we find smaller set of operators That is FG ?

e.g. NANDIX .y)=XT ,
turns out HAND itself

,
is FC

.

* Logic gates (Circuit Diagrams) p. 823 Feb 2812017
p ,828

I AND)
combinational

connect zones cnvcnitsgating
eis . ixtyicxyi

xy .€tg]⇒.→r0R⇒⇒→
network

eg , Design goal = create 2- switch tight mon with ##orD*T# pet

Fix ,y)=XytXy
⇒it 's off when txytxy

* Binary Addition tlthisis NOT
"

NAND
"

bg ,
11011+01001

, / / ← carry p , 826
x - TID

' ' ° / / Ttsaffftdder +a↳y}I→EY+x5sum

+ o / O 0 1 to get { 5km
Y£D→xy

carrycarry

/ O 0 I 0 0 ← sum Half Adder
(for each digits

p.si

Si→

XiaIii

* Binary Subtraction

Half : Difference

=XtOY
Full : Difference =XiuAYiuABi

Borrow = XTY Borrow =Bzu=N#uBitXrtiyitityiupi

* Languages and Grammars p 847

- symbol

Intuit
 token syntax = form of an expression (we don't care it the statement is nonsensical)

i
= 2 ; statement / sentence semantix = assigns meaning ↳ But we care if a statement is valid

phrase
I =

2*i'Iin
expression

* parse tree (derivation tree)

eig , Z= 2*1+1 e.g. p, 854

=* , \

⇒'
�2� D

Det = Grammar describes a language by describing syntactically Valid sentences (phrase1 statement)

Def = a set of valid statements describes a language

Def = tokens (aka terminals) are atomic line , smallest meaningful strings)

Def = symbols describes parts of sentences and can be terminal or non - terminal

e.g. (English sentence)

sentence → noun phrase , verb phrase
Here

, this means
"

can be expressed
"

or
"

produces
"

noun phrase → article
,

noun Verb phrase → verb , adverb ← non - terminal

article →
"

the
" ok"

a
"

verb →
"

runs
" 1 "

eats "

tyqrmua, ,

} symbols

noun →
" horse

"
1

' '

rabbit
' '

adverb →
"

quickly
"

I
"

slowly
"

Def = phrase - structure grammar G = tv
, T , S

, P) March 2,2017

T
= Vocabulary " a finite , non empty set of elements called symbols 7849

T = terminal (non - Terminal N=VH)

P = productions (aka production rules)

5 = start symbol Def = R , the empty string , is the string containing no symbols

ag ,
S → a laser

OR

Valid Statements = A , a b
, aaff , aaafff , in = { a

"
f

"
I h= 0 , 1 , 2 , " } p , 850

Let Wo = l Zor be a string of symbols (which could be terminal or non - terminal)

Wi =L znrbe a string of symbols (which could be terminal or non - terminal)

Def =
 if 7- production sit

,
Zo→z

, then we say string W , is directly derivable from Wo , written Wo ⇒ Wi

e 'S .
mm articlenneunnWFmm

' '

Itch'd
'

nounmrw ,

lit Zo r l= a Zi r

Deft Wo⇒W , ⇒Wz⇒ in ⇒ Wn
,

we say Nn is indirectly derivable from Wo , written Wo ¥ Wn
,

and the sequence of Steps .
Wo⇒Wi⇒Wz⇒ " ' ⇒ Wn

, is called a derivation

Det - given G ,
LCG) is the set of all valid sentences derivable from G

, aka the Language defined by G

Note = There can be more than One derivation showing Wo ¥ Wn

g
Professors Def definitely more than 1

Note = Most Language can be described by many grammars = YL IGLCG) =L

* Types of grammars (restrict what types of productions are allowed)

Type 1 Context - Sensitive grammars = l At → lwr (you can only replace A with w as long as between l&r

' '
A can only produce W if surrounded on both sides by land r

,
I .e ,

land r provide the only context In which A can be replaced with w

"

Type21 Context - free grammars = A→w
"

A can be replaced with w anytime
"

Type B
"

Regular
"

grammars (only 3 types of productions are allowed)

I) A

→ikg"¥%B w| a- terminal & A ,B are non - terminals

: lows left - to - right parsing of Input strings , reading exactly one terminal at a time

e. g , from previous page

sentence →
"

a
"

nvp I " the
"

hvp

nvp →
" horse "

VP I
"

rabbit
'

vp

up →
"

runs
"

adv l "
eats

"
adv

adv →
"

slowly
"

(E) I "

quickly
"

(E)I E → R)

* simple example of mathematical expressions

eg , Xty , (Xty)*y , ((Xtyhty) TX

F- → C E) 1 E * El Et El V parse tree ,t\
"

C X*y)tX * XV → xly at
* Backus - Naur Form (BNF) p . 853

ASCII method describing productions

< E > : : = (< < E > >) where < > is non - terminal

< v > : :-. xly

* Midterm review

,
power see always

March 7, 2017
contains 01 NULL

Part A 4a) An B = { 4,5 } i. PCANB) = { OY{ 4 }
,

{ 53
,

{4-5} }

Part B In >o n HEFT.
"

"
"

h= 3=2+1 since this is an existence proof, showing one example is enough

#7 Hint = (ABM = Be At

Def (of symmetric matrix) i AAt= (AATP The last Q (you done need to prove it)
in thisclass

. W=z\z
.

Let B= At then AB = (ABP = Beat
= A At ⇒ A At

= (AATT #,
Hcmxif ,z)EN4 [h >2 → xntyntk

"
]

Mr

#89t÷Ih } 4 pairs , .

24¥69
 ordered pair

* Finite state machine

Integer to bit string
(base 2)

e.g. 6 = 1.22 + 1.2
' + 0.20 → 00110

Goal = find FSM that recognizes base -2 Integers That are even ⇒ (bit string) end with a zero

if you ->o
SO

spare
 state

read the /
,

)
State 0 >§⇐@J self - loop

°

Tsuccesfful
end statement with double - circle

next

transition ¥Mb¥ state input state Output FSM = FSA March 9 , 2017
0 b

so
1 a ending state can be more than 1 success state

a a a

0 b
b

, a

FSA I FSM " , used for language recognition

Let V = Vocabulary (tokens
, Terminals 1 non - terminals)

V*n=Strings (not necessarily valid of vocab)
(zero or more

concatenated members of wcab

e. g , IntdiIITIII in 5 tokens valid string in Gl Java

Let A , Bare sets of strings from T*
,

then AB = { XYIXEA , YEB } p .
866

A , B ET* eig ,
A = {

"

input
' '

,

"

output
' '

}
,

B = {
"

X
"

,

"

y
' ' }

string AB are
"

input X
" "

input y
" "

output X
" "

output y
' '

Det -
- Kleen closure of a set of strings A is

A*
= ,§o At MA concatenated K times (Not multiplication)

Def = FSAIFSM = 14=15
, I

, f ,
So

, F)

p . 867
Where S= set of states

I = Input alphabet

f = state transition table

So = start state

F = set of successful final states

Def = string X=
' '

Xo x , Xz in Xn
"

Xie terminals tokens is recognized

if machine M Starting in state So and reading entire X ends in a state In F
,

Note = Two FSMS are equivalent if they both recognize the same language P ' 868

1 $ -7 $
et sat liop€

' ✓€p@÷s@B'Dl$ → $
6

Lc Mo) =L (Mi)

* NDFSMS (non - deterministic FSMS) , " only mathematical construct

e. g ,
TSP (traveling salesman problem) = w cities to visit

goal = find the cheapest path that each city is once visited → n ! possible path es Note = 40 ! > 1800

In principle , what Is the answer ? 17 a solution ?)

→ the case of TSP
, yes (a path for TSP cost < 100 ?)

nondeterministic polynomial time

Important Note = once TSP (NP - complete) is phrase as yes1 No , a
"

yes
"

answer is easily verified

Def i given a string X = Xo X , Xu " Xw ,
NDFSM "

M
"

recognizes X if I a path through FSM ending a final state in F

Note = the state table for NDFSM has multiple
"

next
' '

states

128
'

:
next state is chosen

* Turing Machines March 14, 2014

FSMS are finite
, ie

, finite memory due finite tests

eg , It cannot recognize {On T I n 203 for arbitrary n (works fine for pre - known max n)

infinite in both directions AM , ,

⇒ Turing Machines have
"

IKE,
which provides memory sourse

tape <#%→ Turning Machines have read and write capabilities
.

"
idealized

"

computer , for mathematical description only ← K¥010114111113113 →
On the tape as the control unit moves back and forth

conceptualized k> Blank

Only operation allowed = read one cell
, Write one cell , move L or R by one cell along this tape , changing states depending on

FSM is responsible for deciding what to write ,
and where to move the tape symbol read (888)

"

12889
- What 's order RIW head

- current state of FSM

Def = Turing Machine T= IS, I
, f

,
So

,
F)

Where S= set of states in FSM

I = Input 1 Output symbols +
"

B
"

are allowed on the tape
f = (Sx I) → (Sx Ix { L

, R })

cgrtrejentxilo nsfawtexiloxd

So = start state
,

F = final accepting states ES

at end
"

step
"

T
,

D find a new state based on current state + input symbol
�2� Write a new symbol on the tape

�3� moves one all left or right

p . 889

e.

: So ,
0 , So , 0 , R) RIW = 010

R RIW = 11 I
→

(So , 1 , Si , 1 .
R)

R RIW = 010
→

(s , , 0 , So , OR)

R RIW = 111
→

(so , 1,5 , , I , R)

R Rlw = 1/0
→

(s , , I , Sz , 0,1)

RIW = 110£
(sz , 1

, s } , 0 , R)

R
→

- since there is no five - tuple beginning with the pair of 63,0)

top

Def = T recognizes a string X written on Tape iff T
, starts So

,halts in a state In F

Note = If T halts on now - F state
,

or never halt , X is not recognized

Def = a language L is recognized by T iff X is recognized by T FXEL

- given X as Input , Tlx) replaces with y on tape

- We say THEY if T doesn't halt in non - F state , Tcx) is undefined

- many
"

extentions
"

e.g. multiple tapes, Multiple 14W heads , multiple FSMS " i

- almost never concerned about efficiency (except try not to take exponential time for something solvable In polynomial time)

if runtime on Input of size is ~nk for any fixed K , then polynomial time algorithm

It runtime on input of size is ~ kn for any fixed K , then exponential time algorithm
} Vik In K

"
> Nk

* church - turing = anything that is computable ,
is computable by a Turing Machine ← thesis

any such machine is
"

Turing complete
"

p . 891

QOIR 1.11 O.O , L
11 , R B , B . R

$¥2>@¥*$#>£->£->saI@0,0JTB.B.RCs@lt3.Rthe case

it has no 0 anymore)

* Complexity ,
Dead ability , Computability March 16/2017

Def = a
"

decision problem
"

is a problem with a YIN answer

Note = I undecidable problems

eg , halting problem = given & arbitrary problem P and input X ,
does p hate when applied to X ?

Def i A problem is a decidable if I a con create algorithm that always decides It

check pdf university of Waterloo
Some easy - specified functions are not computable GS 360 Introduction to the

bg , given n , what is the longest possible finite string that can be output by Turing Machine wl W states ? Theory of Computing

Note = specific small n , Its computable Winter 1998

eig ,

"

Hard problem
"

" NP - complete

P - { set of all problems computable in polynomial time by Determistic TM , }

NP- { set of all problems computable in polynomial time by non - Determistic TM , }

Does P= NP ? We can't disprove ⇒ We ASSUME PHNP (not proved yet

