Professor
Professor
Wayne Hayes
\because
Boolean Algebra \& Logic

Def Proposition... direct statement of fact (can be true/false, but NOT both)
ex. "Toronto is the capital of Canada." \rightarrow False

Def ${ }^{7} p=$ "NOT p " $=$ negation of p

Def $p \wedge q$ "and" "but" conjunction of p and q
in English sentence. "but" is of Ten used to show more than I event that occur simultaneously
Def $p \vee q=$ "OR" disjunction

Def $p \oplus q=$ "exclusive or" (preasely one)

TRUTH TABLE

p	$\neg p$
T	F
F	T

p	q	$p \wedge q$	$p \vee q$	$p \oplus q$
T	T	T	T	F
T	F	F	T	T
F	T	F	T	T
F	F	F	F	F

$$
(p \rightarrow q) \equiv p \vee q
$$

p	q	$p \rightarrow q$	$T p$	${ }^{7} p \rightarrow q$
T	T	T	F	T
T	F	F	F	T
F	T	T	T	T
F	F	T	T	F

Def converse of $p \rightarrow q$ is $q \rightarrow p$
Def contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$, which is equivalent to the original statement
Def inverse of $p \rightarrow q$ is $p \rightarrow \neg q$
Deft $p \leftrightarrow q=$ "if and only $f^{\prime \prime}=$ biconditional statement of p and q $\equiv(p \rightarrow q) \wedge(q \rightarrow p)$ aka "p is equivalent to $q^{\prime \prime}$

Precedence of Logical Operators pill

$$
\neg, \wedge, v, \rightarrow, \leftrightarrow \quad \text { ex, } \neg p \rightarrow q \rightarrow r
$$

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

* Logic and Be Operations i. check pill
ex. Knight \& knave
knights always tell troth
knaves always tell a lie
A says "B is a knight."
B says "We are opposite type".
proposition ... $p=$ " A is a knight"

$$
q=\text { "B is a knight" }
$$

where to start
$\left\{\begin{array}{l}\text { If } p_{1} \text {, then } A \text { says truth (" } B \text { is a knight"), so } q \text { is the } \\ \text { If } q \text {, then } B \text { says truth ("We are opposite types"), so } p \text { is false. }\end{array}\right.$

$$
(p \rightarrow q) \wedge(q \rightarrow \neg p)
$$

\(\left.\begin{array}{|c|c||c|c|c|}\hline p \& q \& p \rightarrow q \& q \rightarrow 7 p \& (p \rightarrow q) \wedge(q \rightarrow p) \\
\hline T_{F} \& T \& T \& F \& F \\
T_{F} \& F \& F \& T \& F \\
F_{T} \& T \& T \& T \& T \\
F_{T} \& F \& T \& T \& T \\

\hline\end{array}\right\}\)| (premise: if $p)$ |
| :--- |

$\left\{\begin{array}{l}\left.\text { If } \sim^{\prime} p \text {, then } A \text { says a lie ("B is a knight"), so }\right\urcorner q . \\ \text { If } \neg q \text {, then B says a lie ("We are opposite type"), so }{ }^{\prime} p . \\ (\neg p \rightarrow \neg q) \wedge\left(\neg q \rightarrow{ }^{\prime} p\right)\end{array}\right.$

$$
\left({ }^{\prime} p \rightarrow{ }^{\prime} q\right) \wedge\left(1 q \rightarrow{ }^{\prime} p\right)
$$

p	q	$p \rightarrow 7^{7} q$	$q q \rightarrow 7$	$(p \rightarrow i q) \wedge(\vec{q} \rightarrow 7 p)$
T_{F}	T_{F}	F	T	F
T_{F}	F	T	F	F
F_{T}	T_{F}	F	T	F
F^{\prime}	F	T	T	T

$\therefore A$ is a knave and B is also a knave.
check p. 11

Def tautology is always true ex pup
Def contradiction is always false ex. pip
Def contingency can be true or false (neighter urology nor contradiction)
Def $p \equiv q=$ "triple equal" $=$ pard q are logically equivalent if $p \leftrightarrow q$ is a tautology

TABLE $\mathbf{6}$ Logical Equivalences.	
Equivalence	Name
$p \wedge \mathbf{T} \equiv p$	Identity laws
$p \vee \mathbf{F} \equiv p$	
$p \vee \mathbf{T} \equiv \mathbf{T}$	Domination laws
$p \wedge \mathbf{F} \equiv \mathbf{F}$	
$p \vee p \equiv p$	Idempotent laws
$p \wedge p \equiv p$	Double negation law
$\neg(\neg p) \equiv p$	Commutative laws
$p \vee q \equiv q \vee p$	
$p \wedge q \equiv q \wedge p$	Associative laws
$(p \vee q) \vee r \equiv p \vee(q \vee r)$	
$(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$	Distributive laws
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$	
$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$	De Morgan's laws
$\neg(p \wedge q) \equiv \neg p \vee \neg q$	
$\neg \neg(p \vee q) \equiv \neg p \wedge \neg q$	Absorption laws
$p \vee(p \wedge q) \equiv p$	
$p \wedge(p \vee q) \equiv p$	Negation laws
$p \vee \neg p \equiv \mathbf{T}$	
$p \wedge \neg p \equiv \mathbf{F}$	

TABLE 7 Logical Equivalences

 Involving Conditional Statements.$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

TABLE 8 Logical

 Equivalences Involving Biconditional Statements.$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

Predicates \& Quantifiers

* Propositional logic deals with small fixed sets of objects
* We want to talk about sets of objects "for all" and "there exists" < quantifiers
* We want variables in our expressions. \& predicates
ex. predicate $P(x)=" x>3 "$
$P(4)=T \quad$ (since $x=4>3$)
$P(2)=F \quad$ (since $x=2 \ngtr 3$)
ex. $Q(x, y)=" x=y+3 "$
$Q(6,3)=T \quad$ (since $6=3+3)$
$Q(6,2)=F$ (since $6 \neq 2+3$)
ex. consider the swap operation
$\delta_{\text {wat }}(x, y)=\operatorname{Pre} x=a \wedge y=b$
Post $x=b \wedge y=a$
where a \& b are constant

Def $\exists x \in S Q(x)=$ "There exists an x in the set S such that $Q(x)$ " \rightarrow existential gaanufier $=$ "there exits" end snap
Def $\forall x \in S Q(x)=$ "For every x in the set $S, Q(x)$ " \rightarrow universal quantifier $=$ "for every x " "for all x "
*De Morgan's Laws for Quantifiers
${ }^{7} \exists x P(x) \equiv \forall x{ }^{\top} P(x) \quad{ }^{7} \forall x P(x) \equiv \exists x^{\top} P(x)$

* Combining Quantifiers
... when mixing, order is important
ecg, $\forall x \exists y P(x, y) \equiv \exists y \forall x P(x, y)$
such like $P(x, y)=" x+y=0 "$
$\forall x \nexists y P(x, y)=$ "For every real number x. there is a real number y sit $P(x, y) \quad$ True

such like $P(x, y)=" x+y=z "$
$\forall x \forall y \exists \geq P(x, y, z) \cdots$ True
$\exists z \forall x \forall y P(x, y, z)$ "' False (There is no magic number Z whose value is the sum of any x and any y) but if $P(x, y)=" x+y=y+x "$ " it work \leftarrow sometimes it works, depends on $P(x, y)$

TABLE 1 Quantification of Two Variables.

$\begin{array}{|l|l|l|}\hline \text { Statement } & \text { When True? } & \text { When False? } \\
\hline \forall x \forall y P(x, y) \\
\forall y \forall x P(x, y)\end{array} \quad P(x, y)$ is true for every pair \(\left.x, y . ~ \begin{array}{l}There is a pair x, y for

which P(x, y) is false.\end{array}\right\}\)| There is an x such that |
| :--- |
| $P(x, y)$ is false for every y. |

* Practice: Translate from English to Logic \& from Logic to English
- "the sum of two positive integers is positive"
$=\forall x \forall y \in \mathbb{Z} \quad x>0 \wedge y>0 \Rightarrow x+y=0 \longleftarrow$ your $P(x, y) \quad$ Note: there are many ways to say
$-C(x)=$ "x owns a computer"
$F(x, y)=$ "x and y are friends"
$\forall x(C(x) \vee \exists y(C(y) \wedge F(x, y)))$
". everyone has a computer or a friend who has a computer
$-\exists x \forall y \forall Z((F(x, y) \wedge F(x, z) \wedge(y \neq z)) \rightarrow\urcorner F(y, z))$
Step 1 examine $(F(x, y) \wedge F(x, z) \wedge(y \neq z)) \rightarrow\urcorner F(y, z)$
\cdots if student x and y are friends, x and z are friends, and if y and z are not the same student, then y and z are not friends
Step original statement int there is a students st. for all students and all students z other then y if x and y are friends and if x and z are friends, then y and z are not friends Step 3 generalize the expression "." "there is a student none of whose friends are also friends with each other"
- "There is a woman who has taken a flight on every airline in the world."

Step 1 change the statement into more "logical way"
"." There is a woman on the Forth sit for every airline on the Earth and there is a flight of that airline that the woman has taken"
Step 2 create the proposition

$$
T(w, f)=\text { " } w \text { has taken flight } f \text { " }
$$

$S(f, a)=$ " f is a scheduled flight (route) on airline a "
Step $\exists w \forall a \exists f(S(f, a) \wedge T(w, f))$

Rules of Inference on the basion of evidence
Deft Argument is a sequence of statements that end with a conclusion
Def Argument is valid if its condusion (or final statement) follow from the truth of the preceding statements (premises) of the argument.
Def Fallacy is aw invalid argument where tautology is surreptitiously replaced by contingency as if the contingency were always true.

This is a contengency, not a tautology "fallacy of affirming the conclusion" (you cannot conclude it)

$$
\text { e.g. } \left.\left[(p \rightarrow q) \wedge^{7} p\right] \rightarrow\right\urcorner q
$$

"fallacy of denying the hypothesis"

* Inference in Quantified Statements
- universal instantiation
$(\forall x \in S \quad P(x)) \rightarrow P(c)$ for any individual $c \in S$ e.g. "All humans are mortal" \leftarrow where $M(x)=$ " x is mortal" "Socrates is a human" $H=\{$ all humans $\}$
\Rightarrow "Socrates is mortal" $(\forall x \in H M(x) \wedge s \in H) \rightarrow M(s)$
- extential instantiation
$\exists x \in S P(x)$, assume c is one such dement s.t. $P(c)$
we don't necessarily know the value but we know it exists,
so we name it c and continue our argument
- exstentional generalization
conclude $\exists x P(x)$ when there is $c \in S$ sit. $P(c)$ is true
- universal generalization
if $P(c)$ is true for all (arbitrary element c), $\forall x P(x)$ is true

TABLE 2 Rules of Inference for Quantified Statements.	
Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text { for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text { for some element } c}$	Existential instantiation
$\therefore \frac{P(c) \text { for some element } c}{\exists x P(x)}$	Existential generalization

* Combining Rules of Inference for Propositions \& Quantified STatement universal modus ponents

$$
\begin{aligned}
& \forall x \in S \quad(P(x) \rightarrow Q(x)) \\
& a \in S \\
& P(a)
\end{aligned}
$$

$Q(a)$

Introduction to Proofs
there is a difference between formal \& informal proof
\rightarrow like human convesation

Def Theorem is a statement that can be shown to be true (facts/results) \rightarrow a formed statement that has been proved correct

* Less important theorems sometimes are called propositions

Def We demonstrate that a theorem is true with a proof (a valid argument)
Def Axioms (postulates) are statements we assume to be true
ins in a principle? $^{\text {in }}$
Def A lemma is a "small theorem" which is often used to help prove a bigger theorem
Def A corollary is an immidiate (obvious) consequence of a just proved The
Def A conjecture is a statement believed to be true but not yet proved

Def Direct Proof uses sequence implications with axioms and previously proven statements ". mainly directly $p \rightarrow \cdots \rightarrow q$
e.g. Prove that " n is odd $\rightarrow n^{2}$ is odd"

$$
\begin{aligned}
& n=2 k+1, n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1 \\
& k \in \mathbb{Z} \quad \therefore 2 k^{2}+k \in \mathbb{Z} \quad \therefore n^{2}=\text { odd }
\end{aligned}
$$

Def Proof by contraposition (one of indirect proofs)
... we wanna know $p \rightarrow q$ so instead prove $\bar{q} \rightarrow 7 p$
e.g. Prove that "if $3 n+2$ is odd, then n is odd"
contraposition : if n is even, then $3 n+2$ is even

$$
n=2 k \text { where } k \in \mathbb{Z} \therefore 3 n+2=6 k+2=2(3 k+1)
$$

since $3 k+1 \in \mathbb{Z}, \quad 3 n+2=$ even
since contraposition is true, if $3 n+2$ is add, then n is odd

Def For the statement $p \rightarrow q$, if we can show p is false, thew we have a proof, called a vacuous proof which can be a trivial proof e.g. Let $P(n)=" n>1 \rightarrow n^{2}>1$ ", show $P(0)$ is true
eg. $\left.P(n)=" a, b \in \mathbb{Z}^{+} \wedge a \geq b \rightarrow a^{n} \geq b^{n}\right\}$, show $P(0)$ is true

$$
P(0)={ }^{\prime \prime} a \cdot b \in \mathbb{Z}^{+} \wedge a \geq b \rightarrow a^{0} \geq b^{0} \text { "1 } a^{0}=b^{0}=1 \leqslant \text { trivial proof }
$$

Def Proof by Contradiction (one type of indirect proof) shows a statement por 7p is false by using contradiction
e.g. Show that at least 22 days must fall on the same day of the week

Sun	Mon	Tue	Wed	Thu	Fri	Sat

$P($ that you wanna show $)=$ original statement
Let ${ }^{1} p=$ "at most three days of 22 days must fall on the same day of the week"
But we have only 7 days to chose from a week.
\leftarrow Once wéve chosen 21 days, every calender day has been picked
at least 3 times (There's no 8 th day in a week)
Therefore, ${ }^{7} p$ is false (p is true) Q.E.D.

* Proot Methods \& Strategy
- Exhoustive Proof ... showing all examples
e.g. Shows that $2^{n}<100$ if $n<7 \quad 2^{1}=2<100,2^{2}=4<100,2^{3}=8<100,2^{4}=16<100,2^{5}=32<100,2^{6}=64<100,2^{7}=128>100$
- Proof by Cases : $\left\langle p_{1} \vee p_{2} \vee p_{3} \vee p_{4}\right) \rightarrow q$
e.g. Shows that $|x y|=|x \||y|$ where $x, y \in \mathbb{R}$
case(i) $x \geq 0, y \geq 0=|x y|=x y=|x||y|$
case(ii) $x \geq 0, y<0=|x y|=-x y=|x||y|$
case(iii) $x<0, y \geq 0:|x y|=-x y=|x||y|$
case(iu) $x<0, y<0:|x y|=x y=|x||y|$
Therefore, in all possible cases. $|x y|=|x||y|<$ exhaust all possibilities
- Existence Proot ‥ shows $\exists x P(x)$
$[$ Constructive \cdots shows an actual example of x s.t $P(x)$ is true
Nonconstructive ". doesn't show an element x but shows its existense
e. g, Prove the Thm $=\exists x, y \in(\mathbb{R}-Q)$ s.t, x^{y} is a rational number

If $x=y=\sqrt{2}, x^{y}=\sqrt{2}^{\sqrt{2}}$
If $\sqrt{2}^{\sqrt{2}}$ is rational, we've done \leftarrow constructive way
Otherwise, $\sqrt{2}^{\sqrt{2}}$ is ivational, then let $x=\sqrt{2}^{\sqrt{2}}, y=\sqrt{2} \quad \therefore x^{y}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{2}=2 \in \mathbb{R}$
Therefore, $\exists x_{1} y \in(\mathbb{R}-Q)$ by showing 2 cases, but we don't know which case satisfies the statement
-Uniqueness Proof ‥ shows if $y \neq x, P(y)$ is false where $P(x)$ is true then $P(y) \rightarrow y=x$ (by contraposition)
e.g, $x, y \in \mathbb{R}, x>0, y>0$. Prove $(x+y) / 2>\sqrt{x y}$

$$
\begin{aligned}
& (x+y) / 2>\sqrt{x y} \Rightarrow(x+y)^{2} / 4=x y \Leftrightarrow(x+y)^{2}>4 x y \\
& \therefore x^{2}+2 x y+y^{2}>4 x y \Leftrightarrow x^{2}-2 x y+y^{2}>0 \Leftrightarrow(x-y)^{2}>0
\end{aligned}
$$

$(x-y)^{2}>0$ where $x \neq y$ is true
So we conclude that if x and y are distinct positive real numbers, $(x+y) / 2>\sqrt{x y}$

- Backwards Reasoning (Proof strategy)
\cdots Assume x and y are distinct positive real numbers
* in this case, statements must be transformed with biconditional (\leftrightarrow)
- Looking for Counterexamples "shows a statement false
(1) The conjection may be false
(2) Failing repeatedly to find counter example sometimes give a hint to prove
(3) Lack of counter example is NOT proof
* Note = Prove or Disprove
e.g, Fermat's last theorem
$x^{n}+y^{n}=z^{n}$ has no solution in $x, y, z \in \mathbb{Z}$ with $x y z \neq 0$ whenever $n \in \mathbb{Z}$ with $n>z$

Sets

Def = a set is unordered collection of all of numbers, elements, objects, things, and anything which is unlike a list (ordered collection)
e.g, vowels $=\{a, e, i, u, 0\}=\{a, i, u, e, o\}=\{a, a, e, i, u, 0,0,0\}$

$$
\mathbb{N}=\{1,2,3, \ldots\}=\{7,14, \cdots\}
$$

$\mathbf{N}=\{0,1,2,3, \ldots\}$, the set of natural numbers
$\mathbb{Z}=\{0, \pm 1, \pm 2 \cdots\}$ $\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$, the set of integers $\mathbf{Z}^{+}=\{1,2,3, \ldots\}$, the set of positive integers $\mathbf{Q}=\{p / q \mid p \in \mathbf{Z}, q \in \mathbf{Z}$, and $q \neq 0\}$, the set of rational numbers \mathbf{R}, the set of real numbers
Def membership symbol $\in \ldots x \in S=" x$ is a member of $S "$ \mathbf{R}^{+}, the set of positive real numbers C, the set of complex numbers.

Def $A \subseteq B=$ " A is a subset of B " iff $\forall x \in A(x \in B)$ or iff $\forall x(x \in A \rightarrow x \in B)$
Def $A \subset B=$ " A is a proper subset of $B " \equiv(A \subseteq B \wedge A \neq B)$
Def $\varnothing=\{ \}=$ "null set", "empry set"

* Venn Deagrams

$u=$ "universe"
Thm $0 \leq S$ for any set S
need to show $\forall x(x \in 0 \rightarrow x \in S) \equiv \forall x(F \rightarrow x \in S) \equiv \forall x T \equiv T$ Q.E.D
Def a power set of a given set S is the set of all subsets of $S=P(S)$
e.g, power set of the set $\{0,1,2\}$
$P(\{011.23)=\{0,\{0\},\{1\},\{2\},\{0.1\},\{0.2\},\{1.2\},\{0.1 .2\}\}$
e.g, $P(0)=\{0\}, P(\{0\})=\{0,\{0\}\}$
* Ordered n-tuple … has n elements and order is important $\leftrightarrow "$ two lists are equal to each other only if the same elemerras in the same order e.g, if $n=2$, "ordered pairs" if $n=3$, "ordered triples"

$(x, y) \neq(y, x)$

Def A and B are 2 sets, The Cares san Product of A and B is $A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$ $A \times B \times C=\{(a, b, c) \mid a \in A \wedge b \in B \wedge c \in C\}$

* Set Operations

Def "union of A and B " $=A \cup B=\{x \mid x \in A \vee x \in B\}$

Def "intersection of A and $B "=A \cap B="\{x \mid x \in A \wedge x \in B\}$
Def A and B are disjoint if $A \cap B=\varnothing$
Def set subtraction $=A-B($ or $A(B)=\{x \mid x \in A \wedge x \notin B\}$
if $A \subset B$,
Def Given a universe $U, U \backslash A$ also denoted \bar{A}, whic is a complement of A

p. 130

TABLE 1 Set Identities.	
Identity	Name
$A \cap U=A$	Identity laws
$A \cup \emptyset=A$	Domination laws
$A \cup U=U$	
$A \cap \emptyset=\emptyset$	Idempotent laws
$A \cup A=A$	
$A \cap A=A$	Complementation law
$\overline{(\bar{A})}=A$	Commutative laws
$A \cup B=B \cup A$	
$A \cap B=B \cap A$	Associative laws
$A \cup(B \cup C)=(A \cup B) \cup C$	Distributive laws
$A \cap(B \cap C)=(A \cap B) \cap C$	De Morgan's laws
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	Absorption laws
$\overline{A \cap B}=\bar{A} \cup \bar{B}$	
$\overline{A \cup B}=\bar{A} \cap \bar{B}$	Complement laws
$A \cup(A \cap B)=A$	
$A \cap(A \cup B)=A$	
$A \cup \bar{A}=U$	
$A \cap \bar{A}=\emptyset$	

Def: a function (sometimes called map transformation) f from A to B takes every element of A to exactly one element of B

$$
\text { e.g. } \quad y=f(x) \quad f=A \rightarrow B
$$

$y \in B \uparrow \quad$ this is NoT a function $*$ Note that $b \in B$ can result from multiple values of $a \in A$

$$
f(a)=b
$$

but $f(a)$ has only one value

Def: b is the image of a under f
Jan 31, 2017
a is the pre-image of b under f

$$
\text { Def: Range of } A \text { under } f=\{b \in B \mid \exists a \in A \quad f(a)=b\} \quad \leftarrow \text { range } \subseteq \text { Co-domain }
$$

Def: function f is $1-t_{0}-1$ (infective, an injection) if $f(a)=f(b) \rightarrow a=b$ i.e. each b has only I pre-image
$\forall a \forall b(f(a)=f(b) \rightarrow a=b) \quad$ of $\quad \forall a \forall b(a \neq b \rightarrow f(a) \neq f(b))$
Def = function f is onto (swrjective, a surjection) iff $b \in B \quad \exists a \in f(a)=b$
i.e, every member of co-domain B is "covered" by the image of something in A

$$
\Leftrightarrow \text { co-domain }=\text { range }, f(A)=B
$$

e.g, $A=\mathbb{R}, B=\mathbb{R}$ then $f(x)=x^{2} \quad(f: A \rightarrow B)$ is NOT onto
$A=\mathbb{R}, B=\mathbb{R}^{+}$then $f(x)=x^{2} \quad(f: A \rightarrow B)$ is onto

Def: function f is bijective iff it's both injective and surjective aka " $1-t_{0}-1$ correspondence"

Def: Let $f: A \rightarrow B$ be bijective. That means $\forall b \in B \exists a \in A f(a)$
The inverse of $f, f^{-1}(b)=a$, to be the a s.t. $f(a)=b$ i.e. $f^{-1}(b)=a$ if f is bijective function * If f is not bijective,
The $f\left(f^{-1}(h)\right)=b$ and $f^{-1}(f(a))=a$
Def: composition of function

$$
\begin{aligned}
& \left(f \circ f^{-1}\right)(b)=f\left(f^{-1}(b)\right)=b \\
& \left(f^{-1} \circ f\right)(a)=f^{-1}(f(a))=a
\end{aligned}
$$

where $g: A \rightarrow B, f: B \rightarrow C \quad(a \mid$ so $a \in A, b \in B)$

$$
(f \circ g)(a)=f(g(a))=f(b)=c \in C
$$

Def= The graph e of $f: A \rightarrow B$ is $\{(a, b) \mid a \in A \cap f(a)=b\}$
\rightarrow It doesn't need to show visible images on $x y$-coordinate \Rightarrow Graph is a set of pair (n-tuple)

Def: f is well-defined if $\forall x \in D \exists y \in a$ s.t. $y=f(x)$

$$
\begin{aligned}
& \text { e.g floor }(x)=\lfloor x\rfloor \equiv \max _{y \in \mathbb{Z}}=(y \leq x) \\
& \lfloor\pi\rfloor=3,\lfloor-4\rfloor=-4 \\
& \text { ceiling }(x)=\lceil x\rceil \equiv \min _{y \in \mathbb{Z}}=(y \geq x) \\
& \lceil\pi\rceil=4, \quad\lceil-\pi\rceil=-3
\end{aligned}
$$

* Inverse fin

This $f^{\text {ch }}$ has No inverse
since $\nexists x \in A f(x)=y \in \mathbb{Z}$

Relations
$\operatorname{Def}: \operatorname{Let} A, B$ be sets, recall that $A \times B=\{(a, b) \mid a \in A, b \in B\}$
A relation R is some subset of $A \times B$
We write $a R_{b}$ to mean " a is related to be under R "
e.g. $A=\{$ students of $\pi C \cdot I\}$
$B=\{$ classes of $\tau T G I\}$
Let $s \in A, c \in B$, and $s R_{c}=$ "student s is taking class $c "$

* In general, relation is many-to-many (NOT $1-t_{0}-1$ or onto)
* function C Relation

* some formulas a b
e.g, relation on \mathbb{Z}^{+}is $R=1=$ "is divisible by"

$$
\begin{aligned}
& a=b \\
& a \leq b
\end{aligned}
$$

$$
\therefore\{(4,2),(6,3),(9.3)\} \subset R
$$

$$
(4.3) \not \subset R
$$

$a \geq b$ etc...
also, $\nexists k>1 \in \mathbb{Z}^{+}$s.t, $(11, k) \in R \Leftrightarrow " \|$ is a prime number"

* Binary Matrix ... 1 is true (in relation)

| a | b | c | d | e |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 0 1 0 1
 2 1 1 0 1
 3
 1 0 1 1 1$\| \quad$ e.g. $\mathbb{R}_{C}, R_{e}, 3 R_{d}$ | | | |
| $\in A$ | | | | |

* How many possible relations exist?
(Recall $R \subseteq A \times B \quad|A|=n,|B|=m$, each entry is 0 or 1
total \# of possible relations is $2^{n \times m}$
eeg, on 3×5 matrix, there's

$$
2^{3 \times 5}=2^{15}=32768 \text { possible relations }
$$

* Properties of Relations on $A \times A$
(1) $(a, a) \in R \equiv$ " A is reflexive"
(2) $[(a, b) \in R \leftrightarrow(b, a) \in R] \equiv$ " A is symmetric"
(3) $\forall a, b \in A[(a, b) \in R \wedge(b, a)=R \rightarrow a=b] \equiv[\nexists(a, b) \in R((b, a) \in R \wedge(a \neq b)] \equiv$ " R is anti-symmetric"
(1)

(2)

(3)

no symmetric pair of relation (where dement is 1)
(4) $[(a, b) \in R \wedge(b, c) \in R \rightarrow(a, c) \in R] \equiv$ " R is transitive"
eng. $=,>,<$
But \neq is Not transitive
* Combining Relations

Note= Relation is just a set of ordered pairs \Rightarrow using set operations on relations to define new relations
eeg. $A=\{$ students $\}, B=\{$ courses $\}$
$R_{1}=\{$ has taken $\}, R_{2}=\{$ need to take in order to graduate"
What do they mean $R_{1} \cap R_{2}, R_{1} \cup R_{2}, R_{1} \oplus R_{2}, R_{1}-R_{2}$, and $R_{2}-R_{1}$?
$R_{1} \cap R_{2}=$ "all courses a student needs to taken and has already taken"
$R_{1} \cup R_{2}=$ "all courses a student needs to taken $O R / V$ has already taken"
$R_{1} \oplus R_{2}=$ "all elective courses that a student has already taken + required courses to graduate but not taken yet"
$R_{1}-R_{2}=$ "all elective courses that a student has already taken"
$R_{2}-R_{1}=$ "all required courses to graduate but not taken yet"

* Composition of Relations

Let $R \subseteq A \times B, \quad S \subseteq B \times C$
then $S \circ R=\{(a, c) \mid a \in A, c \in G, \exists b \in B(a \cdot b) \in R \wedge(b, c) \in S\}$

* There can be multiple cs for any a, and vice versa
e.g. $R=$ "is the parent of"
$(a, b) \in R, \quad(b, c) \in R \quad(a, c) \in R \circ R \leqslant a$ has more than 1 grandparents
* Recursion relations

$$
R^{1}=R, \quad R^{2}=R \circ R, \cdots, R^{n+1}=R^{n} \circ R
$$

The R on a set A is transitive iff $R^{n} \subseteq R \quad \forall n>0$
(\rightarrow) suppose $R^{n} \subseteq R \quad \forall>0, R^{2} \subseteq R$ is true
Note that $(a, b) \in R$ and $(b, c) \in R \rightarrow(a, c) \in R \circ R=R^{2}$ since $R^{2} \subseteq R$, and $(a, c) \in R$
$(\leftarrow-)$ it's too hard to prove now ..1

* n-arg Relations

"defines relationship between multiple entries simultaneously
Def = given sets $A_{1}, A_{2}, \cdots, A_{n}$ (Domains), n is the degree of a relation $R \subseteq A_{1} \times A_{2} \times \ldots \times A_{n}$
egg. $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ sit, $a<b<c$
eeg. $(A, F, S, D, T)=$ ("Airline," "flight\#", "departure city", "distinction", "departure time")
e. g_{1}
p. 589

TABLE 8 Flights.				
Airline	Flight_number	Gate	Destination	Departure_time
Nadir	122	34	Detroit	$08: 10$
Acme	221	22	Denver	$08: 17$
Acme	122	33	Anchorage	$08: 22$
Acme	323	34	Honolulu	$08: 30$
Nadir	199	13	Detroit	$08: 47$
Acme	222	22	Denver	$09: 10$
Nadir	322	34	Detroit	$09: 44$

5. Assuming that no new n-tuples are added, find a composte key with two fields containing the Airline field for the database in Table 8.
(Airline, flight\#),
(Airline, departure time)
6. What do you obtain when you apply the selection opertor s_{C}, where C is the condition (Airline $=$ Nadir) \vee $($ Destination $=$ Denver $)$, to the database in Table 8?
7. Display the table produced by applying the projection $P_{1,4}$ to Table 8.

Airline	Destination
Nadir	Detroit
Acme	Denver
Acme	Anchorage
Acme	Honolulu

$e_{1} g_{1} \quad$ 7. The 3 -tuples in a 3 -ard relation represent the following a) Yes (\#of key = degree n) attributes of a student database: student ID number, name, phone number.
a) Is student ID number likely to be a primary key?
b) Is name likely to be a primary key?
c) Is phone number likely to be a primary key?

* Brief Review of Matrix
$A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right] 2$ rows, 3 clowns " 2×3 "
- Addition: element by element (boffo muse be the same size)
- Multiplication (Dot Product)

each element of C costs m scalar multiplication \& ($m-1$) additions $\left(\sum_{x=1}^{m} a_{i x} f_{x_{j}}\right)$ total \# of dement in G is nook
\therefore Total cost is $n \times m \times k$

The $(A B) C=A(B C)$
But the amount of computation could be different
egg. Let $A_{10 \times 20}, B_{20 \times 30}, G_{30 \times 40}$

$$
\text { cost of }(A B) C_{1}=(10 \times 20 \times 30)+(10 \times 30 \times 40)=6000+12000=18000
$$

11 $A(B G)=(20 \times 30 \times 40)+(10 \times 20 \times 40)=24000+8000=32000 \mathrm{~L}$ more expensive \Rightarrow From \&S prospect, we choose (AB)G in this case (faster)
-Property of Matrix
$\mathbb{I}=$ identity $=[]_{n \times n} 1$ otherwise os

$$
\begin{aligned}
A^{\top}= & \text { transpose }=\text { "flip across diagonal" } \\
& \text { if } A^{\top}=A, A \text { is a symmetric matrix } \leftarrow \text { if } A^{\top}=A, A \text { is a symmetric }
\end{aligned}
$$

* Representing Relations (binary relations)
- list of ordered pairs $R \leq A \times B=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right) \cdots\left(a_{x}, b_{y}\right)\right\}$

e.g. Mr where $R=" i$ devils $j " i, j<5$

R is reflexive inf $a R_{a} \quad \forall a \in A \quad$ symmetric af aRb $\leftrightarrow G R_{a} \quad$ antisymmetric of $a R_{G} \cap G R_{a} \rightarrow a=f$
II is $\left\{\begin{array}{l}\text { reflexive } \\ \text { symmetric } \\ \text { anti-symmetric }\end{array}\right.$

1		
${ }^{1}$		
	1	
		1

1		
0	0	
1	1	

Composition of Relations p. 182
say R relates A to B, S relates B to C
Define Mr and Ms as above, then Mreos relates A to C sit.
$M_{\text {Ross }}=\left[t_{i j}\right], t_{i j}=1$ ff $\equiv k\left(a_{i} R_{e_{k}} \wedge b_{k} R_{c j}\right)$
Then $M_{\text {ross }}=$ Bodes Product of matrices $M_{R} O_{R}$ Matrix multiplication with \times being $1,+$ being v

* Digraphs (Directed Graphs)


```
                                    self-loop
```


arrows $=$ "edge", letters $=$ "node" in the graph
Note = if R is symmetric, all arrows must go both ways \Rightarrow the graph is "undirected"

* Closure of Relations p. 597

Given R under property P, closure of R under P is the smallest new relation S that both
(1) has property P
(2) contains R as a subset
e.g $M_{R}={ }^{11_{0}}{ }^{1}$ reflexive closure ${ }^{1 / 1}$ add 3 elements
egg Reflexive closure of $R=\{(a, b) \in \mathbb{Z} \mid a<b\}$
$S=R \cup P=\{(a, b) \mid a<b\} \cup\{(a, a) \mid a \in \mathbb{Z}\}=\{(a, b) \mid a=f\} \quad \therefore$ reflexive endosare of $<$ is \leq
eng. Let R be " $<$ " on integers. Create a symmetric closure of R

tech Def closure $=\operatorname{Let} R$ be a relation on $A \times A$, Let P be any property of relations (e.g, reflexive, symmetric, transitive etc) If \exists a relation S sit. S is a subset of every relation satisfying P that contains R, then S is the closure of R under P
i.e, $\exists S(P(S) \wedge \forall T(R \subset T \wedge P(T) \rightarrow S \subseteq T))$
\Rightarrow if this evaluate is TRUE, S is the enclosure

Let $R=\{(1,3),(1,4),(2,1),(3,2)\} \quad$ Note $=R_{\text {is transitive if } a R_{G} \wedge b R_{c} \rightarrow a R_{c}}$
Step $\mathbb{1}$ since $\mathbb{R}_{3}, 3 R_{2}:$ is \mathbb{R}_{2} ? \rightarrow No then add it \Rightarrow now $(1,2) \in R$
What else? $2 R_{1}, \mathbb{R}_{3} \rightarrow(2.3)$

$$
\left.\begin{array}{l}
2 R_{1}, 1 R_{3} \rightarrow(2.3) \\
2 R_{1}, 1 R_{4} \rightarrow(2.4) \\
3 R_{2}, 2 R_{1} \rightarrow(3.1)
\end{array}\right\} \text { added }
$$

step 2 Now, need to think the added relations too

$$
\begin{aligned}
& 1 R_{2}, 2 R_{1} \rightarrow(1,1) \\
& 3 R_{2}, 2 R_{4}^{3} \rightarrow(3,3),(3,4) \\
& 2 R_{3}, 3 R_{2} \rightarrow(2,2)
\end{aligned}
$$

step B Again, think about the new relations

$$
, R_{3}, 3 R_{4}^{3} \rightarrow(1.3),(1.4) \quad \Rightarrow \text { Transitive closure of } R \text { is all these pairs with } R
$$

Let's consider an easier way
Considering Pathes here

Path on directed edge
Def = a graph is a set of nodes and a set of ordered pair on nodes called edges
Def $=(x, y)$ is a directed edge
Path P is a sequence of edges $e_{i}=\left(x_{i}, y_{i}\right)$ s.t. $y_{i}=x_{i+1}$ (second node in e_{i} is the first node in eire) e.g, $(a, b),(b, c),(c, d),(d, c) \cdots$

Def: Path length is the number of edges in the graph $(=\#$ node -1$)$

$$
\text { e.g. } \underset{a}{ } \rightarrow \dot{b} \rightarrow \dot{c} \text { path length }=2,3 \text { nodes }
$$

Note (1) Path from a node to itself can be length zero if no self-loop or any non-negative integer if aRa \leftarrow ?
(2) If k edges \& last node $=$ the first node where $k>0$, this is called a circuit e or circle \rightarrow
(3) both edge and nodes can appear more than once

Recall composition of relations $R \circ R=R^{2}$
In graph terms, $R^{2}=$ set of path of length 2
eng, if $a R_{b} \wedge b R_{c},(a, c)$ is in R^{2}
$\underbrace{R \cdot R \circ \cdots \circ R}_{k \in \mathbb{N}}=R^{k}=$ set of path of length $k \quad$ Note $=$ by definition, $R^{0} \equiv \mathbb{I}=$ path of length 0
Def: $R^{*}=\bigcup_{k=1}^{\infty} R^{k}=$ "connectivity relation on $R^{\prime \prime}=$ " reachibility of graph on $R^{\prime \prime}$

三 transitive closure of R
Thm $R^{*}=\bigcup_{k=1}^{n} R^{k}$ where $n=\#$ nodes (elements of A)

* cost of computing transitive enclosure of a relation R on $A \times A$ where $|A|=n$
R can be represented as a binary matrix $n \times n=M$
R^{2} can be computed as $M \times M$ which costs $\approx n^{3}$, n times \rightarrow total cost is at most $O\left(n^{4}\right)$
...actually can do R^{*} in n^{3} times
* Warshall's Algorithm - think of connectivity

Let $W_{0}=M_{R}=$ matrix representing R (divected graph)
Def $=W_{x} \equiv$ Matrix of reachabitity (i, j) but only allowed to use intermediate nodes l, \cdots, k
P. 606

LEMMA 2 Let $\mathbf{W}_{k}=\left[w_{i j}^{[k]}\right]$ be the zero-one matrix that has a 1 in its (i, j) th position if and only if there is a path from v_{i} to v_{j} with interior vertices from the set $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. Then

$$
w_{i j}^{[k]}=w_{i j}^{[k-1]} \vee\left(w_{i k}^{[k-1]} \wedge w_{k j}^{[k-1]}\right)
$$

whenever i, j, and k are positive integers not exceeding n.

FIGURE 3 The Directed Graph of the Relation R.
elements of the set. Find the matrices $\mathbf{W}_{0}, \mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}$, and \mathbf{W}_{4}. The matrix \mathbf{W}_{4} is the transitive closure of R.

Solution: Let $v_{1}=a, v_{2}=b, v_{3}=c$, and $v_{4}=d . \mathbf{W}_{0}$ is the matrix of the relation. Hence,

$$
\mathbf{W}_{0}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

\mathbf{W}_{1} has 1 as its (i, j) th entry if there is a path from v_{i} to v_{j} that has only $v_{1}=a$ as an interior vertex. Note that all paths of length one can still be used because they have no interior vertices. Also, there is now an allowable path from b to d, namely, b, a, d. Hence,

$$
\mathbf{W}_{1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \text {. from there is a path }
$$

\mathbf{W}_{2} has 1 as its (i, j) th entry if there is a path from v_{i} to v_{j} that has only $v_{1}=a$ and/or $v_{2}=b$ as its interior vertices, if any. Because there are no edges that have b as a terminal vertex, no new paths are obtained when we permit b to be an interior vertex. Hence, $\mathbf{W}_{2}=\mathbf{W}_{1}$.
\mathbf{W}_{3} has 1 as its (i, j) th entry if there is a path from v_{i} to v_{j} that has only $v_{1}=a, v_{2}=b$, and/or $v_{3}=c$ as its interior vertices, if any. We now have paths from d to a, namely, d, c, a, and from d to d, namely, d, c, d. Hence,

$$
\mathbf{W}_{3}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

Cnow there is a path from d to a via c
Finally, \mathbf{W}_{4} has 1 as its (i, j) th entry if there is a path from v_{i} to v_{j} that has $v_{1}=a, v_{2}=b$, $v_{3}=c$, and/or $v_{4}=d$ as interior vertices, if any. Because these are all the vertices of the graph, this entry is 1 if and only if there is a path from v_{i} to v_{j}. Hence,

$$
\mathbf{W}_{4}=\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

This last matrix, \mathbf{W}_{4}, is the matrix of the transitive closure.

* Equivalence Relations

Def: a relation R on set A is called an Equivalence Relation (ER) if it is reflexive, symmetric, and transitive.
e.g. old-style C-language only used first 8 charactors of carriable name to identify
$\left.\begin{array}{l}\text { int thisVariable; } \\ \text { int this Variation; }\end{array}\right\}$ equivalent names in old द-language
Let R be a relation on all strings of all length where af\& if they share first 8 characters
reflexive, symmetric, transitive
\therefore given an. FR, a set of strings starting with "thisVari" are called "Equivalent class"
e. g_{1} EXAMPLE 9 What are the equivalence classes of 0 and 1 for congruence modulo 4 ? (p.610)
$\{0,4,8,16 \cdots\}=[0]=$ " equivalence class of $\theta^{\prime \prime}$
$\{1.5 .9 .17 \cdots\}=[1]=" \quad$ of $1^{\prime \prime} \quad$ all reflexive, symmetric, and transitive
$\{2,6,10,18 \cdots\}=[2]=$ of $2^{\prime \prime}$
$\{3,7,11,19 \ldots\}=[3]=$
Feb 16, 2017
Def = two related by an E.R, they are called equivalent, $a \sim b$
Note: "apb" order is NOT important (aRb is symmetric here)
e.g, is $|x-y|<1$ on $E_{1} R$?
reflexive? $|x-x|=0<1 \underline{\underline{V}} ;$ symmetric? $|x-y|=|y-x| \simeq$; transitive? $|x-y|<1 \wedge|y-z|<|\rightarrow| x-z \mid<1 \underline{X}$
\Rightarrow NOT ER.
Def= given $a \in A$ and on E.R. let $[a]_{R}=\{b \in A \mid a R b\}$ called "equivalence class of"
a can be b since
ER \rightarrow reflexive
We say a is a "representation" of $[a]_{R}$ but any number of $[a]_{R}$ would suffice
e.g, what is $[3]_{R}$ if $R=\left\{(a, b) \in \mathbb{Z}^{+} \mid a=f(\bmod 4)\right\}$

$$
[3]_{R}=\{3,7,11,15,19 \cdots\}=[19]_{R}
$$

e.g, 26. What are the equivalence classes of the equivalence rela- HW p. 616
tons in Exercise 1?
$\begin{array}{ll}\text { a) }\{(0,0),(1,1),(2,2),(3,3)\} \\ \text { b) }\{(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)\} \\ \text { c) }\{(0,0),(1,1),(1,2),(2,1),(2,2),(3,3)\} & \text { a) }[0]_{R}=\{0\},[\mid]_{R}=\{1\},[2]_{R}=\{2\},[3]_{R}=\{3\}\end{array}$
c) $[0]_{R}=\{0\},[1]_{R}=\{1.2\},\left([2]_{R}=\{1.2\}=[1]_{R}\right),[3]_{R}=\{3\}$
d) $\{(0,0),(1,1),(1,3),(2,2),(2,3),(3,1),(3,2)$, $(3,3)\}$
๕) $((0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2, \theta)$,
$(2,2),(3,3)\}$
Thm $a R_{f} \leftrightarrow[a]_{R}=[f]_{R} \leftrightarrow[a]_{R} \cap[b]_{R} \neq \varnothing$ on $E \cdot R$.
corollary $=a K_{b} \leftrightarrow[a]_{R} \cap[b]_{R}=\varnothing$
corollary: $\bigcup_{a \in A}[a]_{R}=A \leftarrow$ since A is on $E_{1} R$, reflexive

More generally, given only set of subsets $A_{i} \leq A$, we say that
$\left\{A_{i}\right\}$ form a partition of A iff $\forall i\left\{A_{i}\right\} \neq \varnothing, i \neq j \Rightarrow A_{i} \cap A_{j}=\varnothing$, and $\cup A_{i}=A$
A partition of A implicitly defines a relation R on A
The Let R be an $E_{1} R$, on A, then the equivalence classes of R form a partition of A

FIGURE 1 A Partition of a Set. $\xrightarrow{\text { partition diagram }}$

* Partial orderings p.618

Def = given a relation R, R is called a partial ordering of A if R is reflexive, anti-symmetric, and transitive on A AkA "posets" eng, \geq on \mathbb{Z}
$a \geq a \cdots$ reflexive, $a \geq b \wedge a \leq b \rightarrow a=b$... anti-symmetric, $a \geq b \wedge b \geq c \rightarrow a \geq c \ldots$ transitive
$\Rightarrow \geq$ on \mathbb{Z} is partial ordering on \mathbb{Z}
e.g. decides "|" ow \mathbb{Z}^{+}
a| $a \cdots$ relfexive, af \wedge bt $a \rightarrow a=k \cdots$ anti-symmetric, $a|b \wedge b| c \rightarrow a \mid c \cdots$ transitive
$\Rightarrow " \mid "$ on Z^{+}is a partial ordering on \mathcal{Z}^{+}
Def $=a R_{f} \vee \& R_{a}$ we say a and f are "comparable"
*why called "partial" ordering? (p.619)

Def= If all pairs in A are comparable under R,
in the eng of "1", 3 and 9 are comparable : 319
then R is a total ordering
but 5 and 7 are not comparable ($: 5 \nmid 7$ and $7 \nmid 5$)
... total ordering \leq partial ordering
\rightarrow part of \mathbb{Z}^{+}are comparable

Def: If R on A is a total ordering,

DEFINITION 2 The elements a and b of a pose (S, \preccurlyeq) are called comparable if either $a \preccurlyeq b$ or $b \preccurlyeq a$. When a and b are elements of S such that neither $a \preccurlyeq b$ nor $b \preccurlyeq a, a$ and b are called incomparable.
and every non-empty set of A has a least element, then A is well-ordered under R
e.g, \mathbb{Z} is NOT well-ordered since heres no least element
eng, the lexicographic ordering is well-ordered set

$$
\rightarrow\left(a_{1}, a_{2}\right)<\left(b_{1}, b_{2}\right) \text { if } a_{1}<b_{1} \vee\left(a_{1}=b_{1} \wedge a_{2}<b_{2}\right)
$$

e.g, words in a dictionary: shorter words come first before longer words if the shorter word is the short of the longer word egg, "and" < "andromeda"

* Hasse diagram on posets $p .622$
step $\mathbb{1}$ create directed acyclic graph (DAGs) \rightarrow reflexive, transitive
step 2 remove all edges that can be inferred from other edges
e.g, \geq on $\{1,2,3.4\}$
original directed graph
$\bigcup_{1}^{20} 0_{2}^{2} \Rightarrow i_{i}^{1}$
eng, " \mid " divide on $A=\{1,2,3,4,6,8,12\}$

Def = a maximal element has no dements grater ($\prec)$ than itself
a minimal element has no dement smaller (\rangle) than itself
e.g, from above, 1 is minimal \& 8 and (12 are maximal

Def= an element $a \in A$ is maximum (greatest) if $b \leq a \quad \forall b \in A$

egg, from above, 1 is minimum no maximum \leftarrow greatest/ least are unique if they exists

Def = given set S, and subset $A \subseteq S, u \in S$
u is called "upper bound on A " if $a \preceq u, \forall a \in A$ (Note $=u$ must be comparable to all elements in A)
"lower bound on A " if $a \geq u, \forall a \in A$ (Note= u must be comparable to all elements in A) e.g, from previous page ("I"), if $A=\{1,2.3\}$

6 and 12 are both upper bound. ($4 \& 8$ are NOT since its not comparabe with $3 \in A$)
1 is a lower bound on any $A \subseteq S$
Def= the Least upper bound is the smallest of all upper bounds (LUB)
the Gratest lower bound is the largest of all lower bounds (GLB)
e.g, from previous page ("1") if $A=\{6,12\}$
lower bound is $1,2,3 \rightarrow$ gratest one is 3 (GLB)
upper bound is $12 \rightarrow$ least one is $I Z$ (LUX)

Find the lower and upper bounds of the subsets $\{a, b, c\},\{j, h\}$, and $\{a, c, d, f\}$ in the poset with the Hasse diagram shown in Figure 7.

Solution: The upper bounds of $\{a, b, c\}$ are e, f, j, and h, and its only lower bound is a. There are no upper bounds of $\{j, h\}$, and its lower bounds are a, b, c, d, e, and f. The upper bounds of $\{a, c, d, f\}$ are f, h, and j, and its lower bound is a.

* Topological Sort (Also check ICS' 46 Note "Algoritith II")

Basically lists the cements bottom-up in Hasse diagram sit, only comparable items matter in the ordering in comparable items can be shuffled. e.g, previous page

* Lemma : every finite nonempty posed has at least one minimal element

* strict ordering

Def: say \leq is a partial ordering, then the associated strict ordering \prec removes the reflexive ordering
e. $g, \leq \rightarrow<$ on numbers, $\subseteq \rightarrow C$ on sets

Recall Directed Acycle Graph (DAGs) : DAGs represent strict orderings because (assume no seff-loop)
because (1) no reflexive dements (irreflexive)
(2) anti-symmetric $y<x \rightarrow x \nless y$

(3) transitive $x<y \wedge y<z \rightarrow x<z \underset{x}{\underset{y}{l} \longrightarrow_{y} \longrightarrow}$

Boolean Algebra " p.811

* different notations (duality) for $T, F, \Lambda, V,{ }^{\top} x, \ldots$ etc e.g, $x+y=1 \Leftrightarrow x=1 \vee y=1$
$1+1=1,1+0=1, \quad 0+1=1, \quad 0+0=0$
$x \cdot y=1$ if $x=1 \wedge y=1$
${ }^{1} x \equiv \bar{x}$
practice $\left.=(T \wedge F) \vee^{\wedge}(F \vee T)=F \vee^{\wedge} T=F \vee F=F\right\}$ $1 \cdot 0+\overline{(0+1)}=0+T=0+0=0 \quad$ same

The function $F(x, y, z)=x y+\bar{z}$ from B^{3} to B from Example 5 can be represented by distinguishing the vertices that correspond to the five 3 -tuples $(1,1,1),(1,1,0),(1,0,0),(0,1,0)$, and $(0,0,0)$, where $F(x, y, z)=1$, as shown in Figure 1. These vertices are displayed using solid black circles.

* Boolean functions

$(e, g, F(x, y, z)=x, y+\bar{z})$
In general, let $B=\{0,1\} B^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in B\right\}$ How many possible Boolean function exists?
eng. 1 bit input, 1 bit output (output is ALWAYS 1 bit)
. $F=B^{3} \rightarrow B$

p. 813

Most "normal" algebra rules apply directly

$$
\Rightarrow \text { columns each also have } 2^{n} \text { entries (each entry is a bit) }
$$

\Rightarrow requires $2^{\left(2^{n}\right)}$ columns
(e.g, Predince ",$\cdot+$ complement is applied immediately after evaluation of underlying expression
e.g. $(x+y)(a+b)=x a+x b+y a+y b$

at lease at least each of these terms "cheeks"
$\frac{1 T}{\text { Both } T \rightarrow T}$ ane of 4 possible case of "there's at least one T inside each parenthesis"
eng. $(x+y)(x+z)=x x+x z+x y+y z$

$$
\begin{aligned}
& =x(x+y+z)+y z \\
& =x+y z
\end{aligned}
$$

The $x(x+y+z)=x$
prof 1)
expand $x x+x y+x z=x+x(y+z)=x(1+y+z)=x$

* Representing Boolean Functions

Def: a literal is any Boolean variable (e, $, x, x)$, or its complement (\bar{x})
Def = Given n literals $x_{1}, x_{2}, \ldots, x_{n}$, a minters is a product containing every literal or its complement exactly once e.g, $y_{1} \cdot y_{2} \cdot y_{3}, \ldots y_{n}$ where y_{i} is either x_{i} or $\overline{x_{i}}$

Def = a Boolean sum of minters representing a fen is called the "sum of products" or "Disjunctive Normal Form (DNF)" p. 821
The given n Boolean variable, every Boolean on them can be expressed as sum-of-products (i, e. iNF)
e.g. Find $\boxplus N F$ for $F(x, y, z)=(x+y) \bar{z}$

*Fanctional Completeness
defines some set of operators then can express any Boolean function
The the set of Boolean operators $\{+, \cdot,-\}$ are functionally complete
Note: We caw eliminate " + " by De Morgan's Law
$x+y=\overline{\bar{x} \cdot \bar{y}} \Rightarrow\{\cdot,-\}$ is F.C,
Can we find smaller set of operators that is F.G?
egg. NAND $(x . y)=\overline{x \cdot y}$, tums out NAND itself, is F.C.

* Logic gates (Circuit Diagrams) p. 823

Feb 28,2017

(a) Inverter

(b) OR gate

(c) AND gate

(AND)
FIGURE 2 Gates with \boldsymbol{n} Inputs.
e.g, $\overline{(x+y) \cdot(x y)}$

combinational
curcrits gating
eng, Design goal = create 2 -switch light \cdots on with D or 0 p. 825

* Binary Addition
eng. $11011+01001$

* Binary Subtractor

Half:Vifference $=x \oplus y$
Full: Difference $=x_{i+1} \oplus y_{i+1} \oplus B_{i}$
Borrow $=\bar{x} y \quad B$ crow $=B_{i+1}=\bar{x}_{i=1} B_{i}+\overline{x_{i+1}} y_{i+1}+y_{i+1} B_{i}$

* Languages and Grammars p847

int i_{i}^{0} symbol

```
\(i=2 ; \quad\) statement/sentence
```

syntax $=$ form of an expression
(we don't cave if the statement is nonsensical)
$i=2 * i+1 i$
expression

* parse tree (derivation tree)

Def = Grammar describes a language by describing syntactically valid sentences (phrase /statement)
Def $=a$ set of valid statements describes a language
Def= tokens (aka terminals) are atomic (iv, smallest meaningful strings)
Def $=$ symbols describes parts of sentences and can be terminal or non-terminal
e.g, (English sentence)
sentence \rightarrow noun phrase, verb phrase
Here, this means
"can be expressed" or "produces"
noun phrase \rightarrow article, noun
article \rightarrow "the" $\left.\right|_{o R}$ " a "
noun \rightarrow "horse"| "rabbit"

Verb phrase \rightarrow verb, adverb <non-terminal $?$
verb \rightarrow "runs" \mid "eats" \longleftrightarrow terminals $\}$ symbols
adverb \rightarrow "quickly" | "slowly" L

Def = phrase-structure grammar $G=(V, T, S, P)$
$V=$ vocabulary i.. a finite, nonempty set of elements called symbols
$T=$ terminal (non-terminal $N=V \backslash T$)
$P=$ productions (aka production rules)
$S=$ start symbol
eng, $S \rightarrow \lambda \mid$ aS f
valid statements $=\lambda, a f, a a f f$, aaafff,...$=\left\{a^{n} f^{n} \mid n=0.1 .2 \ldots\right\} p .850$
Let $W_{0}=l$ zoo be a string of symbols (which could be terminal or non-terminal)
$W_{1}=l z_{1} r$ be a string of symbols (which could be terminal or non-terminal)
Def = if \exists production sit, $z_{0} \rightarrow z_{1}$, then we say string w_{1} is directly derivable from w_{0}, written $W_{0} \Rightarrow w_{1}$

Def: $W_{0} \Rightarrow W_{1} \Rightarrow W_{2} \Rightarrow \cdots \Rightarrow W_{n}$, we say W_{n} is indirectly derivable from W_{0}, written $W_{0} \stackrel{*}{\Rightarrow} W_{n}$,
and the sequence of steps, $W_{0} \Rightarrow W_{1} \Rightarrow W_{2} \Rightarrow \cdots \Rightarrow W_{n}$, is called a derivation

Def= given $G, \mathcal{L}(G)$ is the set of all valid sentences derivable from G, aka the Language defined by G
Note $=$ There can be more than one derivation showing $W_{0} \stackrel{*}{\Rightarrow} W_{n} \quad$ Professors's Deft definitely more than 1
Note $=$ Most language can be described by many grammars : $\forall \mathcal{L} \exists^{\mathscr{G}} G \mathcal{L}(G)=\mathcal{L}$

* Types of grammars (restrict what types of productions are allowed)

Type 1 Context-sensitive grammars $=\ell A r \rightarrow \ell w r$ you can only replace A with w as long as between lear
"A can only produce w if surrounded on both sides by l and r, i, e, l and r provide the only context in which A can be replaced with w "
Type 2 Context-free grammars: $A \rightarrow w$
"A can be replaced with w anytime"
Type "Regular" grammars (only 3 types of productions are allowed)
i) $A \rightarrow \lambda$
ii) $A \rightarrow a$
iii) $A \rightarrow a B \quad w / a=$ terminal \& A, B are non-ferminals
allows left-to-right parsing of input strings, reading exactly one terming at a time
e.g, from previous page
sentence \rightarrow "a" mvp |"the" hop
nvp \rightarrow "horse" vp l "rabbit" vp
$v p \rightarrow$ "runs" adv I "eats" adv
adv \rightarrow "slowly" $(E) \mid$ "quickly" (E)
$(E \rightarrow \lambda)$

* simple example of mathematical expressions
egg, $x+y,(x+y) * y,((x+y) * y)+x$
$E \rightarrow(E)|E * E| E+E \mid V$
$V \rightarrow x \mid y$

* Backus - Naut Form (BNF) p.853

ASGII method describing productions

$$
\begin{aligned}
& \langle E\rangle:=(\langle\langle E\rangle\rangle) \text { where }\rangle \text { is non-terminal } \\
& \langle V\rangle:=x \mid y
\end{aligned}
$$

Part A fa) $A \cap B=\{4,5\} \quad \therefore P(A \cap B)=\{\varnothing,\{4\},\{5\},\{4,5\}\}$
Part $B \quad \exists n>0 \quad n=\sum_{i=1}^{n-1} \sum_{i}^{n o t} n^{n} n=3=2+1$ since this is an existence proof, showing one example is enough \#7 Hint $=(A B)^{t}=B^{t} A^{t}$
Def (ot symmetric matrix): $A A^{t}=\left(A A^{t}\right)^{t}$
The last Q (yon denar need to prove it) in thai class. $N=\mathbb{Z} \backslash \mathbb{Z}$
Let $B=A^{t}$ then $A B=(A B)^{t}=B^{t} A^{t}=A A^{t} \Rightarrow A A^{t}=\left(A A^{t}\right)^{t}$
\#8 $\left.\begin{array}{c}0,1 \\ -1-1 \\ -1\end{array}\right\} 4$ pairs $\quad \therefore 2^{4}=16$
integer to bit string
e.g, $\quad \begin{aligned} & \text { (base 2) } \\ & =1.2^{2}\end{aligned}+1.2^{1}+0.2^{\circ} \rightarrow 00110$

Goal = find FSM that recognizes base-2 integers that are even \Rightarrow (bit string) end with a zero

(STate)	state	input	next state	output
	So	0	b	
	a	1	a	
	Sansition table		b	
	b	0	b	
		1	a	

$$
F S M=F S A
$$

March 9, 2017

FSAIFSM … used for language recognition
Let $V=$ Vocabulary (tokens, terminals/ non-terminals)
$V^{*}=$ strings (not necessarily valid of vocab)
concatenated members of vocab
e.g, int $i \equiv 2 ; \cdots 5$ tokens valid string in $C /$ Java

Let A, B are sets of strings from V^{*}, then $A B=\{x y \mid x \in A, y \in B\} p .866$
$A, B \subseteq V^{*}$
e.g, $A=\{$ "input", "output" $\}, B=\{" x ", " y "\}$

String $A B$ are "imput x " "input y " "output x " "output y "
Det $=$ Kleen dosure of a set of strings A is
$A^{*}=\bigcup_{k=0}^{\infty} A^{k} A$ concatinated k times (Not multiplication)
Def: FSA/FSM : $M=(S, I, f, S 0, F)$
Where $S=$ set of states \quad p. 867
$I=$ input aphabet
A finite-state automaton $M=\left(S, I, f, s_{0}, F\right)$ consists of a finite set S of states, a finite input alphabet I, a transition function f that assigns a next state to every pair of state and input (so that $f: S \times I \rightarrow S$), an initial or start state so, and a subset F of S consisting of final
(or accepting states). (or accepting states).
$f=$ state transition table
$S_{0}=$ start state
$F=$ set of surcessful final states
Def = string $x_{1}=$ " $x_{0} x_{1} x_{2} \ldots x_{n} " x_{i} \in$ terminals/tokens is recognized
if machine M starting in state S_{0} and reading entive X ends in a state in F,
Note = Two FSMs are equivalent if they both recognize the same language
p. 868

$$
\stackrel{\text { So }}{\text { (S) }} \rightarrow \text { (S1) } \xrightarrow[1]{0} \text { (S2) }
$$

DEFINITION 4 A string x is said to be recognized or accepted by the machine $M=\left(S, I, f, s_{0}, F\right)$ if it takes the initial state s_{0} to a final state, that is, $f\left(s_{0}, x\right)$ is a state in F. The language recognized or accepted by the machine M, denoted by $L(M)$, is the set of all strings that are recognized by M. Two finite-state automata are called equivalent if they recognize the same language.

* NDFSMs (non-determincistic FSMs) ... only mathematical construct
eng. TSP (traveling salesman problem) $=n$ cities to visit
goal $=$ find the cheapest path that each city is once visited $\rightarrow n!$ possible paths Note $=70!>10^{100}$
in principle, what is the answer? (\exists a solution?)
\rightarrow the case of TSP, yes (\exists path for TSP cost < 100 ?)
Important Note = once TSP (N P-complete) is phrase as yes 1 No, a "yes" answer is easily verified
Def: given a string $x=x_{0} x_{1} x_{2} \ldots x_{n}$, NDFSM "M" recognizes x if \exists a path through FSM ending a final state in F
Note : the state table for NDFSM has multiple "next" states

TABLE 2		
State	\boldsymbol{f}	
	Input	
	s_{0}, s_{1}	s_{3}
s_{1}	s_{0}	s_{1}, s_{3}
s_{2}		s_{0}, s_{0}, s_{2}
s_{3}	s_{0}, s_{1}, s_{2}	s_{1}

FIGURE 6 The Nondeterministic Finite-State Automaton with State Table Given in Table 2.

FMs are finite, ie, finite memory due finite tests
e.g. it cannot recognize $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ for arbitrary n (works fine for pre-known max n)
\Rightarrow Turing Machines have "tape", which provides memory source tape $\stackrel{\text { FSH }}{\leftarrow} \rightarrow$ "Turning Machines have read and write capabilities
 on the tape as the control unit moves back and forth only operation allowed = read one cell, write one cell, move \mathcal{L} or R by one cell lng this tape, changing states depending on FSM is responsible for deciding what to write, and where to move - What's order R/W head

- current state of FSM

Def= Turing Machine $T=\left(S, I, f, S_{0}, F\right)$
where $S=$ set of states in FSM

FIGURE 1 A Representation of a Turing Machine.
$I=$ Input/ Output symbols + " B " are allowed on the tape
$f=(S \times I) \rightarrow(S \times I \times\{L, R\})$ current $\times i / 0$ new $\times i / 0 \times d$
state
$S_{0}=$ start state, $F=$ final accepting states $\leq S$
at end "step" T,
(1) find a new state based on current state +input symbol
(2) Write a new symbol on the tape
(3) moves one cell left or right

We write this step as the five-tuple $\left(s, x, s^{\prime}, x^{\prime}, d\right)$. If the partial function f is undefined for the pair (s, x), then the Turing machine T will halt.

A common way to define a Turing machine is to specify a set of five-tuples of the form $\left(s, x, s^{\prime}, x^{\prime}, d\right)$. The set of states and input alphabet is implicitly defined when such a definition is used.
e.g, What is the final tape when the Turing machine T defined by the seven fivetuples $\left(s_{0}, 0, s_{0}, 0, R\right),\left(s_{0}, 1, s_{1}, 1, R\right),\left(s_{0}, B, s_{3}, B, R\right),\left(s_{1}, 0, s_{0}, 0, R\right),\left(s_{1}, 1, s_{2}, 0, L\right)$ $\left(s_{1}, B, s_{3}, B, R\right)$, and $\left(s_{2}, 1, s_{3}, 0, R\right)$ is run on the tape shown in Figure 2(a)?

Def= T recognizes a string x written on tape of T, starts So, halts in a state in F

Note = if T halts on now $-F$ state, or never halt, x is not recognized
Def $=$ a language \mathcal{L} is recognized by T iff x is recognized by $T \forall x \in \mathcal{L}$

- given x as input, $T(x)$ replaces witt y on tape
- We say $T(x)=y$ if T doesn't halt in now- F state, $T(x)$ is undefined
-many "extentions" e.g, multiple tapes, multiple R/W heads, multiple FSMs...
- almost never concerned about efficiency (except try not to take exponential time for something solvable in polynomial time)
if runtime on input of size is $\sim n^{k}$ for any fixed k, then polynomial time algorithm
if runtime on input of size is $\sim k^{n}$ for any fixed k, then exponential time algorithm $\} \forall k \exists n \quad k^{n}>n^{k}$
* church-turing : anything that is computable, is computable by a Turing Machine \leftarrow thesis
any such machine is "Turing complete"
P. 891 EXAMPLE 3 Find a Turing machine that recognizes the set $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.

Solution: To build such a machine, we will use an auxiliary tape symbol M as a marker. We have $V=\{0,1\}$ and $I=\{0,1, M\}$. We wish to recognize only a subset of strings in V^{*}. We will have one final state, s_{6}. The Turing machine successively replaces a 0 at the leftmost position of
the string with an M and a 1 at the rightmost position of the string with an M, sweeping back and forth, terminating in a final state if and only if the string consists of a block of 0 s followed by a block of the same number of 1 s .

Although this is easy to describe and is easily carried out by a Turing machine, the machine we need to use is somewhat complicated. We use the marker M to keep track of the leftmost and rightmost symbols we have already examined. The five-tuples we use are ($s_{0}, 0, s_{1}, M, R$), $\left(s_{1}, 0, s_{1}, 0, R\right), \quad\left(s_{1}, 1, s_{1}, 1, R\right), \quad\left(s_{1}, M, s_{2}, M, L\right), \quad\left(s_{1}, B, s_{2}, B, L\right), \quad\left(s_{2}, 1, s_{3}, M, L\right)$, $\left(s_{3}, 1, s_{3}, 1, L\right),\left(s_{3}, 0, s_{4}, 0, L\right),\left(s_{3}, M, s_{5}, M, R\right),\left(s_{4}, 0, s_{4}, 0, L\right),\left(s_{4}, M, s_{0}, M, R\right)$, and ($\left.s_{5}, M, s_{6}, M, R\right)$. For example, the string 000111 would successively become $M 00111$, $M 0011 M, M M 011 M, M M 01 M M, M M M 1 M M, M M M M M M$ as the machine operates until it halts. Only the changes are shown, as most steps leave the string unaltered.

We leave it to the reader (Exercise 13) to explain the actions of this Turing machine and to explain why it recognizes the set $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.

* Complexity, Decidability, Computability

March 16, 2017
Def: a "decision problem" is a problem with a y / N answer
Note: \exists undecidable problems
e.g, halting problem $=$ given \& arbitrary problem p and input x, does p halt when applied to x ?

Def: A problem is a decidable if \exists a concreate algorithm that always decides it
check pdf= University of Waterloo
Some easy-specified functions are not computable CSS 360 Introduction to the
eng, given n, what is the longest possible finite string that can be output by Taring Machine w / w states? Theory of Computing
Note: specific small n, it's computable Winter 1998
eng, "Hard problem" ".. NP-complete
$P=\{$ set of all problems computable in polynomial time by Determistic T.M. $\}$
$N P=\{$ set of all problems computable in polynomial time by non-Defermistic T.M. $\}$
Does $P=N P$? We cant disprove \Rightarrow we ASSUME $P \neq N P$ (not proved yet)

