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Def Froposttion w direct stafement. o fact (can be fme/fse , bt NOT both)
ox, "Torto is the oxit] o Cavadn" —> Boke

Of 0 = "NoT " = hegation of p Teu™ TABLE Pl
T|F
De.f ’p/\%. “Ahdau u ] COV‘;!MWOV\{ ng‘ F T

e English, senence, "Dt 18

often used. 0 show mor thaw Pl %] P\E | pPVg |Po2
[ event thats pcews smultoveonsly TI|T T T F
0 pvg = o' dispnction TIF| F T T
FITL| F T T
Oef /p@ﬂ.="@<dms‘u/e or" (Prea‘sela. one) FlF F F F
Cp=>2)= v
M’P';?:""{/P/ﬁ\a"" 10? /Pﬁ'
conditiona] Swdement W@@W Pl g|rez >z
K WS TS cppesTie. 1o cousel nplicrtion T|T]| T T
in [oquonl, npliontion, we find. [see. the. vesult T|F| F T
md defermine the fact: (reswlt->fet) FI|T T T
FIF]l T E
Def converse of p>3 i gop
el coiapsiue o prg TS 9>Tp , which is cpuivlent. 1o e g stiment
Bf mese of psg s pup
Vel perg = "if s oty " < Yodtinel sblement. § pardg | P | PO
S (p=22) Alg>p) T T
T|F| F
Recedence %( ofag‘md/ Opertors  pli FlT F
1, N, V, 2, o PIgSF FIFL T

*Logicmd, Bre DperrZions Check pll



ex. knight £ fnave
kwights Awags Fll tnuth
Bwves Mnys #l 2 be

A sans "B o /ma;tcb"
'Bsags "We ae opposite me".

proposition w p="A's & hight"

PrB% o fg

whee 10 stavt

{Mﬂm A says teuth ("B s & kWiaht’), 50 ¢ 5 fwe

ba 2, then B suys nath, C'We e opposite wzs"), So P fabe

(P=>2)1 (g->7p)

(2 ‘3— P22 | 22" | popnigsh
T|T| T F F
T.|F| F T F
FAT| T T T
FIFl | T T

~§ NOT TRVE
('pfemise, : -{ fP)

{m then A soys . he CBis o bnght), S0 3.
I 2, thew Bsays alie ) opfas‘rte-lggef), so p.

Cp=>"2)n ('2>%)

P |?— P22 '8P | pipa oy
|| F | T F
TIE| T | F F

F ATl F T F
FIFI T | T T

<& premise. (p) s twue

S A abave
omd B7s dso o e
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P foutology is ahms twe X pVP
peb
Ve contvadection 7s hwngs e ox. 'P"-"P
™ coffengengy can. be tme or lse. (neghter putology v contvadeetion)
™ psg ="tige a?w\’” = pan g we lgielly cguivalact Y pe>g is a puiogy.
pot
TABLE 6 Logical Equivalences. TABLE 7 Logical Equivalences PR

Involving Conditional Statements.

Equivalence Name

pAT=p Identity laws
pVvF=p

pvT=T Domination laws
pAF=F

pVp=p Idempotent laws
PAP=DPp

—(=p)=p Double negation law
pVg=qVp Commutative laws
PANGg=qgNp

(pvg)Vr=pvVvi(gVr) Associative laws

(pAg)ANr=pA(gAT)

p—=>q=—"pVgq
p—=>qg=—qg—>"p
pVqg=—p—>gq
pAg=—(p— —q)

~(p—=>q9 =pr—q
(p—>g)N(p—>r)=p—>(gAT)
(p—>r)N(g—>r)=(pVg) —>r
(p—>q)v(p—>r)=p—>(@Vr)
(p—>r)vig—>r)=((pAg) —>r

pVgArr)=(pVvg) A(pVr) Distributive laws
pA@Vr)=(pAg)V(pAT)

“(pAg)=-pV—q De Morgan’s laws
~(pVvqg) =—-pA—gq

TABLE 8 Logical
Equivalences Involving
Biconditional Statements.

pvVpAng)=p Absorption laws
pA(pVqg)=p

pv-p=T Negation laws

pA—-p=F

peog=(p—>9)AN@G—p)
peog=—po g
peog=pPArq)V(—pA—q)
~(peoq)=p<o—q




fediortes & Quakﬁ'ffﬂ’s p3F
*Roposttronsl. Lage. desls wihe Small, Jixed, et of ohjests
* Ve want o Bk sbont. Sets f cbjeets “for all” . “there. oxists’
*We want eriMes in onw Yrpressions.

eX. predieae Foor="10>3 ex. QUug)="%=Y+3" £.X. Consider the. swap operation Sponple code.
P =T (sce %:-473) QUSD=T (since 6-3+3) Swpy) = B N=a N Y=4- Swap . )
Fo)=F (we %=2#3) QD=F (nce s72+3) Bst X=4 3= Top=4
where A % £ o constmt V=4
B axesS Qm = “Thee siiste m % o set S Such thht Qs d=%
Iﬁf&@f&hﬁwb goantitier = “fiere oasts onds swop

Dt Yx €S Qoo = “For vy % i the set S, Que)
wiversnl gum;‘rﬁer = % every X' vl x"

%D H“’gM'S dus for Quantifiers PL,L;
3% Py =YX Poo Y Xf) = 2K P

* (ombiving.. Quonifiers
w When, m‘lmg_, ovder is impomnt p,ée

eq 3% Yo 2 Y fooy)
sy like f04) = "Kitg=0"
VX33 P = “For overy veol, vanker 6. thete 7S o veal vumber 4 st ey <Tree
248 = “Thete 75 a veil, wanber % st Sorovery. vesl, mamber %, Pang) < fFolse
v like Poey) = " ptg= 2"
V432 Piwdz) w Trne
A2Yx\4 Ped2) w Blse (There is mo mog humber 2 vhise. Ve 35 the: sum 4 oy 6 owd ony %)
et 3f Pogay= "Nt =ve ", W owrk < somefines o woks, dlepends on, )

TABLE 1 Quantifications of Two Variables. 040
\ AY
Statement When True? When False?
VxVyP(x,y) P(x, y) is true for every pair x, y. There is a pair x, y for
VyVxP(x,y) which P(x, y) is false.
Vx3yP(x,y) For every x there is a y for There is an x such that
which P(x, y) is true. P(x, y) is false for every y.
IxVyP(x,y) There is an x for which P(x, y) For every x there is a y for
is true for every y. which P(x, y) is false.
IxAyP(x,y) There is a pair x, y for which P(x, y) is false for every
JyaxP(x,y) P(x,y) is true. pair x, y.




*Hactice: Tymslate o Englisbv’fv ngfa Z fynm, Jogic 4o E/gjask
— “the s of wp posttive. wifégeVS s Fos?vivta"
<—Nofe: there are many. Ways 10 SAY
= Coy="% owns . oompfer”
Flody="% amd % ore friends"
Yo (Conyv 38 cig) NFenyd))

— 20YYR(Femn Fredy A (4#2) =7 Fgy)
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Bules of Drference

Def AYguwm 35 o Sequece. of siements fhat ond. with & conclusion,
Vet Avament 75 vaid, 3F 7t condhson Cor Fnal siement) bllow Foom the Aruth of the preceding stements ¢ premises) of e agunat.
Tef Fallecy 35 ow nnid, svgument. where Initdogy 7s smepmouslg_

Jan 17, 20/7

Yewm bg- WW s i’f 'lJn& mmvgm%- we ai"%as '!'YMC‘ TABLE 1 Rules of Inference. F 72
Rule of Inference Tautology Name
14 (pA(p—>q)—>q Modus ponens
eg, f(:p»u,o_) ng]l—> P P-4
g
—q (=g A (p—q)) = —p Modus tollens
This 7S o. cotengenay., nat o auctobgy. it
" - u -
H[Mg- 0][ mqlmwg ‘l”ﬂe CohdMSTDV\ pP—>q (p—=>q@N(@—r1)—>(p—r) Hypothetical syllogism
q—r
Sop—=r
-6\g- [ ('p?%) /\-l’P ] e .1; P75 pPVq (pvg)A—p)—q Disjunctive syllogism
v n -p
“Iallacy. of demsg the hypothests o
P p— (pVvq Addition
*Imfemhc& n QJAMV}(BA/ Sfd—emm PAg (pAg) = p Simplification
—Wniversal, instantistion .
r (p) A (@) = (prg) Conjunction
Cxe) Pn)>=> Pey o . dndtividnal. € €X ‘
e.9, "All humans are mortal” e
‘ﬁ' . NS are m . vy (PVOA(=pVI) = (@Vr) Resolution
Secrles 1S o human A
"
= "Yentes s more
- ex TM’J/ snshwtintion TABLE 2 Rules of Inference for Quantified Statements. ?76
Rule of Inference Name

axex Py |, assume ¢ IS one such dement st P
, _ R VxP(x)
We i heceSSaltly. know the alwe. bt we fnw Tt 0xiStS, PO

Universal instantiation

P (c) for an arbitrary ¢

S0 We natme & O At Confinue. O~ Argument.
— exstentionl generalization
concude BUPX) when there is ¢ €N sit. Py is fme
~ wiversal genexnlization
if oy 75 te for all Carbitvay dements <>, /% ) s e

*Combmi\% Boles & Trference for Ruposia‘ons % Quantified, Splemert
waversal, modus ponents
Vxel (Pex)>Qee)
ael
P
Qe

o VxP(x)

Universal generalization

dx P(x)
.. P(c) for some element ¢

Existential instantiation

P(c) for some element ¢
CoAx P(x)

Existential generalization

r77



Trtvoduction. 4o Rroofs
there s o difference. heteen fomal £ dpmal proof

:D@]L Theotem 3s a dtudement that, can- be Shown o be Hrue ¢ facts/vesutts)
5 A fomed, Strement it has been proved, correct

Def Ve demnstidte that. o theatem is 4rue. with o pmf (& Vrlid Requwent)
Det Axioms Cpostuldles) ave stafements we oSume 1 be frue

Tsza \M:F/c 7
Tef A lemma is a "swall theotem' W is dltew usecl 0 help protee o bigaer theotem
Def A cavollavy. s o immidiafe Cobvious) Consepuence A a Jst. proved. Thm
Tel A omdectire is o Stiement belived, to be dime bt 1ot yet. proved.

Dt Drect Boof uses Seguence wplhcrtions with adoms and previously. proven stlements

vomAlnly olrectly P> > 2
eg. Roe that" n is odet > W is oda”

Dt Foof by comapesition Cone. of indirect proofs)
w we wanma Know P>g So nsead. prove }——>7/P
&g Rove thae "/‘ﬁ. 3nt2 s oddl, then w 38 oda”

Vet For the stement p>g., i we can show 4 is false, then we have o proof , called, a vacuous  proof

whch can be o trivial FVDO‘J’:
eq. let Pny="n>1->u">|", shw Fo) is tme

e Pw="0,4 €2 nazg—> X243, shw PO 15 e

p&o

Jon 2%, 20(7

pR¥



Tef Froof by Contradiczion Cone type of ndivect, pwif) shows a sifement porp s Rés
folse by ushg. cortradtiction
e.q. Show that ab [esst 22 days Must Wl on the same any ”]( the week

Sun |[Mon [Tae |Wed [The | B |Sat

*Root Methods & Stritegy
— Exhustive frorf = Show'ma all @(AW\P[&S ph92
e Shus s, P<0 1 ne
— Roof bg)L (nses = CRVPVRY Py )—> 3
e.q. Shows that 1%4]=1%114] where 7.4 €R

— Exstence Boot « s A%fx) p%
['-'Comsfmct{v v shows m actual, thample o % st Pxyis tue
Now constructive « coest shaw aw dlement % bt shws TS existense.
&9 fove the Thn= 3% €(R-Q) st K% 4 & vctionel number

—ligueness froof w Swws i y#4, By 1s bhe where B 75 true P99
then P> 4=% (by cotraposttion) .
?\q
e\z' 9(,,‘&6[2 + %0, 0. Rove (%1.%)/2 >'ﬁ('_3— Existence:  We show that an element x with the desired property exists.

Uniqueness:  We show that if y # x, then y does not have the desired property.



— Backwavds Reasoning Fvog)fc if;ﬂi’fﬁg,) Jrzb, 2007
Assume X oud, Y ove distinct. posttive yeal humbers
¥ s crse, Stements must be, fransformed with iconditional (<)

— LooKing for Counfereramples w shows a strfement folse. pliz
DThe conjection may be dnlse
@ Folling, yepentedly 1o find. cowtfevorampl  Sometimes give & At o prove
@LN-F?’I CounTcV‘mmP{e is NoT Pyoof

* Note = Rove or -Dis(:voVe,
e:q Fermats [ast theorem p.lob
g 2% hos o solictton. %92 €Z with XYZF0 Whenever h € Z with h>2



Def = a set is yordered. collection of all of numbers. dements, obg‘]ects, ‘ans, o, Awnything p. I8
eq. vwele= £ a,e. i, n, 23 = fa.i, u.e,0l=fa.a,e,i,u0,0,03 At
IN = { /I 7-'3, '”} = f 7' IL'L' m} N =1{0,1,2,3,...}, the set of natural numbers
= " Z={..,-2,—1,0,1,2,...}, the set of integers
4 = f 0. tl, t2¥ Z+:{{1,2,3,...},1hesetof}positivetintegteri

Q={p/q | pel, qgeZ, and q # 0}, the set of rational numbers
R, the set of real numbers
R, the set of positive real numbers

Dgf meW\chSMP S)’mbol = - %és =" ?C is A mmber D‘fsu C, the set of complex numbers.

“Ads a subset off B" Hf vxeh (x€R) o iff vo (xeA> xeB)
“Ais a Prol(?ersmbseto‘fB" = (ASB A A%#R)

[[}

Pf ASB
Def pcB

Def @=§ 1 ="pull set’, “empty. set!

+ \lenn @\ms W | U="uverse
Thm @<8 for any setr S

Dt power et of o guen et S is the st f all bsets d S = FPo pl2]
€9, Dowey Set of the set §0.1:23

eq, P(o)= ot , P(foh)={o.{o}t]

¥ Ordered n-tufe whas 1 elements and. order s Amportant <>"two Usts ote epal 1o ench other oy if the wwe clemerts in the Same onder
69 =2, “dlered pars’  ne3, “ovdeved riples’

j (%) # (4%
0 3

Def Aond B ae 2 sets, The Covesion Roduce o A wnd Bis AxB={ (06| aep A LERT

* Set, Opevatrons “a

Def “wnion of A amd B"= AUB = £ x| % p v %eB3
el “utersection of Aadl B' = ANB ="{x| %€ rxeB?

Def A and B ave disioint #£ ANB =@ i AcB, 7= % o3
e B @) [

W Guen a wiverse TL, TL\A alo dended A, whiods a oomplement. of A




?‘ (30

TABLE 1 Set Identities.

Identity Name

ANU =A Identity laws

AU =A

AUU =U Domination laws
ANB=0

AUA=A Idempotent laws
ANA=A

(A?) =A Complementation law
AUB=BUA Commutative laws
ANB=BNA

AUBUC)=(AUB)UC
AN(BNC)=(ANB)NC

Associative laws

AUMBNC)=(AUB)N(AUC)
AN(BUC)=(ANB)UANC)

Distributive laws

ANB
AUB

AU
AN

®|

De Morgan’s laws

AU(ANB)=A
AN(AUB)=A

Absorption laws

AUA=U
ANA=0

Complement laws




netion pl38

Def: a function (sometimes called map trvsormation) T Jram A 1o B takes elery clement of A onoctly. one dement of B
eq, Ydm T:A-B

%QBT D)
_/ ‘P(AF,&.
" xeh
At Tef= 4. s the inoge. of & uvler § B 31, 2007
. 4 A S the pre-tmage of 4~ wdev

domain — Codomain
Def - Covge of A wvevf = L4eB|3aen fw=4d  <Vame < Codoman

'Def z 'fth‘A‘ow’f i |-t (indective, an Wection) #H fw=fwr—> a=4
1e. each 4 fos only 1 pre-mage
VoVt dmy=fur > a=£)  oF  YaVf (a#4d > fm#=fu)
'D¢f= ‘f"v\mfiion’fL is onto (Swg_ecﬁve, A surjection) #f 2eB ane fn=¢
1e, evevy member of co-domein B is "covered’ by the imege of something an A
<& Co-dlomain = range , f4)=B
e9. A=B, B=R then =% ($:A-¥B) is NOT onto
A=R, B=R then foa=%" (f:A~B) s onto
Def = function T is Wdective #f 3§ both indective and. suective. pka” [=to=| correspondence” R4

Tef: Lot $:A>B e bijective. That means ¥4-€B 2a€A§®
The inverse of £, fih=0, & be the & st fw=4 ie. $r=a £ bijective faction  +7F 15 not, bijective,

- _ - 20 .
T T w)=¢ au $'dfon=a Tis . defined._pits
D P = N A one-to-one correspondence is called invertible because we can define an inverse of this
z COMFDSI('AOI') Df {wﬁoy) function. A function is not invertible if it is not a one-to-one correspondence, because the
(_f_o)(-()(m __-‘P(g-b‘)) _64_ inverse of such a function does not exist.

Foh) w={ta)=a
Where 4:A->B, £:B>C  (alo ach, 4B
Hear=F(gm=fun=c €c

‘ 33/\ —fc
 \ y—
:\U\/:

oz
Def - The of 458 is {atd| ach nfm=21 olte
Tt doesyit Need. to show Visible 2mages on XY~ coordinde = Groph 25 o set of pal” Cn~twple)




Def: § is well-defned # WweDagec st d=foo

P49
e dlor00)= 121 =427 =(¢=x%)
Lw)=3, [-#=-4
caﬂimg_(%) = %] Eg’22= (42%)
[l=Y4, [~1]=-3
¥ Tnverse jcw
This £ has No dnvevse
— swe AxecAf=4ez
Relations
Def = let A,B be sts, tecal] thatt AxB= {(a.t)| ae p, 4eBY
A veletion B s some subset of AxB
We write aRZ to wem " a s relded to be under B
eq. A= students of TLCTS
B=7 thsses of TIGI}
S(C'D geh, ceB , ond, sRe="student s is -b«king coss &'
¥ In geneval, veloTion is many—to—many. ( NOT [-to=I or onto)
¥ @C Pelotion Aé—)
¥ Some q[wmulas NI e.q, relation on Z" s R= | = "is dwtsidle baf
A=4- N 4,2, ¢6,3),(93)I< R
R4 ) LR
AZ4  etem #o, Ak>1 €Z' sty CULEIER €1l 15 & pAme number”
*Binary Matvix w | is true (i velstion) Rel
el
201 1 01 &q- ke, 1Re, Ra
3 Lo | 1\ 220
€A

¥ How MAny Pﬁﬂmelaﬂons odst?
(Recall RepxB  |Al=n. [Bl=w, each entry 25 0 07
total # of possvle relations s 2
€9, on 3x5 malvix, thereS
9%%: = 22748 posshle veltions



¥ Rnpeyues of Relations on AxA
D @aMER = "A s reflexve pe7é
@ [aHER <> meRT = "A 15 symmetric. psll
@ Va.gepAl @ g ep A fua)=R —>a=¢1 = [#(ap R ( (4R A (2] = "Ris anti- symmetvic”

|1, @ |, : Q|, g , ho symmetiic pav- of relotion Cwhere ctemeid 1 1)
" 1
N 0.0
i 1 o ' 4 (2] 0 1 0
\ 1 1 [
DL@HER N H)eR > (a.0)ek] = "Ras transitive’ 2

e\g, = S>.<
Bst # 2s Not transttive

* Combiving. Relstions ps7?
Nefe= Relation is gusb a set & ordeved pArs > Usingset, opexations on Yelrtions +p define. new velptions
eq. A= § StdensS , B = Icowsest
Bz £ has fakend , Ro={ peed to tabe i onter fo gmduie”
What oo ng mean RiNRa, R1UR:, R1I®R, R-R, snd Ra-Rq?

oR /v

AN~

* Compesttion of Felations Rbeo
let RS AxB, S<Bxq
then SeR =f (ac)| ach, ceG, 34 EBR ca-ERA (4,0)ESD
¥ There can be pultigle cs for ouy 0, Ond vice versa
eq. Re"is theprent of "
(2 4)ER, (4.c)ER  (awc)ERR
* Recuysion relrtions pbgo
R'=R, R=Rek, =, F"=R.r
Thn R onaset A is tvnsttive #f 'SR ¥n>0



% h-ovy Relstions
“ defives Yelavionship between multiple entiies simttanesusly

Def+ given sefs A, Av,An (Domatns), IS the degree of & rlstion RS AaxAvx wx A,

9 INx Nx N st, acf<c
eq, (AESD.T) =("Avh

6-3.

»
ne,

':F[Ag}d‘,#", ';:lep»rrme d’(vaf', "distiwstion’,

deparfive. time")
YS&?

Combinations of domains can also uniquely identify n-tuples in an n-ary relation. When

TABLE 8 Flights.
Airline Flight_number Gate Destination Departure_time
Nadir 122 34 Detroit 08:10
Acme 221 22 Denver 08:17
Acme 122 33 Anchorage 08:22
Acme 323 34 Honolulu 08:30
Nadir 199 13 Detroit 08:47
Acme 222 22 Denver 09:10
Nadir 322 34 Detroit 09:44

the values of a set of domains determine an n-tuple in a relation, the Cartesian product of these
domains is called a composite key.

5. Assuming that no new n-tuples are added, find a compos-
ite key with two fields containing the Airline field for the
database in Table 8.

13. What do you obtain when you apply the selection oper-
ator s¢, where C is the condition (Airline = Nadir) v
(Destination = Denver), to the database in Table 8?

17. Display the table produced by applying the projection

Pj 4 to Table 8.
Airline | Destination
Nadir Detroit
Acme Denver
Acme | Anchorage
Acme Honolulu

6\8_,

7. The 3-tuples in a 3-ary relation represent the following
attributes of a student database: student ID number, name,
phone number.

a) Is student ID number likely to be a primary key?
b) Is name likely to be a primary key?
¢) Is phone number likely to be a primary key?



% Brief Review of Matvix Fob . 2017

[0\11 A A

Ay A A3
— Addition: element by element ( both musc be the same size)

—Hu(ﬁpﬁmﬁom (Dot Roduet)

] 2 vows, 3 clwms "2x3"

P(77
PArom | ©: [Rmad = 7 [Cw
[ aada s sad
Ttvrow - cobenn
% Amoun of comptation wh B

eody dement, of G costs m sodr multiplication & -1y additions ( :’E; 2 fay)
A0 4 of doments 3 G 35 nxk

< o Xmx

Thm. (AB)G= ACBA)
But. the amowit, of computation. could. be different,
9. det Avxw, Buxw, Cuxw
st of CAB)G = (0 20%30) 4+ ((0x30x40) = 000 +[2000 = |R000 ,>

mci

W
v ACBG) = (20 x30 x40)+ (10 X205 40) = 24000 + 8000 = 32000 I Mmore expense 5 £ it prospect, We choose. (ABYG i this case (fsfer)

—Froperty of Max
I-= iab‘b‘h"('g_=[ 4/1 C otherwise 0)

hxn

A= Transprse =" {kp peross drogonsl”
if A=A, Adsa gmmeticmtix < if A=A, A a smmebic

* Representing. Relivions Chinary. relations)
— list of ordered pads REAxB = §(0,8.), (a1, 42) w (Ax. )}
— Mavix (Boskan) _| ——>B

o] o[ o |
A \l/ [ o | o I 1 o i, #>ep
: where HMp= EM«:Q] =1 0 ofierwise

€9. Mr where R="i devids §* 2,{<5

Ris veflevive #f aRa Yaep Symmetvic iff AR <> ¢Ro anti-symmetic #f oREA tBa—> st I i [ ;oﬂexgye!
mmetfyrze
T 1 0 1 Azﬁ—ymmm
1 1 ° 0,
11 1 ! o b
1, 0 [ 1 a1




Composttion of Relations p.ie2.
sny R elates A 0 B, S reldtes B C
Define Mr and Ms as ofore, then Mros veles A 4 C st.
Meox = Ctaj1, tij=! 36 ak CaiBer A £rRedd
Then Mr@s = Bodewn Roduct of marices e Me
HMatrix multiplication with X femng N, + fotng v

* Dignophs ( Dbected, Gimphs)

eq, a—>£9
“ s . o
oL Ne prrows = "edge” , letters = "hode” in the grph
Note= f B is symmetiric, all arows mist g0 both wags > the groph 25 ‘wdarecteo”
e
g‘y)\t’ut

¥ Closure of Relovions  p577
Guew R under property P, closave of R wnder P 35 the smollest. hew relotton S that, both
D hos property P
@ tonfalng R ss A subset
eg Me=| Yeflexive clausure = pdd 3 dements

(
0°
!

o

9 Refledve closwe o R=Ec@.re2| <4}

e.g. det R ge "<"om Wlegers. Creote. & symmetyic closure of R
al L

tecv Tef  closure = et R fe o relation on AxA, et P fe oy property of veations (eg, reflextve, symmetvic, fransivive ete)
H 2 a rption S st, S & a subser of every Yelntion sotisfying ¥ that. contatns R,
then S = the ghoswe of B wnder P
2.e, 38 (P A YT CRET A Py =S ETD)
=if fthis e £s TRUE, S is the enclosure
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¥ Transttive Closwe
det R=5C13), (LD, (2,1),(3,2)3
ST‘P]]- since 1Re, 3f2 = is IR ? > No then add Tt =P pow CLZYER
Wiat efse? 2B, (Bs —>(2:3)
2Ry, 1R > (2.4) pdded
3R, 2R, — (3.1)
Step D Now, need-to think the sddedt Yelotions oo
1R, 2Py = ¢1,1)
2R, 2Ry —> (3.3), (3.4)
2R, 3R = (2.2)

step3  Again, think sbast- the naw relaions
1R3,3RE—> (13D, C(h4) = Transtbive closure of R 3s all these pairs with, B

Lets consider an easier way
Can;idm‘ya. Prthes here

1 . 3
>< <
L &, 9
1. 3.3 IR — 1o 5.3 1e 5.3 1e 5.3
< = < - X<l - <l - X
2- . . 4 1 . . 4 z . . 4 1 q_ Col . . q-
Pathv on diredted elae
Def = o groph s sev of odes awd & sets of ordersd, padv on odes called edges
Yef = (%.4) 15 a divected edge.
ath P s o Sepuence o edges er=(41,%1) st, Y2=Nix ( Second hode n €i 5 the fise Node Zn Gow)
eq, @.8,4.,c), (cid) (dic)
Def= Puth length, 75 the numbey erdgts v the goph (= # node -1
€dr T e prth lenghe =2, Snodes
Note, @ Eoth from o node to dtself can be lenathv 2ero if no seff-loop or any. noh-negative iy.tager-zF oRa &7
@If k edges % (a5t node = the firse hode where k>0, this is colled A chrost or cirefe Rﬂ '\,.
® both gdge, ond. hodes (an appear mmore than once
Recal( ComposTtion of velations RoR =R
In grooh ferms, B=sets of prth of lemgth 2
e9. i aReA 4R, (2c) is i B°
Re la:;;Nera =B = set of podnof Jength Note= by defriteion, B2 T = pati of length. &
Def: = Y B = "connectivaty. velation on B! =" Yeachbility. of groph. on '

Z fvnsitive closure of B P.bo2

THEOREM 3 Let Mg be the zero—one matrix of the relation R on a set with n elements. Then the zero—one
matrix of the transitive closure R* is

n
Thm p*= "L‘J'lf where 1= # nodes ( elemenfs of A) B ——



% s of competivg transitive enclswre of & Yebtion £ on AxA where |Al=n
R con be. vepresented as a binary matrix nxn = M
R ean be computed as MxM which costs =1, ntimes —> total cost. is st most Ocnty

* Warshall’s Alaorsthm —thdnke. of connectivity
et Wo. = HMr = matvix represencing. R (directed, qroph)
Def= Wo = Matrix of Yenchobtlity (T.1) but only allowed, 1o use infermediote nodes L, , k
Réed

LEMMA 2 Let Wy = [w,qf]] be the zero—one matrix that has a 1 in its (i, j)th position if and only if there
is a path from v; to v; with interior vertices from the set {vy, va, ..., v¢}. Then

[k

[k=1]
ij )s

1y otk

[kl _
Wi =w (j

ij

whenever i, j, and k are positive integers not exceeding 7.

EXAMPLE 8 Let R be the relation with directed graph shown in Figure 3. Let @, b, ¢, d be a listing of the
e 2_ (¢ F 609) elements of the set. Find the matrices Wo, W1, W2, W3, and W4. The matrix Wy is the transitive
a b closure of R.

Solution: Letvy = a, vy = b, v3 = ¢, and v4 = d. Wy is the matrix of the relation. Hence,

00 01
1 1 0
. — Wo=1{, 0 o 1
FIGURE 3 0010
The Directed TP . N N | that hae 2 os an intesl
Graph of the W) has 1 as its (i, j)th entry if there is a path from v; to v; that has only v; = a as an interior

vertex. Note that all paths of length one can still be used because they have no interior vertices.
Also, there is now an allowable path from b to d, namely, b, a, d. Hence,

00 01
101 l-|
10 0 1|

00 1 ()J

W has 1 as its (i, j)th entry if there is a path from v; to v; that has only v} = @ and/or v2 = b
as its interior vertices, if any. Because there are no edges that have b as a terminal vertex, no
new paths are obtained when we permit b to be an interior vertex. Hence, Wo = Wy.

Relation R.

W, =

.

Wj has 1 as its (i, j)th entry if there is a path from v; to v; that has only vi = a, vz = b,

and/or v3 = c as its interior vertices, if any. We now have paths from d to a, namely, d, c, a,
and from d to d, namely, d, ¢, d. Hence,

W3 =

—_——o
oo o
—o =0

Finally, Wy has 1 as its (i, j)thentry if there is a path from v; to v; thathas vi = a,v> = b,
v3 = ¢, and/or v4 = d as interior vertices, if any. Because these are all the vertices of the graph,
this entry is 1 if and only if there is a path from v; to v;. Hence,

——
coCocC

This last matrix, Wy, is the matrix of the transitive closure. <



¥ Eg.wivdehce Relntions

Def: a relation Ron set A 35 called on Equiunience Relation (ER) i 7t 35 Yeflexive, Symmetric, and Jrsitive.

&g, od-sule C"{Mgmge only. used: firse € charactirs of onvvioble rome 4o identfy
int this\Vowiable ;

? a&MTVA'eut wwmes i obl q‘—{.»gmge
wt thisVariation ;

e. g, EXAMPLE 9 What are the equivalence classes of 0 and 1 for congruence modulo 4? (F\ 410)

Def = o veluted: by an ER they ate colled, equiinlent, a
Note: " a~g" order is NOT zmportant
e.q, ss [%-4l<] o ER?

Def- given ach and on EB et CAdp= 1A aRLT colled “equimbnce class of
We say a is a "Y&{Jmsonwion“ of tadr fut ony namber of cadp would suffice
ed, what 3s (3% if R=TCa@reZ’ | a= gcmot i}

€3, 26. What are the equivalence classes of the equivalence rela-  Hy/ p.s16
tions in Exercise 1?
a) {(0,0), (1, 1),(2,2),3,3)}

o) {(0,0). (1, 1).(1,2), (2. D, (2,2),3.3)}

Thm aR# ¢>[AJp =C4Ip €< [alg N L4 # B on ER
oorol!nrg : aBg > ARNTLR =&

corollavy = ,EA Lale =A

More genenlly, glven only st of subsels ATS A, we say that
AT fom o partition of A i ViiAIT#£ 6, i3 > AINAI=2,md UA:=A
A partition of A ImpUletly defines o veltion B o A

Thm et Rbe m EE on A, then the equlvalence. clrsses of B fom a partition of A

Convevsefg , GVen & partition CAZI of A, 2 EL. R that s M as 35 egu.IVa«lence tlasses

F‘&b 16,2017
*9[7@4./ 2Lk

. 613

[~
&S

FIGURE 1 A Partition of a Set.
F»rh\u‘ow dioavm



* Partial orderdngs  p. bl
Tef = gven a velstion B, Ris called o partial omering of A of Ris veflodve, avti-symmetviz, and frmnsicive on A ARA " posets’

e, = o Z

eq. devides"|" ow Z'

Xwhy called * pavoidl " ovdering 7 Cp-41)
Tef: aRe v +Ra  we Sa4 o and £ ore “aompnmbla"
Def= If all pairs 3 A ove comparable under B,
then B is a fofal ordering

DEFINITION 2 The elements a and b of a poset (S, <) are called comparable if eithera < borb < a. When
a and b are elements of S such that neithera < b norb < a, a and b are called incomparable.

Def: 1 R on A is a tofal ordering.
and, every non-empty. set of A hos o least element, then A is well-ordereod under B
eq. Z is NOT well-ordeved. since there$ 1o least clement.
ed, the lexicographic onleving 3s well- ordered set
(a1.080) R ($a, ) 3f Mm<$r V(=1 A g s fa) Feb 2|, 20(]
€9, Words Tn a dictionary 2 Shorfer words come fivst before (maer words 3f the shorfer word is the shod of the [orger word

eq, "and" < Y andromeda"

¥ Hasse, diogram ow possts p.b22
step 1 cede direced acyolic graph (DAGS)
step 2 vemove 4l edges that can be aferred. from other edgas
eq, = on §(,2.3.4F

3(-3051/!2 W (Tput, is bottom)
eq, "|" dwids on A =512, 3.4 6.8.125

Del= 4 maximal element hos vio dements anster (R than sl

a Winimal clement has vo dements swaller ¢ =) than Fself maimAm
.9, from above, R 2 S (2 M
Def= an dement aeh is maimm (grestest) i <o (4eA wmal\/

minimum (lesst) 3 asf VheA
e, fom above, <— gredest/ lesst: e ungpue if they exbts



Detz quew st S, and subset ASS. wWES

W is cafled " upper pound. on A" if a2 w, Va€h ( Nofe= w must be comporable 1o ol clements n A
" lower pound on A" if A, \faA ( Nofe: w must be comparable o all dements in A

c~3,'from previous page (M"Y, if A=£1.2.3%

Def= the desst wpper bound s the smallest of all wpper bounds (LUB)
the, Grodtest lower~ bound is the |agest- of all lwer pounds (GLB)
e, from previows page (*[") i A=£4.123

EXAMPLE 18
5\31 . i Find the lower and upper bounds of the subsets {a, b, ¢}, {j, h}, and {a, ¢, d. f} in the poset
p bt f with the Hasse diagram shown in Figure 7.
d ¢ Solution: The upper bounds of {a, b, ¢} are e, f, j, and h, and its only lower bound is a. There
are no upper bounds of {j, 4}, and its lower bounds are a, b, ¢, d, e, and f. The upper bounds
b c of {a,c,d, f}are f, h,and j, and its lower bound is a.

* Topologlcal Sort

Brsically Lsts the dements botom—wp in Hosse dliogiom Sita only comprable Ttems wafler on the ordering. h comparable Zems con b shoffled.

&% g
9 ?Y&vrous prge . | /
N

2
b
3

N
|

¥ Lemma = alery Tinite von-empty porel has b lesst one wintmal element
X Algorythm 3

¥ strict ordering
Def= Sag < isa [mwtal ondering, then the associsfer Strict orexivg <. vemoyes the veflexive ovdeving.
e L=< on numbers S > C onsefs
Recall Drrected, Acyele Groph CDAGs) = DAGs Yepresent strict orderings Yecause (assume no self-loop)
becasse. @ o veflexive dements Grreflexive)
@ owti-symmetric Y <KX -> %t Y s>,
—>

@ fromsitive %<y A Y<= > X<z >,

Feb 23, 207



Boolean Alae,brn & pau

* different. notations (duality) for T E AV e, o prctice. =(TAFIV 1 (FVT)
Lo, -+,
&g, %+4=1 & %=1V Y= [-0+ Co+1)
[+]=1_ [+0=], ot[=], o+0=0
Y= = _ The function F(x, y,z) = xy + 7 from B3 to B from Example 5 can be represented by distin-
% g I TH‘ /ﬁ-{ A g”’ guishing the vertices that correspond to the five 3-tuples (1, 1, 1), (1, 1,0), (1, 0,0), (0, 1, 0),
MW - = and (0, 0, 0), where F(x, y, z) = 1, as shown in Figure 1. These vertices are displayed using
XN=% solid black circles. <
EXAMPLE 6

¥ Boolean functions
In gererm), let B= 50,13 B"= § (ta o, ve, )| 3 € B T e

100 101

How mang. possitle Boolean function xists 7

010 011

&4 1 bit nput, 1 bit outpat (outpud 3> AIWAYS 1 pit)

000 001
in general, n bits o nput =2 2" rows FIGURE 1

=> colwmns eadv alsv hove 2" entvies (eac entrg I A bit)

= Yequires 2 ) columns pelt
" " . . TABLE 3 The 16 Boolean Functions of Degree Two.
Mﬂsf/ hom‘( Alg,&bm YV\I” APPI'& Mredf} :H-‘bﬂﬂ/a\h' ‘FC x|y|F|F|F3 | Fy | Fs | Fs|Fp|Fg|Fo|Fo|Fu|Fa|Fs|Fu|Fs| Fe
() N . . . 11 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
(eq: fredince = -, + my{omen’r s ”W"“" dmmedintely oter cilution of wderging <xpresston ol v ootV ool i ool |00
00| 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

qr (14Y) (at4) =
el of these fevm Yohets"

\ﬂv\,_r\_/ one.of 4 _possible cose ot “thereS ol [east, one T tnside. each/ pventhests’
oth T->T
&g, (NHP(KA2) = 6%+ A2+ LY+ Y2
=% (0+Y+2) + Y&
=%+g_z
Thm % (0#Y42)=1%0
prof 1) prof 2) ety fable
VA =K+ = = XY 2| XtYt2 | %(GtY+2)
oxpand NG04t N2 = K+ N (Yt2) = K([+4+2) L - k
00 | ! 0
o | o ] 0
o 1 1 I 0
! o0 o / |
/o | | !
/1 0 ] ]
* P&Pms&wﬁna_ Boolean Fanctions ] ! !

Def: o Itteral 35 any Bookan vovisble (e, %), or s complement, (%)
Det: Givew n Rfevals 2, %, v, %n , & wiilerm is & product containdng eNery lifera| or s complement exactly orce
69 Yo s Yn where Y5 is cither %i or Wi
Def= o Bookean sum of vierms representivg o £ 15 called. the " of prosucts” or "Disjunetive. Normal Form (BNE)' p.22|
@_ﬂ givew w Boolean varinble, overy Boolean on them con be oxpressed os swv:-rf—[?md«obs (i.e. DNF)
&3, Find DNF for Fxg,2) = (HtHZ TABLE 2
OB fruth tible |

o - o |
)

1
1
1
1
0

S oo = = |w

0
0
0

c—~oc—~o—o—|n

=3
- o -




¥ Fanctional Complefeness

defines some set of opersfors then con express any- Boolean function
They the set of Boolean opersrs 2+, +, ~ 1 ate functionally. complere
Nofe= We con eliminate "+" by De Horgané Law

X+4=%3 S 1.7 3 is FC

Con we. find, Swller set. of operdors thnt 35 F.G 7
¢.3- NAND (%4)= %% , twmsot, NAND #tseif, s FG.

* Jogic gotes ( Civeust Disgroms) p.ta3

X X
.

(a) Inverter

Xy
X, ——

(AND)
FIGURE 2 Gates with n Inputs.

eq. [H+y)-(0y)

X 9@5?39\, 800\1 z credle Q- suitch light ' on withe or

* Bonary Addition
¢4, lloll+oloo]

%o Half %o
Yo adder .
Full
adder
¢
IS
Full

adder

FIGURE 10  Adding Two Three-Bit
Integers with Full and Half Adders.

=5

(b) OR gate

\_

p: &28
x NAND y

x —Pp .
y—>

x NOR y

e

(c) AND gate
combinationa|
D+ A CAT] gting
/ * Wﬁm
P\ez.g
TABLE 1
x|y | Fx,y)
1 1 1 Xy + Xy
1|o 0
o1 0
0o 1
Dol
F‘K OrABLE 3 x
. Input and _ _
_—using P Xy +0y Sum
Half Addev- o | o y
 get i sem o [T
AR
g oo x4 covry
0 1 1 0
0 0 0 0 HA[f Mder
pe
{;;E{“i; ) &t = xyc; + XVE; + XyE; + Xy,
Output for ¢ - »
the Full Adder. (x+y)xy)
Input | Output
il 0 R Cipl = XYC;+ XYE+
1 INERIE] ['am XyC; + Xyc;
11|00 1
tlof1of 1 Yzl
fofofr|{ o
HHENE FIGURE 9 A Full Adder.
ofof1f1 0
ojojojo 0

Feb 28 2017



¥ thuag&s ond. Grammars (7&4-7

—=—Symbol
nt 33 4 Syntax ={orm of an 2 pression
i=9; STement [ sevience Sewatlx = ASSighs meaning.
rase
i= 2%1+1;
expresston

*pme free ( devivation tree)
6\3, 2= 0¥ l +| &-g, F,&EHL sentence
/

noun phrase verh phrase

VAN

article  adjective  noun verb adverb

the  hungry  rabbit eats  quickly

FIGURE 1 A Derivation Tree.

Def = Gammar describes a [augwge bg, describing. s)'vr['a\oticad{g. Valid Seutences ( phiwse/ STolement)
Def= a set o vasict stlements describes o éwgwgz
Def= tokens (oko teminals) are aomic (e, smallest meaningfu| strings)

Pef= symbals descrives pavts of sewfences and canbe fermival or non-fermine]

eq, ( Bwlish seutence)
Sentence —> Nouw pmse, Verb pusse
Here, this meous
“con be. expressed” or “produces”
howe phinse — prticle. , o Verb phiase —> verb, adverp < non=terminel
verb —> “runs? | * et i

R v ] u v
article —> "the" | “a .
x| . . Torminals
" U - "
nown —> " horse” | * yavhiz’ odverb —> “guickly’ | slowly
Det = phvose - structure grammar G = (V, T, S, P) Harch 2, 22
.8
V= vocabulary pee is a fini
A vocabulary (or alphabet) V is a finite, nonempty set of elements called symbols. A word (or
Te= Temmd sentence) over V is a string of finite length of elements of V. The empty string or null string,
denoted by 2, is the string containing no symbols. The set of all words over V' is denoted
’P = PWMWIS (oka production. ) les) by V*. A language over V is a subset of V*.
S= Startr symbel Dek= L, the empty String, S the. strtng. Containing no symbels

eq, 8> 1| al¢
p.§t0
det Wo= L 2y fe a String. of symids (which coulol be ferminal or non-ferminal)
Wi=L 2 4o a String of symbols (which coul be Terminal o non-ferminal)
:DG‘F ’LF a production. sit, Zo—>21, then we say S’Muz_ Wy s divecf{!f devivade from Wo , written Wo=>Wa

"
&9, article  pnoun Wf’”” -i-ha"l A houw W

Defz Woswr>Was> > Wh,We s Wo 35 dndirectly. devtvable. from Wo , wittten Wo = Wa,
wd the Seguence o steps, WosWs>Wa w>Wn, 35 called a derivotion



Det= given G, L&) 35 the setv of all volid, serfences devivovle from G, oko the dongunge defued by &
NPT¢= There can be more than one devivation §10Wilﬂa, WOSWn onfsssé Def: defh«ﬂdg. mrove-hou-1
Note= Most ngw«ge cow be described bg. mang. grammovs Y4 36 d@)=4

¥ Types of grammars Crestrict what types of productions ae allowed)
Type 1 Cotfext -sensttve growmmas = LAy > Lwr
"A caw only produce W if Swrvownded, ow both stles by Land v, 2., L owd v provide the only contexts tn whizh, A con be vepinced Wit W
Taped  Lontext—Tree grammors = A->w
A cow be repheed Wil w mnytime
’lg(;e?b “{Zegyd;\v" growmars  (only 3 types o productions ove allowed)
i) A->x
i) A->a
13) A= aB  wl Azteminal & A,B are non-ferminals

Allows[eft—to-vight, pavsing. of input steings, veoddng. tratly. one fermdnd ol otime
¢.9, 1rom previous poge

* Simple exomple of mathematicol expressions
eqd K+, (1thHxY, ((xtYxy) +%

* Backus— Naw Form (BNF) p.e53
ASCII method describing. productions
<E> == (“<E>))
<V>:=%[y

¥ Midteym veview Yowey seb p.[umas ' Marechs 71 20(7
confains & NULL

—
Pt A 4a) ANB={4,53 = PcAnB) =£0, 43, §53, §4533

n- leﬂb'Vl'
:i h=3=2+[ Since s is an existence Pm‘f, Showﬁua one aw-«gla _enonghe - /

Pwt B an>0 n=x

#7 Hint:= (AB)Y=B*AY
Def ¢ o symmetyic matrix) 3 AA® = (AAT‘)'h
det B=A" then AB=(ABY'= BUA® =AA® > AA= (AR

o 1|
'
—p
]

) N #afm(emLP»Iv-
##8 "’E ] } gpaiis o 2=l

WAtk css, N=2\Z"
NAV




¥ Finite siafe machive
nfeger h-b string.

(brse 2)

é\q, b

Bool= find. FSM that) vecognizes bose-3 dntegers thob oo even => (bit stiing) ende with o Zevo

o 1

1

sgﬁal endl stefement. with, doulde -ciele

Ghate) _ next
{ransition Table ST"‘T"| ’"“?“b| STzfe | butput FSM=FRA Movew 9, 20(7
)
So | a ending stide_can be more thaw 1 swecess stafe
A o) £
I a
40| ¢

FSAIFSH w used for (mguoge. vecogution
der V= Vocablary (tokens, ferminals/ non-Tarminds)

= Strings (ot necessavily Valicl of vacatt)
tz&vo or mor.

concofenated, members of vocob
eq. \ntl il =) 2113
det. ABae sets of strings drom T, then AB=E24l%e€A, 4B peif
ABEV  og ArDwped!, “nepet’d , B I%) "4

Det = Kleen dosure: of  setr of strings A is
AK:E, A W\A concotinated. K times (Not multiplication)
Det- FSAIFSM = M=(8,L, 4,8, F)
Where S=set of stofes paeT

DEFINITION 3 A finite-state automaton M = (S, 1, f, so, F) consists of a finite set S of states, a finite input

L= znpet plphobet Em: I{[' 5157 S anintat ofstart st s, and 8 subset F ot somising of
1 = stfe trmsttion toble
So= stvt, stite
F = st of sucessfl fiml siates
Dt = stving. %="to % Gz« fon' NAE Te¥imtnols [tokens 45 Yecoguized
i machine M starting. i sife So ond veading. entive % ends i & sTote w F,
Note = Two FSHs are %M'wlcnr/ f they both recognize. the same. (Mgwg& p£ég

DEFINITION 4 Astring x is said to be r ized or pted by the machine M = (S, I, f, so, F) if it takes

@ 3 0 the initial state 59 to a final state, that is, f(so, x) is a state in F. The language recognized
é-% o 0 0)l or accepted by the machine M, denoted by L(M), is the set of all strings that are recognized
‘ —OrQ® 2

by M. Two finite-state automata are called equivalent if they recognize the same language.
@ Lo




* NDF:SMs (non-deterministic FSMs) w only mathematical construct
4. TSP Ctraveling Solesman provlem) = w cities 4o viste
9ol = find, the cheopest. poth that, each. Oty s Ohce Vistted: —> w! possible pathes
in principle, what is the onswer 7 (2o solution?)
—> the cose df’]’SP,ges (2 path for TSP costy < [007)
Importouts Nofe=  once TSP (NP-comple®) is puose as Yes! No, o “Yes” nswer is ensily vertfred,
Def = guew a stying =% 61 K %, NDFSM "M Yecognizes % i aa prtly through FSM ending. & final stite in F
Note = the sTxte table for NDESH has muitrple "next!’ stafes

F-a’]s
TABLE 2
S
Input
State 0/’ S‘ft{‘rb is 011
L~ Z

50 50, 51 53

S S0 51, 83

o S0, 52 FIGURE 6 The Nondeterministic

‘.; . 1. 5 “ - Finite-State Automaton with State

- B i Table Given in Table 2.




¥ Turing. Machines Mavels 14 2017
FSMs we finite , ie, fwite memory  dlae fuife fsts
eq, Tt camt Yecognize {0"1" | 1203 for whitrary n ( Works fine for pre-known max )
= Taring. Machines have “tape’, which provides wemory. Sourse pe (_F’.gﬁ
"MZM«"M“W,'&Y mathematical description on!% EET T ool T T
Ohly. operstion ollowed. = read. one cdll, write one cell, move o R by one cel|
FSH s tesporsible for dediding what o write , and where o move
—WhatS order RIW Head co L
— cuvrent, stife of FXM R
Def: Tuving Machime T= (S,1, 4, S, F) ’
Where N= set of stas v FSM Only ety many nonblank el t anytime
FIGURE 1 A Representation of a Turing Machine.

L= Input/Otpuc symbols +"B" ove allowed ow the tape
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So=STavt state, F=final sccepting sltes €S
o end"sp” T,
@ find & new strle bosed, ow current, stite + Inputs symbol
@ wWrite & new symbol on the tope
@ moves one cdll left or vight

We write this step as the five-tuple (s, x, s’, x’, d). If the partial function f is undefined for the
pair (s, x), then the Turing machine 7 will halt.

A common way to define a Turing machine is to specify a set of five-tuples of the form
(s, x,s’, x’, d). The set of states and input alphabet is implicitly defined when such a definition
is used.

F' £89

€9+ What is the final tape when the Turing machine 7 defined by the seven five-
tuples (so, 0, 50,0, R), (s0,1,s1,1, R), (s0.B.s3, B,R), (51.0,50,0,R), (s1,1,52,0,L)
(s1, B, s3, B, R), and (s2, 1, 53, 0, R) is run on the tape shown in Figure 2(a)?
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Fﬁ/ EXAMPLE 3  Find a Turing machine that recognizes the set {0"1" | n > 1}.

Solution: To build such a machine, we will use an auxiliary tape symbol M as a marker. We have
<‘2> V =1{0, 1} and 7 = {0, 1, M}. We wish to recognize only a subset of strings in V*. We will
' have one final state, 5. The Turing machine successively replaces a 0 at the leftmost position of

the string with an M and a 1 at the rightmost position of the string with an M, sweeping back

and forth, terminating in a final state if and only if the string consists of a block of Os followed
by a block of the same number of 1s.

Although this is easy to describe and is easily carried out by a Turing machine, the machine
we need to use is somewhat complicated. We use the marker M to keep track of the leftmost
and rightmost symbols we have already examined. The five-tuples we use are (sg, 0, s1, M, R),
(s1,0,51,0,R), (s1,1,81,1,R), (s1,M,s5,M,L), (s1,B,52,B, L), (s2,1,83,M, L),
(A‘g, 1, 53, I, L), (.\‘3, 0, S4, 0, L), (A‘}, M, S5, M, R), (S4, 0, 54, 0, L), (S4, M, S0 M,R), and
(ss, M, s¢, M, R). For example, the string 000111 would successively become MO0111,
MOO1IM, MMO1IM, MMOIMM, MMMIMM, MMMMMM as the machine operates
until it halts. Only the changes are shown, as most steps leave the string unaltered.

We leave it to the reader (Exercise 13) to explain the actions of this Turing machine and to
explain why it recognizes the set {0"1" | n > 1}. <
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¥ Complextty, Decidabiity., Computability. Mavoh 16, 2017
Def> a Heciston prodlem’ is o problem with a YN answer
Note= 3 undectdable. problems
e halting problem = glven & orbitivy. problem p ands inputs %, does p Falt- when applied 1o K2
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P=7 set of all problems computable 3 pounomial time by Defermiste TTM. 3
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Does P=NP? We onit dispove => We ASSUME P#NP (wt poved yet)



