
Analyzing Software Licenses in Open Architecture Software Systems

Thomas A. Alspaugh
Department of Computer Science

Georgetown University
Washington, DC 20057 USA

alspaugh@cs.georgetown.edu

Hazeline U. Asuncion and Walt Scacchi
Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3455 USA
{hasuncion,wscacchi}@ics.uci.edu

Abstract

A substantial number of enterprises and independ-
ent software vendors are adopting a strategy in which
software-intensive systems are developed with an open
architecture (OA) that may contain open source soft-
ware (OSS) components or components with open
APIs. The emerging challenge is to realize the benefits
of openness when components are subject to different
copyright or property licenses. In this position paper,
we identify key properties of OSS licenses, present a
license analysis scheme, and discuss our approach for
automatically analyzing license interactions.

1. Introduction

Open architectures have generally referred to the
ability to use third party components to create a soft-
ware system. Oreizy uses the term to refer to his cus-
tomization technique of making the architecture model
an explicit and malleable part of the deployed system
[16], while the Department of Defense community uses
the term to refer to guidelines on acquiring and com-
posing third party components into a software system
[18]. Today, we see more and more software-intensive
systems developed using an OA strategy not only with
open source software (OSS) components but also pro-
prietary components with open APIs (e.g. [20]). De-
veloping systems using the OA technique can lower
development costs [18]. Composing a system with
heterogeneously-licensed components, however, in-
creases the likelihood of liabilities stemming from in-
compatible licenses. Thus, in this paper, we define an
OA system as a software system consisting of compo-
nents that are either open source or proprietary with
open API, whose overall system rights at a minimum
allow its use and redistribution.

OA systems were formerly composed solely of ho-
mogenously-licensed OSS components. These OSS
projects have commonly required developers to con-

tribute their work under conditions that ensure the pro-
ject can license its products under a specific OSS li-
cense. This is changing, however. More systems are
being composed of software components associated
with different licenses. The resulting system may not
have any recognized OSS license at all—but if the sys-
tem is designed well and if the corresponding obliga-
tions are met, copyright rights may be available to al-
low its redistribution and sublicensing.

Due to the sheer number of license types, variants,
versions, and the various stipulations attached to each
of these licenses, analyzing the compatibility or lack
thereof between the various licenses in a system is ex-
tremely difficult. Licenses are often incomplete or
hard to understand. Licenses are also legally binding.

Thus, we aim to identify principles of software ar-
chitecture and software licenses that facilitate success
of an OA system. We present a systematic approach to
analyzing license interaction within a system using a
formal license model that can adequately express the
majority of current license types. We then incorporate
this model into xADL, an extensible architecture de-
scription language that rigorously represents a software
system [10]. We discuss our automated support for
analyzing licenses within ArchStudio4 [11].

2. Background

There is little explicit guidance on how best to de-
velop, deploy, and sustain complex software systems
when different OA and OSS objectives are at hand.
Ven [21] and German [8] are recent exceptions.

OA may simply seem to mean software system ar-
chitectures incorporating OSS components and open
application program interfaces (APIs). But not all
software system architectures incorporating OSS com-
ponents and open APIs will produce an OA, since the
available license rights of an OA depend on: (a)
how/why OSS and open APIs are located within the
system architecture, (b) how OSS and open APIs are

implemented, embedded, or interconnected, (c)
whether the licenses of different OSS components en-
cumber all/part of a software system's architecture into
which they are integrated, and (d) the fact that many
alternative architectural configurations and APIs exist
that may or may not produce an OA system (cf. [3,
18]). Thus, new software development or acquisition
requirements may stipulate a software system with an
OA and OSS, but the resulting system may or may not
have the rights needed to embody an OA system.

3. Understanding open architectures

Stating that an OA system comprises OSS and open
API components does not clearly indicate what possi-
ble mixes of software elements may be configured into
such a system. To help explain this, we first identify
software elements included in common software archi-
tectures that affect whether they are open or closed [5].

Software source code components – These can be
either (a) standalone programs, (b) libraries, frame-
works, or middleware, (c) inter-application script code
(e.g., C shell scripts) and (d) intra-application script
code (e.g., to create Rich Internet Applications using
domain-specific languages such as XUL for Firefox
Web browser [6] or “mashups” [15]).

Executable components -- These are programs in
binary form, and its source code may not be open for
access, review, modification, and possible redistribu-
tion. Executable binaries are a compilation of source
code and they can be viewed as “derived works” [17].

Application program interfaces/APIs – The avail-
ability of externally visible and accessible APIs is the
minimum requirement to form an “open system” [14].

Software connectors – Software intended to pro-
vide a standard or reusable way of communication
through common interfaces, e.g. High Level Architec-
ture (HLA) [12], CORBA, MS .NET, and GNU Lesser
General Public License (LGPL) libraries.

Configured system or sub-system architectures –
These are software systems which may comprise of
components with different licenses, affecting the over-
all system license. To minimize license interaction, a
configured system or sub-architecture may be sur-
rounded by a license firewall, a layer of dynamic links,
client-server connections, license shims, or other con-
nectors that block the propagation of reciprocal obliga-
tions. The Affero General Public License (AGPL) [2]
prohibits using license firewalls.

4. Understanding open software licenses

A particularly knotty challenge is the problem of
heterogeneous licenses in software systems. There has

been an explosion in the number, type, and variants of
software licenses, especially with open source software
(cf. [1]). License types include General Public License
(GPL), Mozilla Public License (MPL), Apache Public
License, (APL), academic licenses such as Berkeley
Software Distribution (BSD) and MIT, Creative Com-
mons, Artistic, and Public Domain (either via explicit
declaration or by expiration of prior copyright license).
Within each license types are numerous variants. Fur-
thermore, licenses can evolve, resulting in new license
versions over time. Finally, each license stipulates
different constraints to software components that bear
it. Discussions of many different licenses currently
used with OSS are available [1, 7, 17, 19].

The way components are configured also affects the
license of the overall system. Furthermore, the com-
ponent configurations at build-time and run-time may
have different license implications. For instance,
components may be statically bound or interconnected
at build-time, while other components may only be
dynamically linked for execution at run-time, and thus
might not be included as part of a software release or
distribution. On top of this, software maintenance such
as architectural refactoring, alternative component in-
terconnections, and component replacement (via main-
tenance patches, installation of new versions, or migra-
tion to new technologies) can all have effects on the
overall license of the system.

4.1. Software licenses: rights and obligations

Copyright, the common basis for software licenses,
gives the original author of a work certain exclusive
rights, e.g. right to use, copy, modify, merge, publish,
distribute, sub-license, and sell copies. These rights
may be licensed to others, individually or in groups,
and either exclusively or non-exclusively. After a pe-
riod of years, the rights enter the public domain. Until
then copyright may only be obtained through licensing.

Licenses may impose obligations that must be met
in order for the licensee to realize the assigned rights.
Commonly cited obligations include the obligation to
publish at no cost the source code you modify (MPL)
or the reciprocal obligation to publish all source code
included at build-time or statically linked (GPL). The
obligations may conflict, as when a GPL’d compo-
nent’s reciprocal obligation to publish source code of
other components is combined with a proprietary li-
cense’s prohibition of publishing source code. In this
case, rights may not be available for the system as a
whole, not even the right of use, because the two obli-
gations cannot simultaneously be met.

The basic relationship between software license
rights and obligations can be summarized as follows: if

the specified obligations are met, then the specified
rights are granted. For example, if you publish modi-
fied source code and sub-licensed derived works under
MPL, then you get all the MPL rights for the original
and modified code. However, license details are diffi-
cult to comprehend and track—it is easy to get con-
fused or make mistakes. Licenses written by develop-
ers are often incomplete and legally ambiguous, while
those written by lawyers, are more exact and complete
but can be difficult for non-lawyers to grasp. The chal-
lenge is multiplied when dealing with configured sys-
tems that compose multiple components with hetero-
geneous licenses, so that the need for legal interpreta-
tions begins to seem inevitable (cf. [7, 17]).

4.2. Expressing software licenses

We propose a scheme for expressing software li-
censes that is more formal and less ambiguous than
natural language, and that allows us to identify con-
flicts arising from the various rights and obligations
pertaining to two or more component’s licenses. We
considered relatively complex structures (such as
Hohfeld’s eight fundamental jural relations [9]) but,
applying Occam’s razor, selected a simpler structure.
We start with a tuple <actor, operation, action, ob-
ject> for expressing a right or obligation. The actor is
the “licensee” for all the licenses we have examined.
The operation is one of the following: “may”, “must”,
or “must not”, with “may” expressing a right and
“must” and “must not” expressing obligations. A copy-
right right is only available to entities who have been
granted a sublicense. Thus, only the listed rights are
available, and the absence of a right means that it is not
available. The action is a verb or verb phrase describ-
ing what may, must, or must not be done, with the ob-
ject completing the description. We specify an object
separately from the action to minimize the set of ac-
tions. A license may be expressed as a set of rights,
with each right associated with zero or more obliga-
tions that must be fulfilled in order to enjoy that right.
Figure 1 displays the tuples and associations for two of
the rights and their associated obligations for the aca-
demic BSD software license. Note that the first right is
granted without corresponding obligations.

When designing an OA software system, there are
heuristics that can be employed to enable architectural
design choices that might otherwise be excluded due to
license conflicts. First, it is possible to employ a li-
cense firewall that serves to limit the scope of recipro-
cal obligations. Rather than simply interconnecting
conflicting components through static linking of com-
ponents at build-time, such components can be logi-
cally connected via dynamic links, client-server proto-

cols, license shims (e.g., via LGPL connectors), or run-
time plug-ins. Second, the source code of statically
linked OSS components must be made public. Third, it
is necessary to include appropriate notices and publish
required sources when academic licenses are em-
ployed. However, even using design heuristics such as
these (and there are many), keeping track of license
rights and obligations across interconnected compo-
nents in complex OAs quickly become too cumber-
some. Thus, automated support is needed to manage
the multi-component, multi-license complexity.

Figure 1. A portion of the BSD license tuples

5. Automating software license analysis

If we start from a formal specification of a software
system’s architecture, we can associate software li-
cense attributes with the system’s components, connec-
tors, and sub-system architectures and calculate the
copyright rights and obligations for the system’s con-
figuration. Accordingly, we use an architectural de-
scription language specified in xADL [10] to describe
OAs that can be designed and analyzed with a software
architecture design environment [13], such as
ArchStudio4 [11]. ArchStudio4 currently has software
traceability tool support (cf. [4]) and we have extended
it with a Software Architecture License Traceability
Analysis module (see Fig 2). This allows for the speci-
fication of licenses as a list of attributes (license tuples)
using a form-based user interface in ArchStudio4.

We analyze rights and obligations as follows:
Propagation of reciprocal obligations. We follow

the widely-accepted interpretation that build-time static
linkage propagate the reciprocal obligations, but the
“license firewalls” do not. Analysis begins, therefore,
by propagating these obligations along all connectors
that are not license firewalls.

Obligation conflicts. An obligation can conflict
with another obligation, or with the set of available
rights, by requiring a copyright right that has not been
granted. For instance, a proprietary license may require
that a licensee must not redistribute source code, but
GPL states that a licensee must redistribute source
code. Thus, the conflict appears in the modality of the
two otherwise identical obligations, “must not” in a
proprietary software and “must” in GPL.

Rights and obligations calculations. The rights
available for the entire system (use, copy, modify, etc.)
are calculated as the intersection of the sets of rights
available for each component of the system. If a con-

flict is found involving the obligations and rights of
linked components, it is possible for the system archi-
tect to consider an alternative linking scheme, e.g. us-
ing one or more connectors along the paths between
the components that act as a license firewall. This
means that the architecture and the environment to-
gether can determine what OA design best meets the
problem at hand with available software components.
Components with conflicting licenses do not need to be
arbitrarily excluded, but instead may expand the range
of possible architectural alternatives if the architect
seeks such flexibility and choice.

Figure 2: License traceability analysis tool

6. Ongoing work

We are currently encoding major license types such

as GPL, MPL, CTL to examine the effectiveness of the
license tuple encoding and the calculations based upon
it. Thus far, we are finding that the tuple representa-
tion is sufficiently expressive for our needs. We are
also currently evaluating the effectiveness of our
automated license analysis on an actual heterogene-
ously licensed system. In addition, we are exploring
the impact of patent and other provisions in licenses.
Finally, we are studying how the design time and
build-time analysis of component configuration relates
to the eventual run-time license of a system.

7. Acknowledgments

Effort funded by grants 0534771 and 0808783 from
the U.S. NSF & Acquisition Research Program at the
Naval Postgraduate School. No endorsement implied.

8. References

[1] Open Source Initiative. http://www.opensource.org, 2008.
[2] Affero Inc. Affero General Public License.
http://www.affero.org/oagpl.html, 2007.
[3] Alspaugh, T.A. and Antón, A.I. Scenario Support for
Effective Requirements. Information and Software Technol-
ogy. 50(3), p. 198-220, February, 2007.

[4] Asuncion, H. Towards Practical Software Traceability. In
Proc. of the 30th International Conf on Software Engineering
Doctoral Symposium. Leipzig, Germany, 2008.
[5] Bass, L., Clements, P., et al. Software Architecture in
Practice. 2nd ed. Addison-Wesley Prof: New York, 2003.
[6] Feldt, K. Programming Firefox: Building Rich Internet
Applications with XUL.O'Reilly Press: Sebastopol, CA, 2007.
[7] Fontana, R., Kuhn, B.M., et al. A Legal Issues Primer for
Open Source and Free Software Projects. http://www.
sofwarefreedom.org/resources/2008/foss-primer.pdf, Soft-
ware Freedom Law Center, Report Version 1.5.1, 2008.
[8] German, D.M. and Hassan, A.E. License Integration Pat-
terns: Dealing with Licenses Mismatches in Component-
Based Development. In Proc. of the 31st International Con-
ference on Software Engineering (ICSE 2009). Vancouver,
Canada, May 16-24, 2009.
[9] Hohfeld, W.N. Some Fundamental Legal Conceptions as
Applied in Judicial Reasoning. Yale Law Journal. 23(1), p.
16-59, 1913.
[10] Institute for Software Research. xADL 2.0. University of
California, Irvine. http://www.isr.uci.edu/projects/xarchuci/
[11] Institute for Software Research. ArchStudio 4. Univ. of
Calif, Irvine, 2006.http://www.isr.uci.edu/projects/archstudio
[12] Kuhl, F., Weatherly, R., et al. Creating Computer Simu-
lation Systems: An Introduction to the High Level Architec-
ture. Prentice-Hall: Upper Saddle River, New Jersey, 1999.
[13] Medvidovic, N., Rosenblum, D.S., et al. A Language
and Environment for Architecture-Based Software Develop-
ment and Evolution. In Proc. of the 21st International Con-
ference on Software Engineering (ICSE '99). p. 44-53, Los
Angeles, CA, May 16-22, 1999.
[14] Meyers, B.C. and Obendorf, P. Managing Software
Acquisition: Open Systems and COTS Products. Addison-
Wesley: New York, 2001.
[15] Nelson, L. and Churchill, E.F. Repurposing: Techniques
for Reuse and Integration of Interactive Services. In Proc. of
the Int. Conf. Information Reuse and Integration. Sep, 2006.
[16] Oreizy, P. Open Architecture Software: A Flexible Ap-
proach to Decentralized Software Evolution. Thesis (Ph. D.,
Information and Computer Science), University of Califor-
nia, 2000.http://www.ics.uci.edu/~peymano/papers/thesis.pdf
[17] Rosen, L. Open Source Licensing: Software Freedom
and Intellectual Property Law. Prentice-Hall PTR: Upper
Saddle River, New Jersey, 2005.
[18] Scacchi, W. and Alspaugh, T.A. Emerging Issues in the
Acquisition of Open Source Software by the U.S. Depart-
ment of Defense. In Proc. of the 5th Annual Acquisition Re-
search Symposium. May 13-15, 2008.
[19] St. Laurent, A.M. Understanding Open Source and Free
Software Licensing. O'Reilly Press: Sebastopol, CA, 2004.
[20] Unity Technologies. End User Lic.Agreement. http://
unity3d.com/unity/unity-end-user-license-2.x.html 2008.
[21] Ven, K. and Mannaert, H. Challenges and Strategies in
the Use of Open Source Software by Independent Software
Vendors. Info and Software Tech. 50, p. 991-1002, 2008.

