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either

Def Proposition . " direct Statement of fact ( can be  truelfalse
,

but NOT both )

ex ,

"
Twnto  is  the capital of Canada ! → False

Def  '

p =

"

NOTP
"

= negation of p TRUTH TABLE P 7

P

T F

Def pnq
"

and
"  "

but
"

conjunction of pandq
F T

me
in English sentence

.

" but 't

ottenusedtoshowmoretnaw P of Png pvq poq

levenethat occur simultaneously T T T T F

Def pvq=" OR
"

disjunction T F F T T

F T F T T
' '

XOR"

Det page
"

exclusive  or
"

( precisely one ) F F F F

t
p→q)±pvq

Def p→q=
"

ifp , then
"

,

"

pimples of
"

,

"

ponlyifq
"

,

"

pissutfiaientforq
"

conditional statement aka logical implication P of p→q TP
T

p→q
mum

*  twists opposite Tocausalimphcation T T T F T

inlogtal implication, wefindlseetheresuk T F F F T

and determine  the fact ( resultant ) F T T T T

Which is NOT fact  → causing something F F T T F

since qmust be 100% (happens) Unlike real world ifx doesn't exist ,

the  condition doesn't matter

Def converse of p→q is q→p

Def contrapositive of p→qis7q→7p ,
which is  equivalent to the original statement

Det inverse of pages
'

p→q
Det p←>q=

"

if and only if
"  

= biconditional statement of pandq P of Paf
= ( p→q)^(q→p ) aka "pi's equivalent tog

" T T T

T F F

Precedence of Logical Operators p.li F T F

7
,

^
,

v
,

→ ,←> ex ,7P→q→r F F T
mtdna �3�

mm.

* Logic  and BTE Operations  " ' check Pill

.



ex ' knight & Knauff.EE#artD
-

knights always  tell truth

knaves always tell alie

A says "B is  a knight
'

!Bsays
"

We  are  opposite  type
"

.

proposition . " pa
"

Aisa knight
"

q='
'

B is  a Knight
"

Inhere to start

Ifk
then A- says  truth (

" Bisa knight
"

)
, soqis  true

(
{ It of,

then B says  truth C "
Weave  opposite  types

"

)
,

so pisfalse .

>(p→q)^(q→'p )

ppg
P→q q→' p ( p→q)ncq⇒p ,

T

,=T
T F F } NOT TRUETfF F T F ( premise - ifp )FtT T T TFt

F T T T

III. then A-
says  a lie C

"

Bisa knight
' '

)
,

so 78 .{
If  .

q ,
then Bsaysaliedweare  opposite  type

"
) ,

so 'p .

btp→iq)nc'q→'p
7

P

,pGqP→q
8→' p

ipiqiniqop
,

T T F T F
F F

T
,= FtT F FFTT

,=
F T F " Aisa knave

Ft Ft
T T T ← premise ( '

p ) is  true and Bis also  a knave
.



check pill Jan 17,2017

Def Bit =
"

Binary Digi
'  

=  Tail Fco )
%/ b % b % !

AND 0  I  0 0 0  0  I

OR I I I I  10  I

XOR I  0 I I I 0  0

Def  tautology is  always  true ex . pvp

pot
Det contradiction is  always false ex . Pip

Def contingency can be  true or false ( neigher  Tautology nor  contradiction )

identically
1

"

=Def peg =

"

triple  equa p and q are logically equivalent if ptq is  a  tautology

pit28



Predicates & Quantifiers 1237

* Propositional logic deals  with small fixed sets  of objects

* We  want to  talk  about sets  of objects
" for  all

"

and
' '

there  exists
"

← quantifiers
* We Want variables  in  our expressions .

← predicates

EX . predicate RX ) =
"

X >3
"

ex . Qlxy )=' '

X=yt3
"

ex . consider  the  swap  operation sample code

M4)=T( since X=  4>3 ) Qc 6,3 )=T ( since 6=3+3 ) Swap( X , y ) = Pre X=A^Y=b
Swaptxy

)

PR) =F( since X -2>13 ) QH ,z)=F ( since 6-+2+3 ) Post X=b^Y=a Temp 
=X

¢
predicate Where a & fare constant X =L

Det FX ES
' Qix )  =

"

There exists  an X in  the set 5 such that Qcxs
"

Y=X
us existential quantifier  =

"

there  exists
' ' end swap

Det IKESQcx ) =
"

For  every x in  the sets , Qixs
"

↳ universal quantifier  =

"

for  every x
"  ' ' for  all X

"

.

* De Morgan's Laws for Quantifiers p47
'

IX Pcx) -= FXRX ) HXRX) ± IXPCX)

* Combining Quantifiers

in when mixing ,
order is Important p .

60

eg , FXIY Play) ¥ 7- yttx Play )

such like Play ) =
' '

Xty=o
"

in

VXIFMXY ) =

"

For every real number X , there is a real number y se Ray) true

IYVX Play ) =

"

There is a real number y st .
for every real number X , Play ) ← False

suchlike Pcxiy) =

"

XtY=z
"

YXFYIZPCXYZ ) in True

IZYXYYPIXY , £ ) " ' False ( There is no magic number 2- whose value  is the sum of any X and any Y )

but if PW .y)=
"

XtY=YtX
"

, it work ← sometimes Eu works
, depends on Play) Ego through all

possibility In your

1260 head and see

If It's true or not



* Practice : Translate from English to Logic & from Logic  to English
-

' '

the sum of  two positive integers Is positive
"

= FX Yy E z Xisonyotxtufoun ← Your PRY )
← Note :  there are many ways to say

- Gx ) =
' '

X owns a computer
"

Flay ) =

"

X and Y are friends
"

YX ( C ( X ) V 7- Y ( CCY) AFCX , y ) ) )

' "

everyone has a computer or a friend who has a computer
- IXYYYZ (( FCX

, y ) A Fix , £ ) A ( YFZ ) ) → 7  Fly it ) )

Step I examine ( Fcxiy) ^ Fixit ) ^ ( ytz ) ) → '  Fc Ya )

" If student X and y are friends
, X and 2- are friends

,
and it y and Z  are not the Same student

,

then Y and Z  are not friends

Step21 original statement in  there Is  a student x sit . for  all students y and all students Z other then Y
if X and y are friends and if X and Z are friends

,
then Y and 2- are not friends

Step31 generalize the expression " '

' '

there is a student none of Whose friends are also friends with each other
-

"

There Is a  woman who has Taken a flight on every airline in  the World
.

"

Step 1 change the statement Into more
"

logical way
"

i "
"

There is a woman on the Earth st
.

for every airline on the Earth

and there  Is  a flight of  that airline  that the Woman has  taken"

Step21 create the proposition
Tcw

, f) =

"

w has  taken flight f ' '

Set
, a ) =

" f is  a scheduled flight ( route ) on airline a
"

Step31 I Wttazf ( Sofia ) ntcwf ) )



✓
a  conclusion  reached
on  the basis  of evidenceRules of Inference and reasoning Jan 19,2017

Det Argument is a sequence  of statements that end with a conclusion fit doesn't need to be true in general
Def Argument Is valid if Its conclusion ( or final statements follow from the truth of  the preceding statements ( premises) of  the argument .

Def  

Fallacy Is an invalid argument where tautology is surreptitiously
replaced by contingency as if  the contingency were always true .

PYZ

premises conclusion

eg , [*ef^q]→P~ if pa
' ' it's raining

"

Statement -

D �2� q=
' '

there is a  cloud
"

This Is a oontengency , not a tautology rain implies  the existence
"

fallacy of affirming the conclusion
" of clouds , but the entire

( you cannot conclude Its statement Is  a contengency

e.g. [ ( p→q ) mp ] →
'

of p.

' 75
' '

fallacy of denying the hypothesis
"

*  Inference in Quantified Statements

- universal instantiation

( FXES Pcx ) ) → Pcc ) for any individual C ES

e.g.
' '

All humans are mortal
"

t where Mcxt
' '

X is mortal
"

"

Socrates is a human
"

H = { all humans }

⇒ "

Socrates Is mortal
" HXEH

MW ) ^ sett ) → Me )

- extential instantiation p-76

7- XES PCX)
,

assume C Is one such element SE , Pcc )

we don't necessarily know the value . but we know Tt exists
,

so we name Tt c and continue Our argument
- existential generalization

conclude a XKX ) When there is c ES sit .
Pcc) is true

- universal generalization
it Plc) Is true for all ( arbitrary element c)

,
VXRX ) Is true

* Combining Rules of  Inference for Propositions & Quantified Statement 1277

universal modus ponents
FXES ( PCXHQ ( xD

AC¥
a-

Q (a)



Introduction  to Proofs p. 80

there  is a difference between formal & eateryproof
↳ like human conversation

Def  

Theorem  is a statement that can be shown to be  true ( facts / results ) * Less important theorems  sometimes

↳ a formed statement that has been proved correct are called propositions

Def We demonstrate  that a theorem is true with a proof ( a valid argument)

Def Axioms ( postulates ) are statements we assume to be true

Its Ee  a principle ?

Def A lemma  is  a
"

small theorem
'

Which is often used to help prove a bigger theorem

Def A corollary Is an immidiate ( obvious ) consequence of a just proved Thm

Def A conjecture is a Statement believed to be true but not yet proved

pure deduction
Def Direct Proof uses sequence implications with axioms and previously proven statements

' " mainly directly p → . "  → q

eng . Prove  that
"

W is  odd → ri is  odd
"

n=  21<+1
,

vi. ( zk  +15--46+41<+1 = 2 ( zktzk ) +1

KEZ :  ZKIK  Ez = . n2=  odd

Def Proof by contraposition ( one of indirectproofs )

" ' We Wanna know p→q so instead prove 'q→7p
e- g. Prove  that "

if 3nt2 is  odd
, then  W Is Odd

"

contraposition = If n is even , then 3nt2 is even

n=  2k where KEK i. 3nt2 = 6kt 2=2 ( 3kt I )

Since 3kt I ez ,
3n+2 = even

since contraposition Is true , if 3nt2 Is odd
,

then m is Odd

Det  For the statement p→q , if we can show p is false
,

then  we have a proof ,
called a Vacuous proof Jan 24,2017

which can be a trivial proof

eg . Let Rh ) =

' '

n > 1 → n5l
"

,
show Pco ) Is  true

( 0>1 ) → ( 02>1 ) Is true  since F  → F  is T ← vacuous proof 1284

eg .
Pcm =

' '

a , be 7£ ^ a zb → an > li } ,
show PH) is  true

plot =

"
a . he ztn azb → aTzb° "

a0=I= 1 ←  trivial proof



Def Proof by Contradiction ( one type of indirect proof) shows a statement por Tp is p86

false by using contradiction

e.g. Show that at least 22 days must fall On the same day of  the week

Sun Mon Tue Wed Thu Fri Sat p ( that you wanna show ) = Original statement <
i

"

? 3  4  5%  "
>

Let 7p=
" at most three days of 22 days must fall on  the same day of  the Week

"

But we have  only 7 days to chose from a week .

← Once we 've chosen zhmdanysxevery calender day has been picked
at least 3 times

.
(There's no 8th day in a week )

Therefore , 7p is false ( p is true ) QED .

* Proof Methods & Strategy
- Exhaustive Proof  " showing all examples 1292

e.g. Shows  that 2
"

< 100 if h< 7 2
'

= 2<100 ,
22--4<100

,
23--8<100

,
24=16400 ,

25--32<100
,

26--64<100 , 27--128>100

- Proof by Cases = cpivpzvpsv pit )→q

e.g. Shows that IXY 1=1×11 YI where X , YEIR
case cis Xzo , Yzo = IXYI = XY = IXIIYI

caseciilxzo , Yoo = IXYI = - XY = IXHYI

case Ciii ) xco , YZO = IXYI = - XY = IXHYI

casein ) X< 0 , Y< 0 : IXYI = XY = 1×114

Therefore
,

in all possible cases ,
1 XYKIXHYI ← exhaust all possibilities

- Existence Proof " shows FXRX ) p. 96

[ Constructive " ' shows an actual example of X sit Pix ) is true

Non constructive ' " doesn't show an element X but shows its existent

eg , Prove  the Thm = 7- X . YEHR-a) sit , XY is a rational number

If X=Y=R ,
XY =fz^

If ER is rational
, we 've done ← constructive Way non constructive Way

Otherwise
,

Fit is irrational ,  then let Xirk
, y=fz i. xt=HrM=f2= 2 EIRJ

Therefore
,

IX. YE ( R ' Q ) by showing 2 cases ,
but We don't know which case satisfies the Statement

-

Uniqueness Proof in shows it ytx , My ) is false  where Pcxs is true 1299

then Ply) → y=X ( by contraposition )

e.g. x . yek , xx , y >o
.

prove Exitthmyajhyzmeayhxmeyrtric
 mean

p.gg

( X+Y)/2 > Ty ⇒ ( xty 5/4 = XY ⇐ (Xtyt >4xy

a X2t2Xyty > 4xy a Xtzxy +5>0 # (X -yp > 0

(X - YBO where XFY is true

So  we  conclude  that if X and y are distinct positive real numbers
, ( Xtyvz > Fy



- Backwards Reasoning ( Proof strategy) Janzb , 2017
xty

" ' Assume X and Y are distinctn positive real numbers

* in this case , statements must be transformed with biwnditional ( ← ' )

-

Looking for Counterexamples " ' shows a statement false
p . 102

D The conjeeion may be false

�2� Failing repeatedly to find counterexample sometimes give a hint to prove
�3� Lack  of counterexample is NOT proof

* Note = Prove  or Disprove
e. g , Fermat 's last theorem

p . 106

Xhtyk Zn has no  solution  in X . Y , ZEZ With XYZ to whenever he K with n > 2



Sets
=

Def  = a set is

unhardened
collection of all of numbers, elements

, Objects , things ,
and anything p.

116

which is unlike a list ( ordered collection )

eg , vowels = { a , e . i ,
u

,
o } = { a .  i

,
u ,  e , O } = { a ,  a , e ,  i , u . o.O , o }

p.
116

W = { / ,  2,3 ,  in } = { 17 . 14 ,
' " }

R = { 0
.

± I
, 1=2 ' " }

Def membership symbol E  in XES =

"

X is a member of S
"

Def AEB =

"

A is a subset of B
"

iff VXEA ( XEB ) or iff FX ( XEA  → XEB )

Def ACB =
"

A is a proper  subset of B
"  

= ( A  e 13 ^ At B) ^kNote= AEB allows A=B

Def 01 = { } =
"

null set
' '

,

"

empty set
"

* Venn

Di§ams
it tt=' '

universe
"

A B Thm OES for any sets

need to show YXCXEO → XES ) = YXCF  → XES ) ± FXT ± T QED
.

mm

vacuous proof p . 84

Def a power set of a given sets is the set of all subsets of S = Pcs ) pin

e.g. power set of  the set {0-1,2}
PC { o , 1.2 } ) = { 0 , { 0 }

, { I }
,

{ 2 }
,

{ 0 , I }
,

{ 0.23
, { 1.2 }

, { o , 1.2 } }

e.g. , P ( 0 ) = { 0 }
,

Pl { 0 } ) = { 6 , { 0 } }

* Ordered n . tuple  " has n elements and order is important H
"

two lists  are equal to each other only if  the same elements in  the same order

eig ,  if n=z ,

"

ordered pairs" if h=3 ,

"
ordered triples"

^

.
( 2.5 ) ( Xif ) Fly , X )

0
•

( 512 )
>

Def A  and B are 2 sets
,

The Cartesian Product  of A  and B is A×B= { ( a ' b ) IAEA  ^ BEB }

A×B×G={ ( aibic ) Iaea ^ be Bncea } state coabmmantkhach
End

* Set Operations A B

AUB
Def  "

union of A and B
' '

= AUB = { XIXEA v XEB }

Def  ' '

intersection  of A and B
"

= ANB =

"

{ XIXE An XEB }

Def A and B are disjoint if AAB = 0 it ACB , AIB
MB

Tt Tt

Det set subtraction = A- B ( or

"t#T§T={ Xlxe An XEB } A -13=0 A B A

Def Given a universe Tt , VILA also denoted A-
,

whiois a complement of A



p. 130



Function p . 138

Def : a function ( sometimes called map  transformation ) f from A  to B takes  every element of A  to exactly one element of B

e.g. Y=fw ) f=A→B

y€B^⇒←
 this  is NOT a function

* Note that BEB can result from multiple values of a EA

⇐:#£ "
flat =L but flat has only one value

a a

XEA

A

tB_
Def 

= b is the  image of a under f Jan 3112017
a

• f→ y•T
f

a is the pre - image of b under f

domain Co domain

Deft Range of A under f  = { be BI 7- ae A feat =b } ← range E Co - domain

Def 
= function f is I - to - I lingiective,

an injection ) iff fear fcb ) → a=b

i.e. each b has only 1 pre - image
Vatb Hla ) - for ) → a=b ) of Haff ( ath → fta ) the ) )

Def  
= function f is onto ( Surjective ,  a surjection ) iff FEB I aeflatb

ie , every member of co - domain B is
"

covered
"

by the image  of something in A

# co . domain  = range ,
f CA )=B

e. g , A  = IR
,

13=112 then fcx ) = Xi ( fi A -713 ) is NOT onto

A= IR ,
13=112

"
then fix , = xi ( f- A  → B) is onto

+4¥
 they don't have pre - image where 13=112

Def -

. function t is bijectiveiff  it's both injective  and surjective  aka
"

I - to - I correspondence
"

12141

Def : Let fi A→B be bijective .
That means VBEB IAEAFKI

The  inverse  of f
,

fTb)=a
,

to be  the a st , fiarb i.e. ftbra if fobijective function *  If fis  not bijective,

Tim fifth ) ) = b and f '
Hca ) ) =  a T

'

is not defined 17.145

Def .

. Composition of function

( fof '

) (f) - fifth , )=f

C ftof ) (a) -
. fitful )=a

where g. A→B
, f=B→C(also at A

, be B)

Hog) ( a )=f(g( a) )=flb)=c EC

A gla )
B t*site¥7

fog

Def - The graph of f- A→B is { lab ) IAEA ntlarh } pt48
meIt doesn't need to show  visible Images  on Xy - coordinate ⇒ Graph zs  a  set of pair C ntupk )



Def : f is well - defined if YXEDIYEG sit , Yifcx ) p. 149

eg floor ( X )= LX

]÷myaEz=tY±X
)

LTLJ =3
, L . 41=-4

ceiling( X )

=Tx7±myinez=(
YZX )

Fit = 4 , Fat -3

* Inversef÷-3; This fan has No inverse
' -5 . since # XEAHXFYEI

Relations
=

Def 
= Let A ,B be sets

, recall that AXB :{ ( a .li/aeA.beB }

A relation R is some subset of A×B

We write  a Rb to mean
"

a  is related to be under R
"

e.g. A= { students of  VICI }

B={ classes  of  UTGI }

Let SEA
,

CEB
,

and sRc=
"

students  is  taking class  C
"

*  In general , relation  is many
- to - many ( NOT 1- to -1 or  onto )

* function C Relation

#funegtion$ relation
relation

* some formulas  aRb eg ,
relation  on 7£ Is R= 1 =

"

is divisible by
"

A=f i. { ( 4,2 ) , ( 6,3 ) , ( 9.3 ) } C R

a Eb ( 4.3 ) ¢R

azb etc , "
also , # 1<>1 EK

'

st , C 11 , HER #
"

11 is  a prime number
"

* Binary Matrix , "
I is  true ( In  relation ) Rel

a b C d e E B

7 0 0 I 0 I

2 0 I I 0 1 eg .  IRC
,

|Re , 3Rd

z
1 0 1 1 1  42a

EA

* How many possible relations  exist ?
maximum

( Recall Rettxb IAKH , 113km
, each entry zs 0 or 1

total #  of possible relations  zs ±n@
' entry

EF On 3×5 matrix ,  there
↳  Options

23×5=215--32768 possible relations



* Properties  of Relations on Ax A

D ( a ,  a ) ER =
"

A  Is  reflexive
"

12576

�2� [ ( at ) ER t ( f ,  a ) ER ] =
"

A  Is  symmetric
"

12574

�3� Ya , BE A [ ( a , f) ER ^ ( f ,  a )=R → a=f ] I [ # ( a . f) ER ( ( b ,  a ) ER ^ ( Atf ) ] I
"

R is  anti - symmetric
"

1 1

 01
D 1

= , ,
NO symmetric pair of  relation ( where  element is 1)

-
. I 0n0

1
O 0

,

°

1
, ,

°
0

D [ ( a , f) ER ^ ( f ,  c) ER → ( a ,  C) ER ] =
"

Rts  transitive
"

12578

e.g. =
, >.<

But t Is Not transitive

*  Combining Relations 12579

Note : Relation Is just a  set of ordered pairs  ⇒ using set operations on relations  to define  new  relations

eg . A = { students }
,

B = { courses }

Rn  = { has  taken }
,

Rz={ need to  take  in  order  to graduate
"

What do  they mean Rink
,

KUR 2
,

Rn  Ak
, R - Rz

,  and Rz - Ri ?

Rink  =

"

all courses  a  student needs  to taken and has  already taken
"

ORN
KURZ =

"

all courses  a  student needs  to taken + has  already taken"
~

KAR =
"

all elective  courses that a  student has  already taken  t required courses  to graduate but not taken yet
"

Rn -122 =
"

all elective  courses that a  student has  alreadytaken" "

Rz - R ,
= all required courses  to graduate but not taken yet

* Composition  of Relations 12580

Let RE A×B
, SEB ×G

then So R = { ( a ,  c ) I a  EA , CEG , If EB ( ab ) ER  ^ ( b , c) ES }

*  There  can be multiple  cs for  any a ,
and vice versa

e.g. R=
"

is  the parent  of "

( aib ) ER , ( b ,  c ) E R ( a .  C ) EROR ←  a has  more  than 1 grandparents
* Recursion relations 12580

RHR
,

122=12012
,

" '

,
Rh "= Rho R

Thm= R on a set A  is transitive iff Rne R th >0

H ) suppose HER to ,
RER is true

Note  that ( a ill ER and ( b ,  c) ER → ( a ,  C ) EROR  = 122 since PER
,

and ( a ,  c) ER

( ← ) it's too hard To prove now , "



* navy Relations

" ' defines relationship between multiple entries simultaneously
Def - given sets A

,
Az

,

" .

.
An ( Domains ) ,

n is  the degree  of a relation RE Aix Az  ×  in  × An

eig , IN × IN × IN st , act < C

e.g. ( A , F 5 ,
D . T ) = (

"

Airline ,

"  "

flight #
"

,

"

departure  city
"

,

"

distinction
"

,

"

departure  time
"
) p . 583

e.g. p. 589

:uonfguef

( Airline , flight # )
,

( Airline , departure  time )

( Nadir
,

122 , 34 , Detroit
,

08=10 )
,

( Nadir
,

199 , 13 , Detroit , 08=47 )

( Nadir
, 322,34 , Detroit , 09 - 44 ) ,

(Acme , 221 ,
22

, Denver
,

08 :  ' 7)
,

( Acme , 222
,

22 , Denver
,

09=10 )

e.g. a) Yes C # of key = degree M

b) No

C) No



* Brief Review  of Matrix Feb 7 , 2017

A=[al
,

Aa"n da's ] 2  rows
,

3 doumns
"

2×3
"

- Addition :  element by element ( both muse be  the  same  size )

- Multiplication ( Dot Products

}

.TT#mno.kgfB=fg
= } ,F,¥÷

WA bean 'm  matrix  and Bhanmxk  matrix ' The Product  of Aandb denoted by AB is  the  nxk  matrix  andres pipq
element cij ( lei  en

, 1±j=k ) is

Cij  
=  ain bijtaizbzjtintaimbmj

=¥najxbEi
i. throw j - th  column

* Amount  of  computation in A inB

each element of G costs  m  scalar multiplication & Cmt ) additions 1 x#
, Aixbxj )

total #  of elements in G is nxk

i.

THcostIsn×m×kfmnmn
Th± ( ABK = ACBG )

But the  amount of computation  could be different

e.g. , Let Aloxzo
, B2o×}o ,

( 30×40

AB ( ABK since CAB )
,o×]o

cost of ( ABK =

(10×2*30)
tcloxoxllhm = 6000+12000=18000

much
" A ( BG ) = ( 20×30×40 )t (10×20×40)=24000  +8000=32000

J
more  expensive  ⇒ From GS prospect, We  choose ( ABK in  this  case C faster )

- Property of Matrix

I =  identity = [ #; ( otherwise 01

nut  must be  square

AT  
=  transpose  =

"

flip  across diagonal
"

if AT  =A
,

A  is  a  symmetric  matrix ←  if AT  
= A , A  is  a  symmetric

* Representing Relations ( binary relations )

- list  of  Ordered pairs RE A  ×B = { ( ai ,
b , ) ,

1 ai , fz ) in ( Ax , by ) }

- Matrix ( Boolean )

,p#¥3,
, if ( ai ,bjs€RI 0

⇒
where MR=[ mij ] =

{
0 otherwise

e.g. MR  where R=  "

idevidsj
" i ,j< 5

7  23  4

%
 0  /  0  /

3 0  0  I  0 ←  antisymmetric
4 0  0  0  /

R is reflexive  Iff  aka VAEA Symmetric  iff  are ←>bRa  antisymmetric  iff  aRenbRa→a=f I is reflexive
^ symmetric

i ' 0 I
(

the  element has I
{

anti - symmetric"

, 1 tin
, 0 0 1 0



Composition  of Relations p. 182

say R relates A  to B ,
S relates B to C

Define MR  and Ms  as  above ,  then MRAS  relates A  to C sit .

MR@s  =  [ tij ]
, tijal iff  IK ( ai Rek  ^ bkrcj )

Then M Rios  = Boolean Product  of  matrices MRO Ms

Matrix  multiplication  with X being ^
,

+ being ✓

* Digraphs ( Directed Graphs )

e.g. a → ftl*¥¥ * g.

a % ' aRd . bRd , Her ,  are ,  cRa ,
onset

 tool'

d arrows  =

' '

edge
"

,
letters  =

"

node
"

in  the graph

Note :  if R is  symmetric ,
all arrows must go both ways  ⇒ the graph is

"

undirected
"% MR

µ  output
a f c d

a O  1  0  1

bOm0  0

d 0 1 0  0

↳
Input

* Closure  of Relations 17.597

Given R under property P
, closure  of R under P is  the  smallest  new  relation S that both

D has property P

�2� contains R as  a  subset

e. g MR  =  '

too
,

.
,

reflexive  Claus are  " ' add 3 elements

eg Reflexive  closure  of R = { ( a , b )  EK 1 a  . b }

p
5 = Rwo  = { ( a . f) 1 a  < f } U { ( a ,  a ) 1 a  E z } = { ( a . b 1 1 a  If } : ,  reflexive  enclosure  of < is E

W

e , g. Let R be
"

a
"

on  integers . Create  a  symmetric  closure of R

MR  = °oo
.

all 1

a , , •

'
'

oo 5
WAMA  add

mninnimunm
Relation

while keeping the  original relation R
kswanna

change this = . Closure ( R ) = R U { ( a , b ) l ( b ,  a ) ER } = { ( a , b) I a  < b v  a > b } = { ( a , b) I atf }

symmetric  closure  of
'

's
"

is
"

<
, >

"

AKA
"

t
' '

tech Def closure = Let R be  a  relation  on A  × A , Let P be  any property of relations ( eg , reflexive, symmetric , transitive  etc )

If I  a  relations sit ,
S Is  a  subset  of every relation  satisfying P that contains R

,

then 5 is  the  closure  of 12 under P

ie , IS ( Pcs ) A VT ( Rt ^ PCT ) → SET ) )

⇒ if  this  evaluate  Is TRUE ,
5 is  the  enclosure



*  Transitive Closure ←  The hardest  one Feb 14 , 2017

Let R= { ( 1.3 ) ,
( 1.4 )

,
( 2.1 )

, 13,2 ) } Note = R Is  transitive  if  are ^ hRc  → arc

Step I since  1123
,  3122  =  Is  1122 ?  → No  then  add It  ⇒ how ( 1 ,  2) ER

What else ?  zk ,
112 }  → ( 2.3 )

zk , , Rq → ( 2,4 )

3k
.  ZR ,  → ↳ , , ,

| added

Step 21 Now
, need to  think  the  added relations  too

1/22
, ZR ,

→ ( 1,1 )

3122 ,  21234  → ( 3,3 ) , ( 3,4 )

2/23
,  3/22  → / 2 ,  2)

step 31 Again , think  about  the new  relations

1123,3124 → ( 1.3 )
,

( 1.4 ) ⇒ Transitive  closure  of R is all these pairs  with R

Lets consider  an easier way

1

,p#s.

3 recall def  of  transitive Considering Patties here

2 . .

4
if la 'sb ) ^ ( b 'sc) → (a5c )

←

a

#i#i→¥£ii→I¥k→i¥¥*i→?¥#k,Co

Path on directed edge
Def  =  a graph is  a  set  of nodes and a  see of ordered pair  on  nodes  called edges

XRY
Def  = LEHIs  a directed edge .

Path P Is  a  sequence  of  edges EE  = ( Xi , YE ) st. Yi  
= Xia ( second  node  in ei Is  the first  node  In Eta )

E.g , ( a if ) , ( f ,  C ) , ( C , d)
,

( di  c) ' ' .

Def 
= Path length Is  the  number  of  edges In  the graph ( = # node - I )

e- g , as→j→t path length =2
,

3 nodes

Note D Path from  a  node  to  itself  can be length zero  it  no  self . loop or  any non - negative  integer  if  aRa ← ?

�2� If K  edges & last  node  =  the first  node  where 1<>0 ,  this  is  called a  circuit  or  circle t€l
�3� both edge  and nodes can  appear  more  than  once

Recall composition  of  relations RoR=R2

In graph terms
,

R2= set of path of length 2

path
eig ,  if  a Re ^ bRc

, ( a ,  C ) is  in 122

Ro Ro " ,  OR = Rk =  set  of path of length K Note = by definition
,

R°I I = path of length 0

*  V

Def . R* 
= §,

Rk  
=

"

connectivity relation  on 12
"

=

"

reach Ibility of graph on 12
"

I  transitive  closure  of 12 P, 602

Th± R*= ¥,
R where h = #  nodes ( elements  of A )



*  cost of  computing transitive  enclosure  of  a relation R on A × A  where then
size  of A

R can be  represented as  a binary matrix  nxn = 14

R
'

can be  computed as Mx M which costs  =  n3
,

n  times  →  total cost is  at most 0 ( n4 )

' " actually can do R* In  n3 times

* War shall 's Algorithm  - think  of  connectivity

Letmahfox
,

= MR  =  matrix  representing R ( directed graph )

Def  = Wx I Matrix  of  readability C 5 , j ) but  only allowed to  use  intermediate  nodes l ,
" '

, K

R 6

:
g . ( P 605 )

←  now  there  is  a path
from f to d via  a

know  there  is  a path from d  to  a  via  C



*  Equivalence Relations

Def :  a  relation Ron  set A  is  called an Equivalence Relation ( ER ) if  it  is reflexive, symmetric ,
and transitive .

e.g.  old - style G - language  only used first 8 characters  of  carriable  name  to  identify

int this Variable : } equivalent names  in  old G - language
int this Variation ;

Let R be  a  relation  on  all strings  of  all length where  are if  they share first 8 characters

reflexive
, symmetric ,

transitive

=
- given  an ER .  a  set  of  strings starting with " this Vari

' '

are  called
"

Equivalent  class
"

e.g. (p, 610 )

{ 0 , 4 , 8 , 16  in } =  [ 0 ] =
' '

equivalence  class  of  0
"

{ 1 . 5.9.17 , " } =  el ] =
"

" of 1
"

all reflexive , symmetric ,
and transitive

{ 2 . 6 ,  10 , 18 " D= [ 2 ] =

"
" of  z

"

{ 3.7 , 11 , 19 , " } = [ 3 ] =

"
" of 3

"

Feb 16,2017

Def 
=  Two  related by an ER ,  they are  called equivalent ,

a~b * speech 25Mt

Note :
"

a  ~b
"

order  is NOT Important ( are is  symmetric here )

e.g.  Is IX - YK 1 on ER ?

reflexive ? 1 X - XK  0<1 I ; symmetric ? IX - yl =L y - XI I ; transitive ? 1×-21<1 nly -2-1<1 A1×-2-1<1 1

⇒ NOT ER .

Def  = given  a EA  and on ER , let [ a ]R  = { felt 1 are } called
"

equivalence  class  of
"

A can be f since

ER  → reflexive
We say a  is  a

"

representation
"

of  [ a ]r but any number  of  [ a ]p  Would suffice

e. of ,  what is [ 3 ]R  if R = { ( a , b) EE
' I a  = f ( mod 4) }

[ 3 ]R= { 3,7 , 11 , 15 , 19 in } =  E 19 ]p

e.g. HW p. 616

a) [ 0 ]R= { o }
,

[ I]R= { I }
,

[ 2 ]R= { 2 }
,

[ 3 ]p= { 3 }

C) [ 0 ]R= { 0 }
,

[ I ]R= { 1 .  2 } , ( [ 2 ]p= { I ,  2 } =  [ I ] p )
,

[ 3 ]R= { 3 }

Thm= a Rf ←>  [ A ] R  =  Tf ] R  N  [ a ]p n [ f ] R  =/ 0 on E , R ,

corollary =  a$f ←>  [ a ] Rn [ b ]R  =  0
p.

613

corollary i ¥A Ea ]R  = A  ←  since A  is  on ER , reflexive
union  of  all elements

More generally , given only set of subsets AIEA , we  say that

{ Ai } form  a partition  of A  iff ti { Ai } ¥0
, its  ⇒ Ain Aj  

=  0
,

and UAI  
= A

for  all i

A partition  of A  implicitly defines  a relation R on A

Thm= Let R be  an ER ,  on A
,  then  the  equivalence  classes of R form  a partition  of A

partition diagram
Conversely , given  a partition [ Ai ] of A .

 7 ER . R. that has At as  Its equivalence  classes →  stronger Venn  diagram



* Partial orderings p. 618

Det = given  a  relation R
, R is  called a partial ordering of A  if R is reflexive

,
anti - symmetric ,  and Transitive  on A AKA

"

poets
"

e.g. 2  on K

AZ a in  reflexive
, a 2 b n  a  eh →  a=b in  anti - symmetric ,

azb ^ bzc  →  a 2C  " transitive

⇒ 2  on K is partial ordering on K

e.g. devices
"

I
"

on 7£

ala  in reflexive , alfn Ha  → a  =L " ' anti - symmetric ,
albnblc  →  al C  " ' transitive

⇒ "

I
"

on 7£ is  a partial ordering on I
'

*  why called
"

partial
"

ordering ? C P . 619 )

Def  =  a Re v era we  say a  and f are
"

comparable
"

in  the  eg of
"

I
' '

,
3 and 9 are  comparable  ' i  319

Def  =  If  all pairs  In A  are  comparable  under R
,

but 5 and 7 are  not comparable C '
i 5117 and 7th )

then R is  a  total ordering → part of 7£ are comparable

' ' ' total ordering E partial ordering general I

Def  If Ron A  is  a  total ordering ,

and every non - empty set of A has  a least element , then A  is  well - ordered under R

e.g. I  Is NOT well - ordered since  there no least element

eng ,
the lexicographic  ordering Is  well - ordered set

↳ ( A , ,  a  < ) < ( bn
, fz ) If  A , < f , V ( a ,  = f ,  n  Az 4 be ) Feb 21

, 2017

e.g.  Words  In  a dictionary :  shorter  words  come first before longer  words  it the shorter  word is  the  short of  the longer  word

eg ,

" and
"

< " andromeda
"

* Hasse diagram  on PottsPity check  Ics 46 Note ( Algorithm )

step 1 create directed agedgraph (

DAGDM reflexive , transitive

step 21 remove all edges  that can be  inferred from  other  edgesmm

e.g. 2  on { I ,
2 , 3,4 }

original directed graph

*¥550 ⇒ FW
* going up  ( input is bottom )

1  2  34

ag ,

"

I
"

divides  on A  = { 1,2 , 3 , 4 .
6 , 8 , 12 }

}f⇐p.

'

}
it Hass . diagram is  written well ,

max & min are  obvious

Def  =  a maximal element has no  elements grater ( < ) than  Itself

a Minimal element has no  elements smaller ( i ) than  Itself

.
maximum

maximal '
.

eg , from  above ,
1  is  minimal & 8 and 12 are maximal

8g

.

;¥p.

'

} Why. minimalDef = an element a EA  is maximum 1 greatest) it bea VBEA . minimum

minimum ( least ) if  a  If ttf EA /
eg ,

from  above
,

1  is  minimum , no maximum ← greatest / least are  unique if  they exists



Det  = given  sets
,  and subset AES

,
UES

U is  called
"

upper bound on A
"

if  a I  u
,

-VaeA ( Note  u  must be  comparable  to  all elements  in A )

" lower bound on A
"

if  a I u
,

VAEA ( Note  u  must be  comparable  to  all elements  in A )

e.g. from previous page ( " I "
)

,
it A = { 1.2  ' 3 }

8 •  

ou4 .  • 6band 12  are both upper bound , ( 4&8 are NOT since  its not comparable  with 3 E A ) no a 3

1 is  a lower bound on  any AES %
Def  the Least upper bound is  the  smallest of all upper bounds ( LUB )

the Grates lower bound is  the largest of all lower bounds ( GLB )

e .g , from previous page C
"

I
' '

s if A={ 6,12 }

lower bound is 1,2 , 3 → grates 't one  is 3 ( GLB )

upper bound is 12 → least one  is 12 ( LUB )

÷ 2625

*  
Topological Sort C Also  check IG 'S 46 Note

' '

Algorithm I
' '

)

Basically lists  the  elements bottom - up  in Hasse diagram sit ,  only comparable  items  matter  in  the  ordering in  comparable  items  can be  shuffled .

as Previous Page

k;¥Ij, 9.3.32
'

,4j.bg?j.hg } example of few valid topological sort

* Lemma :  every finite  non . empty poet has  at least one  minimal element

8
•  • 12  • 12

* Algorithm

}#¥i, } :[ii.

suit
:L ! ! . "1<=1

.

!
3

!
3

while SFO

let Ak = any minimal element of S k 1 2 3 4 5

 67
/ et 5=5 - { ak } minimal s 1 2,3 4,3 8.3 3 6  12

corde  the { jisjj4insirislet K= KH chosen  one )

end while

return . "a" " " a. , t.FI?liIiIliIY::vHm:vns
.  n

*  Strict ordering Feb 23
, 2017

Def =  say I  is  a partial ordering ,
then  the  associated strict ordering 4 removes  the reflexive  ordering

e ,g , I → < on  numbers
,

E →  C on  sets

Recall Directed Acyde Graph CDAGS ) = BAGS  represent strict orderings because ( assume  no  self - loop)

because D no  reflexive  elements Cirreflexive )

a
�2� anti . symmetric y<X→X¢yg= >
�3� transitive X< Y ^ Y< z  → Xcz a-¥z implied by transitive  closure



Boolean Algebra I Pell

* different notations ( duality ) for T , F ,
^

,
V

,TX ,
in  etc practice  =CT^F ) ✓ ' C FVT ) =  Fv 'T  =  FVF  =  F

1
, 0 ,  .

,  +
,

F
eng , X+y=1 # x=l v y=l 1 . o  + # = o+T  

= 0+0=0
} same

1+1=1 ,
1+0=1 , 0+1=1 ,

0+0=0

X . Y = 1 iff  X= In Y=1

1
X = I

* Boolean functions ( eig , FIX , y ,z)= Xytz )

In general , let 13={0-1} Bh= { ( X , ,Xz ,  in
, Xn ) 1 XIEB ]

/
12813

How  many possible Boolean function exists ? V

e.g. 1 bit  input , 1 bit  output ( output is ALWAYS 1 bit ) eq , F=B3→B

To/ Foo'|Fg2|Fy /Fy
in general ,

n bits  of  input ⇒ I rows

⇒ columns  each also have 2
"

entries ( each entry is  a bit )
=  0  =  I  =X = 1

⇒ requires 212
"

'
columns P.  814 the  case  of  2 bit  input #  Fon  

= 222--24=16
mm

Most ' '
normal "

algebra  rules  apply directly ↳ # boolean fans

leg , Predince
' '

,
.

,  +  complement is  applied immediately after  evaluation  of  underlying expression

eig , fyutytcath ) = Xatxfyatybn
atlas FEE each of  these  terms "checks

"

# one  of  4 possible  case  of  ' ' there's at least one T inside  each parenthesis
"

Both T→T

e.g. ( Xty ) ( Xtz ) =  Xxtxztxytyz

=X( Xtytz ) + YZ

%
Xtyz

Th± Xtxtytz )=x

Prof 1) Prof  2) truth table
Tora  is  T

expand XXTXYTXZ  = XTX ( ytz ) = Xcltytz ) = X X Y Z XTYTZ Xlxtytz )
Mf O 0  0 0 0

0  0 / I 0

0 I 0 1 0I0  0 / II
 0 I I

* Representing Boolean Functions I 1 / 1 1

Def :  a literal Is  any Boolean variable leg , X )
,

or  its  complement (E)

Det  = Given  n literals  X , . Xz
,  in

, Xn
,

a  minterm  is  a product containing every literal or  its  complement exactly once

e.g. Y , .Y< . Y }  ' " Yn  where Yi  is  either Xi or Xi

Def  
=  a Boolean  sum  of minter  ms  representing a fun is  called the

"
sum  of products

"

or
"

Disjunctive Normal Form C DNA
"

p . 84

Th# given W Boolean  variable , every Boolean  on  them  can be  expressed as sum - of - products C i.e. DNF )

eig , Find DNF for FCX . y ,z ) = (XTYIE

= XETYE OR  truth table

= Xcyty )zt ( XTXTYE

= XYE txyztxyztxyz
=  xyzixyztxyztxyz



Xtanctional Completeness

defines  some  set of  operators  then  can  express  any Boolean function

Thin the  set of Boolean  operators { t
,  .

,

-

} are functionally complete

Note : We  can  eliminate
' 't

"

by De Morgans Law

X+y= XI ⇒ { u

.

-

} is FC ,

Can  we find smaller  set of  operators  That is FG ?

e.g. NANDIX .y)=XT ,
turns  out HAND  itself

,
is FC

.

* Logic gates ( Circuit Diagrams) p. 823 Feb 2812017
p ,828

I AND)
combinational

connect  zones cnvcnitsgating
eis . ixtyicxyi

xy .€tg]⇒.→r0R⇒⇒→
network

eg , Design goal = create 2- switch tight mon  with ##orD*T# pet

Fix ,y)=XytXy
⇒it 's off  when txytxy

* Binary Addition tlthisis NOT
"

NAND
"

bg ,
11011+01001

, / / ← carry p , 826
x - TID

' ' ° / / Ttsaffftdder +a↳y}I→EY+x5sum

+ o / O 0 1 to get { 5km
Y£D→xy

carrycarry

/ O 0 I 0 0 ←  sum Half Adder
( for  each digits

p.si

Si→

XiaIii

* Binary Subtraction

Half : Difference  

=XtOY
Full : Difference  =XiuAYiuABi

Borrow  = XTY Borrow  =Bzu=N#uBitXrtiyitityiupi



* Languages  and Grammars p 847

- symbol

Intuit
 token syntax = form  of  an  expression ( we don't care  it  the  statement is nonsensical )

i  
= 2 ; statement / sentence semantix =  assigns  meaning ↳ But we  care  if  a  statement is valid

phrase
I =

2*i'Iin
expression

* parse  tree ( derivation  tree )

eig , Z= 2*1+1 e.g. p, 854

=* , \

⇒'
�2� D

Det  = Grammar describes  a language by describing syntactically Valid sentences ( phrase1 statement )

Def =  a  set of valid statements describes  a language

Def =  tokens ( aka  terminals ) are  atomic line ,  smallest meaningful strings )

Def  =  symbols describes parts  of sentences and can be  terminal or non - terminal

e.g. ( English sentence )

sentence  → noun phrase , verb phrase
Here

,  this  means
"

can be  expressed
"

or
"

produces
"

noun phrase  → article
,

noun Verb phrase  → verb ,  adverb ←  non - terminal

article  →
"

the
" ok"

a
"

verb →
"

runs
" 1 "

eats "

tyqrmua, ,

} symbols

noun  →
" horse

"
1

' '

rabbit
' '

adverb →
"

quickly
"

I
"

slowly
"

Def  = phrase - structure grammar G = tv
, T , S

, P ) March 2,2017

T  
= Vocabulary " a finite ,  non  empty set of  elements  called symbols 7849

T =  terminal ( non - Terminal N=VH )

P = productions ( aka production  rules )

5 =  start symbol Def  =  R ,  the  empty string , is  the  string containing no  symbols

ag ,
S → a laser

OR

Valid Statements = A , a b
, aaff , aaafff ,  in  = { a

"
f

"
I h= 0 , 1 ,  2 , " } p , 850

Let Wo  = l Zor be a  string of symbols ( which could be  terminal or  non - terminal )

Wi  =L znrbe a  string of symbols ( which could be  terminal or  non - terminal )

Def =
 if  7- production  sit

,
Zo→z

,  then  we  say string W ,  is directly derivable from Wo , written Wo  ⇒ Wi

e 'S .
mm articlenneunnWFmm

' '

Itch'd
'

nounmrw ,

lit Zo r l=  a Zi r

Deft Wo⇒W ,  ⇒Wz⇒  in  ⇒ Wn
,

we  say Nn  is  indirectly derivable from Wo ,  written Wo  ¥ Wn
,

and the sequence of Steps .
Wo⇒Wi⇒Wz⇒  " ' ⇒ Wn

, is  called a derivation



Det - given G ,
LCG ) is  the  set of all valid sentences derivable from G

,  aka  the Language defined by G

Note = There  can be  more  than  One derivation  showing Wo  ¥ Wn

g
Professors Def definitely more  than 1

Note  = Most Language  can be described by many grammars  = YL IGLCG ) =L

*  Types  of grammars ( restrict what types  of productions  are  allowed )

Type 1 Context - Sensitive grammars  = l At → lwr ( you can  only replace A  with w  as long as between l&r

' '
A  can  only produce  W if  surrounded on both sides by land r

,
I .e ,

land r provide  the  only context In  which A  can be  replaced with w

"

Type21 Context - free grammars  = A→w
"

A  can be  replaced with w  anytime
"

Type B
"

Regular
"

grammars ( only 3 types  of productions  are  allowed )

I ) A  

→ikg"¥%B w| a- terminal & A ,B are non - terminals

: lows left - to - right parsing of Input strings ,  reading exactly one  terminal at a  time

e. g , from previous page

sentence  →
"

a
"

nvp I " the
"

hvp

nvp  →
" horse "

VP I
"

rabbit
'

vp

up →
"

runs
"

adv l "
eats

"
adv

adv →
"

slowly
"

( E ) I "

quickly
"

(E)I E  → R )

*  simple  example  of mathematical expressions

eg , Xty , ( Xty )*y , ( ( Xtyhty ) TX

F- → C E) 1 E *  El Et  El V parse  tree ,t\
"

C X*y)tX *  XV →  xly at
* Backus - Naur Form ( BNF ) p . 853

ASCII method describing productions

< E > : :  = ( < < E > > ) where < > is  non - terminal

< v > : :-.  xly

* Midterm review

,
power  see  always

March 7, 2017
contains  01 NULL

Part A  4a ) An B = { 4,5 } i. PCANB ) = { OY{ 4 }
,

{ 53
,

{4-5} }

Part B In >o  n  HEFT.
"

"
"

h= 3=2+1 since  this  is  an  existence proof, showing one  example is  enough

#7 Hint  = (ABM = Be At

Def ( of  symmetric  matrix ) i AAt= ( AATP The last Q ( you done need to prove it )
in  thisclass

. W=z\z
.

Let B= At then AB = (ABP = Beat  
= A At  ⇒ A At  

= ( AATT #,
Hcmxif ,z)EN4 [ h >2  → xntyntk

"
]

Mr

#89t÷Ih } 4 pairs , .

24¥69
 ordered pair



* Finite  state  machine

Integer  to bit string
( base  2 )

e.g. 6  =  1.22  +  1.2
'  +  0.20  →  00110

Goal = find FSM that  recognizes base -2 Integers  That are  even  ⇒ ( bit  string ) end with a  zero

if you ->o
SO

spare
 state

read  the /
,

)
State  0 >§⇐@J self - loop

°

Tsuccesfful
end  statement  with double - circle

next

transition ¥Mb¥ state  input state Output FSM =  FSA March 9 , 2017
0 b

so
1 a ending state can be  more  than 1 success  state

a a a

0 b
b

, a

FSA I FSM " ,  used for language  recognition

Let V = Vocabulary ( tokens
, Terminals 1 non - terminals )

V*n=Strings ( not necessarily valid of  vocab )
( zero  or  more

concatenated members  of  wcab

e. g , IntdiIITIII in 5  tokens valid string in Gl Java

Let A , Bare  sets  of strings from T*
,

then AB = { XYIXEA , YEB } p .
866

A , B ET* eig ,
A  = {

"

input
' '

,

"

output
' '

}
,

B = {
"

X
"

,

"

y
' ' }

string AB are
"

input X
"  "

input y
"  "

output X
"  "

output y
' '

Det  -
- Kleen  closure  of  a  set of strings A  is

A* 
= ,§o At MA  concatenated K  times ( Not multiplication)

Def = FSAIFSM = 14=15
, I

, f ,
So

, F)

p . 867
Where S= set of states

I  =  Input alphabet

f  = state  transition  table

So  =  start state

F  =  set of successful final states

Def  =  string X=
' '

Xo  x , Xz  in Xn
"

Xie  terminals tokens  is recognized

if  machine M Starting in  state So and reading entire X ends  in  a  state  In F
,

Note = Two FSMS  are  equivalent  if  they both recognize  the  same language P ' 868

1 $ -7 $
et sat liop€

' ✓€p@÷s@B'Dl$ → $
6

Lc Mo ) =L ( Mi )



* NDFSMS ( non - deterministic FSMS ) , "  only mathematical construct

e. g ,
TSP ( traveling salesman problem ) =  w  cities  to  visit

goal = find the  cheapest path that  each city is  once  visited → n ! possible path es Note  =  40 ! > 1800

In principle , what Is  the  answer ? 17  a  solution ? )

→ the  case  of  TSP
, yes ( a path for TSP cost < 100 ? )

nondeterministic polynomial time

Important Note =  once TSP ( NP - complete) is phrase as yes1 No ,  a
"

yes
"

answer  is  easily verified

Def  i given  a  string X = Xo X ,  Xu " Xw ,
NDFSM "

M
"

recognizes X if I a path through FSM ending a final state  in F

Note =  the  state  table for NDFSM has  multiple
"

next
' '

states

128
'

:
next  state  is  chosen



*  Turing Machines March 14, 2014

FSMS  are finite
,  ie

, finite  memory due finite tests

eg , It cannot recognize {On T I n  203 for  arbitrary n ( works fine for pre - known  max n )

infinite  in both directions AM , ,

⇒ Turing Machines have
"

IKE,
which provides memory sourse

tape <#%→ Turning Machines have read and write  capabilities
.

"
idealized

"

computer , for mathematical description  only ← K¥010114111113113  →
On  the  tape  as the  control unit moves back  and forth

conceptualized k> Blank

Only operation allowed = read one cell
, Write  one  cell , move L or R by one  cell along this  tape , changing states depending on

FSM is responsible for deciding what to write ,
and where  to move the  tape  symbol read ( 888 )

"

12889
- What 's order RIW head

- current state  of  FSM

Def = Turing Machine T= IS, I
, f

,
So

,
F)

Where S= set of states  in FSM

I  =  Input 1 Output symbols  +
"

B
"

are  allowed on  the  tape
f  = ( Sx  I ) → ( Sx  Ix { L

, R } )

cgrtrejentxilo nsfawtexiloxd

So  = start state
,

F  = final accepting states ES

at end
"

step
"  

T
,

D find a  new state based on  current state + input symbol
�2� Write  a new  symbol on  the  tape

�3� moves one all left  or  right

p . 889

e.

: So ,
0 ,  So ,  0 , R) RIW  =  010

R RIW = 11 I
→

( So , 1 , Si , 1 .
R )

R RIW =  010
→

( s , ,  0 ,  So ,  OR )

R RIW =  111
→

( so , 1,5 , , I , R )

R Rlw = 1/0
→

( s , , I ,  Sz ,  0,1 )

RIW = 110£
( sz , 1

, s } ,  0 , R )

R
→

- since  there  is  no five - tuple beginning with the pair of 63,0 )

top



Def =  T recognizes  a  string X written  on Tape  iff  T
, starts So

,halts  in  a  state  In F

Note =  If  T halts on now - F  state
,

or never halt , X is not recognized

Def =  a language L is  recognized by T iff X is recognized by T FXEL

- given X as  Input , Tlx ) replaces with y on  tape

- We say THEY if  T doesn't halt in non - F  state , Tcx ) is undefined

- many
"

extentions
"

e.g. multiple  tapes, Multiple 14W heads , multiple FSMS " i

- almost never concerned about efficiency ( except try not to take exponential time for  something solvable  In polynomial time )

if runtime  on  Input of size  is  ~nk for  any fixed K ,  then polynomial time algorithm

It runtime  on  input of size  is  ~ kn for  any fixed K ,  then exponential time algorithm
} Vik In K

"
>  Nk

* church - turing =  anything that is  computable ,
is computable by a Turing Machine ←  thesis

any such machine  is
"

Turing complete
"

p . 891

QOIR 1.11 O.O , L
11 , R B , B . R

$¥2>@¥*$#>£->£->saI@0,0JTB.B.RCs@lt3.Rthe  case

it has  no  0  anymore)

* Complexity ,
Dead ability , Computability March 16/2017

Def =  a
"

decision problem
"

is  a problem with a YIN answer

Note = I undecidable problems

eg , halting problem = given & arbitrary problem P and input X ,
does p hate when  applied to X ?

Def i A problem is  a decidable  if  I  a  con  create  algorithm  that always decides  It

check pdf  university of Waterloo
Some  easy - specified functions are not computable GS 360 Introduction  to the

bg , given n , what is  the longest possible finite  string that can be  output by Turing Machine  wl W states ? Theory of Computing

Note =  specific  small n ,  Its computable Winter 1998

eig ,

"

Hard problem
"

" NP - complete

P - { set of  all problems  computable  in polynomial time by Determistic TM , }

NP- { set of  all problems  computable  in polynomial time by non - Determistic TM , }

Does P= NP ? We can't disprove ⇒ We ASSUME PHNP ( not proved yet


