
Licensing Security

Thomas A. Alspaugh and Walt Scacchi
Institute for Software Research
University of California, Irvine
{alspaugh,wscacchi}@ics.uci.edu

Abstract—There exist legal structures defining the exclusive
rights of authors, and means for licensing portions of them to
others in exchange for appropriate obligations. We propose an
analogous approach for security, in which portions of exclusive
security rights owned by system stakeholders may be licensed
as needed to others, in exchange for appropriate security
obligations. Copyright defines exclusive rights to reproduce,
distribute, and produce derivative works, among others. We
envision exclusive security rights that might include the right
to access a system, the right to run specific programs, and the
right to update specific programs or data, among others. Such
an approach uses the existing legal structures of licenses and
contracts to manage security, as copyright licenses are used
to manage copyrights. At present there is no law of “security
right” as there is a law of copyright, but with the increasing
prevalence and prominence of security attacks and abuses, of
which Stuxnet and Flame are merely the best known recent
examples, such legislation is not implausible. We discuss kinds
of security rights and obligations that might produce fruitful
results, and how a license structure and approach might prove
more effective than security policies.

I. INTRODUCTION

Software systems security mechanisms for implementing
security requirements and policies are often employed on
an ad hoc basis rather than in a scalable, organized, and
effective manner. Convenient, interactive approaches sup-
ported by automated evaluation and guidance are not avail-
able because there is no formal basis connecting security
requirements and policies with the security mechanisms that
are to fulfill them. What is available is a palette of disjoint
mechanisms for implementing individual system security
features [13], [20] augmented by generalized practices and
process standards, such as:

1) mandatory access control lists;
2) firewalls;
3) multi-level security;
4) authentication (certificate authorities, passwords, . . . );
5) cryptographic support (e.g. public key certificates);
6) encapsulation (including virtualization and hidden

rather than public APIs), hardware confinement (mem-
ory, storage, port, and external device isolation) [21],
and type enforcement capabilities;

7) data content or control signal flow logging/auditing;
8) honey-pots and traps;
9) functionally equivalent but diverse multi-variant soft-

ware executables [9], [15];

10) security technical information guides (STIGs) for con-
figuring the security parameters for applications [7]
and operating systems [19];

11) secure programming practices (secure coding stan-
dards, data type and value range checking, . . . ) [18];

12) standards for development organization processes and
practices rather than system security policies [12].

The reader will note that these mechanisms are soft-
ware implementation choices or software process choices
rather than system architectural choices or security require-
ments/policy choices. Between these mechanisms and a
workable concept of a comprehensive security policy for
a system or its substantial components is a gap, with no
obvious way to bridge it.

• There is no common framework or conceptual basis
with which to integrate and evaluate mechanisms in
combination. It is unclear how the various security
mechanisms are related and how one may contribute
to or interfere with another.

• Guidance is scant for analysts, architects, and develop-
ers who need to decide which security mechanism to
use where, when, how, and why; and also for integrators
and administrators who need to decide how to update
the selection of mechanisms and their configuration
within a system as security needs and policies evolve.

No satisfactory framework exists in which they can be
assembled in hierarchical patterns that can be designed and
combined in a system architecture to meet specific high-level
security policies and requirements.

We believe there is an opportunity to address security
requirements challenges throughout a system architecture
using security licenses.

In our previous work [1], [2], [3], [4] we showed how
software licenses for the components of a system can
be used to guide architectural choices and evaluate rights
and obligations for the system as a whole, even when
components are governed by different licenses. Using our
approach, a system architect can work both down from the
top, propagating desired license rights for the system down
to individual components to see what license obligations are
required to obtain those rights, and up from the bottom,
combining license rights and obligations for components
and then subsystems into the total rights and obligations for



the system. In either direction, our approach identifies any
conflicts and mismatches among licenses in the architecture.

We propose the same approach for security licenses.
System architects and analysts can select desired security
rights, assign an expected security license to each subsys-
tem or component, and evaluate interactions between these
choices at every level from an individual component up to
the entire system. Of course assigning a security license
to a component does not guarantee that the component’s
developer will make it satisfy its security obligations, any
more than accepting a component under GPL guarantees that
the system’s stakeholders will satisfy the GPL IP obligations.
But assigning a license (whether security or IP) to each
component records the assumptions being made about that
component and its use, and evaluating those licenses in the
context of the system’s architecture identifies mismatches
and conflicts among those assumptions for that architecture’s
design choices. When the evaluation is automated, as it is
in our work [2], it forms the foundation for design guidance
with respect to the issues raised by the licenses, and a
means for combining the potentially dissimilar licenses to
evaluate their overall interaction and effect, and thus the
overall interaction and effect of the security mechanisms that
are expected to satisfy the obligations and of the security
requirements and policies that the rights express.

II. SECURITY LICENSES

In general terms, a security license is analogous to an
ordinary software license such as GPL (GNU General Pub-
lic License) [10]. Software licenses consist of intellectual
property (IP) rights granted by the licensor, in exchange for
corresponding license obligations imposed on the licensee.
A license presents the rights that are offered, and for each
right enumerates the obligations that are required in order
for that right to be granted. Many of the actions required
for the obligations are related to the actions allowed by the
rights. This is particularly so for open-source licenses, for
which fulfilling some of the obligations requires parts of
the rights that are granted. Also particularly for open-source
licenses, the obligations and rights are framed to take effect
in an architectural context, with most obligations taking
effect with respect to either the component for which rights
are granted or component(s) determined by the connectors
and architectural topology around that component. Because
software licenses are expressed in natural language, the
rights and obligations are often presented in an intermingled
organization, and much of a license may be devoted to
defining terms, classes of entities referred to, and conditions
under which the various provisions take effect. But the
conceptual structure remains that of a list of rights offered,
each in exchange for specific obligations.

Our innovation is to similarly specify components’ se-
curity rights and obligations, which we can then model,

analyze, and support throughout the system’s development
and evolution, and use to guide its design and instantiation.

There is no “Securityright Act” analogous to the U.S.
Copyright Act [22], or Berne Convention [5], to define the
exclusive security rights of system stakeholders. We present
these possible security rights and obligations as an indication
of what sorts of actions might be regulated by security
licenses for data organized into security compartments and
code organized into components.

A. Some Possible Security Rights
1) The right to read data in compartment T.
2) The right to add data to compartment T.
3) The right to remove data from compartment T.
4) The right to replace component C with another com-

ponent D.
5) The right to update component C to newer version C�.
6) The right to revert component C to older version C�.
7) The right to add component C in a specified architec-

tural configuration.
8) The right to update component C in a specified archi-

tectural configuration.
9) The right to alter the architectural topology of sub-

component B.
10) The right to alter the architecture of system S.
11) The right to add security mechanism M in a specified

configuration.
12) The right to update security mechanism M in a spec-

ified configuration.
13) The right to remove security mechanism M from a

specified configuration.
14) The right to delegate security right R.
15) The right to read the security license of component C.
16) The right to replace the security license L of compo-

nent C with another security license L�.
17) The right to update security license L.

B. Some Possible Security Obligations
1) The obligation for user U to verify his/her identity, by

password or other specified authentication process.
2) The obligation for user U to have been vetted by

authority A to exercise security right R.
3) The obligation for user U to be delegated a one-time

right by authority A to exercise security right R.
4) The obligation for component C to have been vetted

by authority A to exercise security right R.
5) The obligation for component C to have been vetted

by authority A to be the object of security right R.
6) The obligation for each component connected to com-

ponent C to allow it to exercise security right R.
7) The obligation for security license L to meet specified

criteria.
8) The obligation for security license L to be approved

by authority A.



III. EFFECTIVENESS, MANAGEABILITY, EVOLVABILITY

Consider the case of the development of an open-
architecture (OA) system integrating proprietary and open-
source components from a variety of producers, most of
whom do not coordinate their activities and none of whom
are controlled by the organization producing the OA system.
From the point of view of ensuring security, this is arguably
the worst possible case, but it is an increasingly prevalent
development model [4]. The OA approach gives access to a
wide selection of complex components of high quality, and
allows the system to evolve as quickly as its integrators can
find appropriate new versions or new components and evolve
their architecture and shim code to accommodate them.

Since the producers do not coordinate, they are unlikely
to use the same security approaches, and indeed may not
even publish what those approaches are. To control security
in the resulting system, each component is enclosed in a
containment vessel [17] that isolates the component with
a hypervisor [24] and mediates all communication with
the component (method/function calls, data streams, . . . )
through shim code that monitors and restricts it.

A typical current-day technique [14] for managing se-
curity measures is to use capability lists to control each
component’s access to resources such as function calls
and data compartments. Each access is delayed briefly
while the monitor checks the access against the accessing
component’s capability list, then blocked if the component
was not granted the capability to access that resource. In
our experience, each capability list is a text file listing
allowed and/or forbidden capabilities, managed manually;
new capabilities are typically added to the end of the file. As
there appears to be no formal model supporting relationships
among capabilities, interactions between capabilities are also
identified and managed manually. The text files are detailed,
which is a positive aspect, but therefore also long and mind-
numbingly tedious, so errors inevitably creep in and are
not noticed. Because a capability list has no hierarchy or
recursive structure, managing them is not scalable.

A more sophisticated approach is possible using a declar-
ative policy language such as Ponder [6] or an ontology-
based language such as KAoS [23] that groups capabilities
hierarchically, in ontologies (KAoS) or grouped by roles
(Ponder). However, they have no provision for organizing
capabilities by software components, combined hierarchi-
cally into system architectures, and no obvious connection
to law.

We contrast the use of security licenses. In some ways, the
approaches are similar, in that our candidate security rights
are reminiscent of capabilities, and security licenses can also
be used to identify and block disallowed operations automat-
ically. However, because many of the actions required for
the security obligations are related by subsumption to those
granted by the security rights, and many of the obligations

are in the context of the component for which corresponding
rights are being granted, it is possible to automatically calcu-
late the interaction of rights and obligations throughout the
immediate neighborhood of each component, the subsystem
containing the component, and so on recursively on up to
the system as a whole [1]. Structuring the security policies
as licenses gives a form that is more readily accessible to
human readers, and helps convey intention and rationale by
relating each obligation to the right it contributes toward.
Where the security licenses assigned to the components
in the architecture conflict or misalign, automated support
can identify the provisions in conflict, locate the conflict
to the modules involved, and provide explanations showing
the architectural chain of effects that led up to the conflict
[2]. Perhaps most importantly, it supports automation of
the analysis of interactions between security measures and
of the assessment of the system’s overall degree and kind
of security as a function of the measures taken for each
component, group of components, subsystem, and so forth
recursively up to the system as a whole..

IV. RECENT EVENTS

Coordinated international attacks on vulnerable software-
intensive systems of high value and controlling complex sys-
tems are becoming ever more apparent. As the Stuxnet case
demonstrates, security threats to software systems are multi-
valent, multi-modal, and distributed across independently
developed software system components [8]. Similarly, it is
now clear that even physically isolated systems are vulnera-
ble to external security attacks, via portable storage devices
like USB drives, modified end-user devices like keyboards
and mice [11], and social engineering techniques [16]. New
security measures and policy types are required to defend
such systems through new threat detection and parrying
methods, as well as appropriate active defense mechanisms.
What makes a system or system architecture secure changes
over time, as new threats emerge and as systems evolve
to meet new functional requirements. Consequently, there
is need for an approach that can continuously assure the
security of complex, evolving systems in ways that are
practical and scalable, yet robust, tractable, and adaptable.

The Stuxnet attacks entered through software system
interfaces at either the component, application subsystem,
or base operating system level, and their goal was to go
outside or beneath their entry context. However, all of the
Stuxnet attacks on the targeted software system could be
blocked or prevented through security capabilities associated
with the open software interfaces that would (a) limit access
or evolutionary update rights lacking proper authorization,
as well as (b) “sandboxing” (i.e., isolating) and holding up
any evolutionary updates (the attacks) prior to their installa-
tion and run-time deployment. Furthermore, as the Stuxnet
attack involved the use of corrupted certificates of trust
from approved authorities as false credentials that allowed



evolutionary system updates to go forward, it seems clear
that additional preventions are needed that are external to,
and prior to, their installation and run-time deployment. The
development-, installation-, and configuration-time rights
and obligations of Section II extend the ordinary run-time
benefits of security licenses to defend against development-,
distribution-, configuration-, and update-time attacks.

V. EXCLUSIVE SECURITY RIGHTS

If there could be legally defined and protected exclusive
security rights, what would they be? We nominate the
following candidates for discussion:

1) The right of the owner of a copy of a system to replace,
update, or revert any of its components.

2) The right of the owner of a copy of a system to
add or remove components or otherwise alter its the
architectural topology.

3) The right of the owner of a copy of a system to replace
or update the security license of the system or any of
its components.

4) The right of the owner of a copy of a system to alter
its user IO streams or ephemeral data. (We envision
that persistent data may fall into a different category
of protected entity.)

As with the exclusive copyright rights, the owner of a right
may license all or part of it to someone else in exchange for
obligations, for example to allow a trusted system provider
to automatically install certain kinds of updates.

ACKNOWLEDGEMENTS

This research is supported by grant #N00244-12-1-0004
from the Acquisition Research Program at the Naval Post-
graduate School, and by grant #0808783 from the U.S.
National Science Foundation. No review, approval, or en-
dorsement implied.

REFERENCES

[1] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. In-
tellectual property rights requirements for heterogeneously-
licensed systems. In 17th IEEE International Requirements
Engineering Conference (RE’09), pages 24–33, 2009.

[2] T. A. Alspaugh, H. U. Asuncion, and W. Scacchi. Pre-
senting software license conflicts through argumentation. In
23rd International Conference on Software Engineering and
Knowledge Engineering (SEKE 2011), pages 509–514, 2011.

[3] T. A. Alspaugh and W. Scacchi. Heterogeneously-licensed
system requirements, acquisition, and governance. In Second
International Workshop on Requirements Engineering and
Law (RELAW’09), pages 13–14, 2009.

[4] T. A. Alspaugh, W. Scacchi, and H. U. Asuncion. Software li-
censes in context: The challenge of heterogeneously-licensed
systems. Journal of the Association for Information Systems,
11(11):730–755, 2010.

[5] Berne Convention for the Protection of Literary and Artistic
Works, 1979.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder
policy specification language. In Int. Workshop on Policies
for Distributed Systems and Networks, pages 18–38, 2001.

[7] Defense Information Systems Agency. Android 2.2 (Dell)
Security Technical Implementation Guide (STIG), 2011.

[8] N. Falliere, L. O Murchu, and E. Chien. W32.Stuxnet dossier.
Technical report, Symantec, 2011.

[9] M. Franz. E unibus pluram: Massive-scale software diversity
as a defense mechanism. In 2010 Workshop on New Security
Paradigms (NSPW ’10), pages 7–16, 2010.

[10] Free Software Foundation. GNU General Public License
version 3, 2007. http://www.gnu.org/licenses/gpl-3.0.html.

[11] E. Henning. Attack of the computer mouse. The H Security,
2011. http://h-online.com/-1270018.

[12] ISO/IEC. International standard 27001, 2005.

[13] P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, et al. The
inevitability of failure: The flawed assumption of security in
modern computing environments. In 21st National Informa-
tion Systems Security Conference (NISSC’98), 1998.

[14] T. Luo and W. Du. Contego: Capability-based access control
for web browsers. In 4th International Conference on Trust
and Trustworthy Computing (TRUST’11), 2011.

[15] B. Salamat, T. Jackson, G. Wagner, C. Wimmer, and
M. Franz. Runtime defense against code injection attacks
using replicated execution. IEEE Transactions on Dependable
and Secure Computing, 8(4):588–601, 2011.

[16] P. Sawers. US Govt. plant USB sticks in security study, 60%
of subjects take the bait. The Next Web (TNW), 2011.

[17] W. Scacchi and T. A. Alspaugh. Advances in the acquisition
of secure systems based on open architectures. In Journal of
Software Technology, July 2012.

[18] R. C. Seacord. CERT C Secure Coding Standard. Addison-
Wesley, 2008.

[19] S. Smalley. The case for security enhanced (se) android.
Android Builder’s Summit, 2012.

[20] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen,
and J. Lepreau. The Flask security architecture: System
support for diverse security policies. In 8th USENIX Security
Symposium (SSYM’99), pages 11–11, 1999.

[21] K. Sun, J. Wang, F. Zhang, and A. Stavrou. SecureSwitch:
BIOS-assisted isolation and switch between trusted and un-
trusted commodity OSes. In 19th Network and Distributed
System Security Symposium (NDSS 2012), 2012.

[22] U.S. Copyright Act, 17 U.S.C.

[23] A. Uszok, J. M. Bradshaw, M. Johnson, et al. KAoS policy
management for semantic web services. IEEE Intelligent
Systems, 19(4):32–41, 2004.

[24] Xen hypervisor. http://xen.org/products/xenhyp.html.


